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a b s t r a c t

In this paper we construct a KSGNS type covariant representation on a Krein C∗-module
for a covariant α-completely positive map, and the result is applied to construct a KSGNS
type covariant representation associated with a pair of two maps (ρ, Φ) where ρ is a
covariantα-completely positivemap on a C∗-algebra andΦ is a covariantρ-map on a Krein
C∗-module. The KSGNS type covariant representation for a pair (ρ, Φ) is applied to give a
new covariant J-representation of a crossed product of a C∗-algebra and a new covariant
map of a crossed product of a Hilbert C∗-module by a discrete group.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Stinespring’s dilation theorem for a completely positive map on a C∗-algebra is one of the fundamental and important
results for the study of operator algebras andmathematical physics. In particular, Stinespring’s theorem is the basic structure
theorem for quantum channels: it states that any quantum channel arises from a unitary evolution on a larger system.
By constructing Hilbert C∗-modules, Kasparov [1] gave the Stinespring type representation for a completely positive map
between two C∗-algebras, which is called a Kasparov–Stinespring–Gelfand–Naimark–Segal (KSGNS) representation [2].
This construction generalized the Stinespring’s construction as well as the classical GNS construction. Recently, Asadi [3]
gave a Stinespring type representation for a pair of two unital maps on a C∗-algebra and a Hilbert C∗-module, and then
Bhat–Ramesh–Sumesh [4] strengthened Asadi’s result by removing a technical condition and unicity on the maps under
consideration.Moreover, there are covariant versions of theKSGNS representations for various covariant completely positive
maps [5].

A generalization of positive linear functionals to Hermitian linear functionals yielding representations on (indefinite)
inner product spaces was studied by Scheibe [6]. Since the positivity is lacking in some local quantum field theories, the
GNS-construction on an indefinite inner product is of increasing interest in the general (axiomatic) quantum field theory.
In particular, in the gauge quantum field theory, locality is in conflict with positivity and then from the axiomatic point of
view, it is better to keep the locality condition and to give up the positivity condition which leads to the modification of
the axiom of positivity. For more detailed motivation, we refer to [7]. Motivated by the lack of positivity in some models in
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local quantum field theories, Constantinescu and Gheondea studied Kolmogorov decompositions of Hermitian kernels in [8]
and the Stinespring representation theorem and its covariant version for Hermitian maps in [9]. Here the Hermitian kernels
and Hermitian maps are associated with the involution with respect to indefinite inner product and satisfy the Schwartz’s
bounded conditionwhichhas been studiedwithmore concrete expressions in [10].With samemotivation, Heo–Hong–Ji [11]
introduced a notion of the α-complete positivity as a generalization of complete positivity. Here a positivity is inherent in
Hermitianmaps in terms of themapα. Theα-complete positivity provides a positive definite inner product associated to the
indefinite one, and the interplay between these two is indeed the characteristic feature of Krein spaces among all indefinite
metric spaces.

Krein spaces arise naturally in situations where the indefinite inner product has an analytically useful property (such as
Lorentz invariance) which the Hilbert inner product lacks. It is known that in massless quantum field theory the state space
may be a space with an indefinite metric. Motivated by this physical fact, many people extended the GNS construction to
Krein spaces. More generally, Heo–Hong–Ji [11] provided such a KSGNS type representation on a Krein C∗-module for an
α-completely positive map on a C∗-algebra or a ∗-algebra. Moreover, Heo–Ji [12] constructed a Stinespring type covariant
representation for a pair of a covariant completely positive map ρ and a covariant ρ-map. In this paper, motivated by the
results in [3,13,11,12,14], we construct a KSGNS type covariant representation for a pair of a covariantα-completely positive
map ρ on a C∗-algebra and a covariant ρ-map on a Krein C∗-module, using the KSGNS type representations on Krein C∗-
modules associated to α-completely positive maps. Furthermore, we give a new covariant J-representation of a crossed
product of a C∗-algebra by a locally compact group and a new covariant map on the crossed product of a Hilbert C∗-module
by a locally compact group. We refer to [13,15] for the crossed products of Hilbert C∗-modules.

This paper is organized as follows. In Section 2, we review some basic notions of a Krein C∗-module and an α-completely
positive map on a C∗-algebra. We also recall the KSGNS type construction associated to an α-completely positive map on
a C∗-algebra A, which leads to a J-representation of a C∗-algebra on a Krein C∗-module. We give a covariant version of
the KSGNS type representation on a Krein C∗-module for a covariant α-completely positive map, which is unique up to
unitary equivalence. In Section 3, we give some examples of a pair of two maps on a C∗-algebra and a Hilbert C∗-module
and concerned with a pair of a covariant α-completely positive map on a C∗-algebra and a covariant map on a Krein C∗-
module. We prove a KSGNS type covariant representation theorem for such a pair. Finally, in Section 4, we give a new
covariant J-representation of a crossed product of a C∗-algebra and an associated covariant map of a crossed product of a
Hilbert C∗-module using the extension of an α-completely positive map to a C∗-crossed product.

2. KSGNS constructions for covariant α-CP maps

Let B be a C∗-algebra and let X, Y be Hilbert B-modules. An operator T : X → Y is adjointable if there is an adjoint
operator T ∗

: Y → X such that

⟨T (x), y⟩ = ⟨x, T ∗(y)⟩, (x ∈ X, y ∈ Y ).

We note that every adjointable map automatically becomes a continuous B-module map, i.e., T (xa) = T (x)a for all x ∈ X
and a ∈ B. We denote by L(X, Y ) the set of all adjointable operators from X into Y . We write L(X) for L(X, X) which
becomes a C∗-algebra with the operator norm. For detailed information on Hilbert C∗-modules, we refer to [2].

Let A and B be C∗-algebras. A linear map ϕ from A into B is said to be completely positive if for any n ∈ N, the linear
map ϕn : Mn(A) → Mn(B) defined by

ϕn


aij

n×n


=

ϕ(aij)


n×n, (aij ∈ A, i, j = 1, . . . , n)

is positive where (·)n×n is an n × n operator matrix. We note that if ρ : A → B is a Hermitian map, i.e., ρ(a∗) = ρ(a)∗,
then ρn is also a Hermitian map.

Definition 2.1 ([11]). Let A be a unital C∗-algebra with a unit 1 and let X be a Hilbert B-module. A Hermitian map ρ from
A into L(X) is called α-completely positive (α-CP) if there is a bounded Hermitian map α : A → A such that

(ρ1) α2
= I (the identity mapping on A),

(ρ2) α(1) = 1,
(ρ3) ρ(ab) = ρ


α(a)α(b)


= ρ


α(ab)


for any a, b ∈ A,

(ρ4)
n

i,j=1⟨xi, ρ(α(ai)∗aj)xj⟩ ≥ 0 for any n ≥ 1, a1, . . . , an ∈ A and x1, . . . , xn ∈ X ,
(ρ5) for each a ∈ A, there exists a constant C(a) ≥ 0 such that

ρ(α(aai)∗aaj)

n×n ≤ C(a)


ρ(α(ai)∗aj)


n×n

for any n ∈ N and a1, . . . , an ∈ A.

Remark 2.2. In Definition 2.1, if A is non-unital, then (ρ2) is replaced by

(ρ2′) for any approximate unit {fi}i∈I for A, {α(fi)}i∈I is also an approximate unit.
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Let J be a (fundamental) symmetry on a Hilbert B-module X , i.e., J = J∗ = J−1. Then we define a B-valued indefinite
inner product by

⟨x, y⟩J = ⟨x, Jy⟩, (x, y ∈ X).

In this case, the pair (X, J) is called a Krein B-module. For each T ∈ L(X), there exists an operator T J
∈ L(X) such that

⟨T (x), y⟩J = ⟨x, T J(y)⟩J , (x, y ∈ X).

The operator T J is called the J-adjoint of T andwe can see that T J
= JT ∗J . Formore detailed study for indefinite inner product

spaces, we refer to [16].
Let (X, J) be a Krein B-module. An algebra homomorphism π : A → L(X) is called a representation of A on X . A ∗-

representation π of A on X is a representation of A on X such that π(a∗) = π(a)∗ for all a ∈ A. A representation π of A on
X is called a J-representation of A on the Krein C∗-module (X, J) if

π(a∗) = π(a)J ≡ Jπ(a)∗J for all a ∈ A.

Furthermore, if [π(A)X] = X where [π(A)X] is the closed linear span of the set {π(a)x : a ∈ A, x ∈ X}, then π is said to
be nondegenerate.

Theorem 2.3 ([11]). Let A be a unital C∗-algebra with a unit 1 and let X be a Hilbert B-module. If ρ : A → L(X) is an α-CP
linear map, then there exist a Krein B-module (Y , J), a J-representation π : A → L(Y ) and an operator V in L(X, Y ) such that
(i) ρ(a) = V ∗π(a)V and so ρ(a∗) = V ∗π(a∗)V = V ∗π(a)JV for any a ∈ A,
(ii) π(A)[V (X)] is dense in Y ,
(iii) V ∗π(a)∗π(b)V = V ∗π(α(a∗)b)V for any a, b ∈ A.

Moreover, if there are a Krein B-module (Y ′, J ′), a J ′-representation π ′
: A → L(Y ′) and an operator V ′

∈ L(X, Y ′) satisfying
(i′) ρ(a) = V ′∗π ′(a)V ′ for any a ∈ A,
(ii′) π ′(A)[V ′(X)] is dense in Y ′,
(iii′) V ′∗π ′(a)∗π ′(b)V ′

= V ′∗π ′(α(a∗)b)V ′ for any a, b ∈ A,

then there is a unitary operator U in L(Y , Y ′) such that

V ′
= UV and π ′(a) = Uπ(a)U∗, (a ∈ A).

For the proof of Theorem 2.4, we note that Y = A ⊗ρ X is the completion of the quotient space A ⊗alg X/Nρ , where ⊗alg
is the algebraic tensor product and Nρ is the kernel space defined by

Nρ =


i

ai ⊗ xi ∈ A ⊗alg X :


i,j

⟨xi, ρ(α(a∗

i )aj)xj⟩ = 0


.

The symmetry J is explicitly given by J = α ⊗ I , and the operator V is given by V (x) = 1 ⊗ x (x ∈ X). The KSGNS type
representation ((Y , J), π, V ) satisfying (ii) in Theorem 2.3 is said to beminimal.

In the remainder of this section, we construct a covariant representation associated to a covariant α-CP map.
Let θ be an action of a locally compact group G on a C∗-algebra A. Here, an action means a group homomorphism

θ : G → Aut(A) such that for each a ∈ A, the map G ∋ s → θs(a) ∈ A is continuous with respect to the norm topology on
A. Let (Y , J) be a Krein B-module and let v be a J-unitary representation of G into the J-unitary group UJ(Y ) which is the
set of all J-unitary operators in L(Y ), i.e., for each s ∈ G, v

J
svs = vsv

J
s = I , which is equivalent to

v∗

s = Jvs−1 J or vJ
s = vs−1 . (1)

A linear map ρ : A → L(Y ) is said to be (θ, v)-covariant if

ρ(θs(a)) = vsρ(a)vJ
s, (s ∈ G, a ∈ A). (2)

A covariant J-representation of a C∗-dynamical system (A,G, θ) on a Krein B-module (Y , J) is a triple (π, v, (Y , J)), where
π is a J-representation of A on (Y , J) and v is a J-unitary representation of G into UJ(Y ) such that the (θ, v)-covariance
property holds: for any s ∈ G and a ∈ A,

π(θs(a)) = vsπ(a)vJ
s.

Theorem 2.4. Let (A,G, θ ) be a unital C∗-dynamical system and let u : G → U(X) be a unitary representation on a Hilbert
B-module X. If ρ : A → L(X) is a unital (θ, u)-covariant α-CPmap, then there exist a covariant J-representation (π, v, (Y , J))
of (A,G, θ) and an isometry V ∈ L(X, Y ) such that
(i) ρ(a) = V ∗π(a)V for any a ∈ A,
(ii) π(θs(a)) = vsπ(a)vJ

s for any s ∈ G and a ∈ A,
(iii) Vus = vsV for any s ∈ G.
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Proof. By Theorem 2.3, there exist a Krein B-module (Y , J), a J-representation π : A → L(Y ) and an operator V in
L(X, Y ) such that ρ(a) = V ∗π(a)V for any a ∈ A. Hence, it is enough to construct a J-unitary representation v of G
on Y satisfying (ii) and (iii). We define v : G → L(Y ) by vs = θs ⊗ us on Y = A ⊗ρ X . For any ai, a′

j ∈ A and
xi, x′

j ∈ X (i = 1, . . . , n, j = 1, . . . ,m), we obtain that
vs

 n
i=1

ai ⊗ xi


,

m
j=1

a′

j ⊗ x′

j


=

n
i=1

m
j=1

⟨θs(ai) ⊗ us(xi), a′

j ⊗ x′

j⟩

=

n
i=1

m
j=1


xi, ρ


α(a∗

i )α

θs−1(α(a′

j))

u∗

s (x
′

j)


=


n

i=1

ai ⊗ xi, ((α ◦ θs−1 ◦ α) ⊗ u∗

s )

 m
j=1

a′

j ⊗ x′

j


,

where the third equality follows from the (θ, u)-covariance property ofρ. Hencewehave that v∗
s = (α◦θs−1◦α)⊗u∗

s (s ∈ G),
so that

vJ
s = θs−1 ⊗ u∗

s .

This shows that v is a J-unitary representation of G on Y .
Since V (y) = 1⊗y and ρ is unital, we can see that Vus = vsV for all s ∈ G. Moreover, we obtain thatπ(θs(a)) = vsπ(a)vJ

s
for all s ∈ G and a ∈ A. Indeed, for any ai ∈ A and xi ∈ X (i = 1, . . . , n), let y =

n
i=1 ai ⊗ xi. We have that

π

θs(a)


(y) =

n
i=1

θs

aθs−1(ai)


⊗ usus−1(xi) = vsπ(a)vJ

s(y),

which completes the proof. �

3. KSGNS type representations for a pair of covariant maps

In this section, we construct a covariant representation on a Krein C∗-module associated to a pair of two covariant maps
on Krein C∗-modules, which may be regarded as a generalization of Theorem 3.2 in [12].

Let Y and Z be Hilbert B-modules. Then L(Y , Z) can be regarded as a Hilbert L(Y )-module with the following
operations:

(i) (module map) L(Y , Z) × L(Y ) ∋ (T , S) → TS ∈ L(Y , Z),
(ii) (inner product) L(Y , Z) × L(Y , Z) ∋ (T1, T2) → ⟨T1, T2⟩ = T ∗

1 T2 ∈ L(Y ).

Let X be a Hilbert A-module and let ρ be a linear map from A into L(Y ). A linear map Φ : X → L(Y , Z) is said to be a
ρ-map if

⟨Φ(x), Φ(y)⟩ = ρ(⟨x, y⟩), (x, y ∈ X).

If (Y , JY ) is a Krein B-module and ρ is a nondegenerate JY -representation, then a ρ-map Φ : X → L(Y , Z) is automatically
linear and satisfies the relation

Φ(xa) = Φ(x)JYρ(a)JY for any x ∈ X and a ∈ A.

Example 3.1. Let X be a Hilbert A-module.

(1) Consider the right Hilbert A-module X ⊕ A consisting of columns (x, a) and equipped with an inner product
⟨(x1, a1), (x2, a2)⟩ = ⟨x1, x2⟩ + a∗

1a2. We identify each x ∈ X with the corresponding adjointable operator φx from
A to X defined by a → xa of which the adjoint operator is given by φ∗

x (y) = ⟨x, y⟩, (y ∈ X). The C∗-algebra K(X ⊕ A)
consisting of compact operators is called the linking algebra of X . It is known that K(A, X) = X and K(X, A) = X∗. If
π : K(X ⊕ A) → B(H) is a representation on a Hilbert space H , then by restriction π defines twomaps φ = π |A and
Φ = π |X , which together constitute a representation of X . It is proved in [17] that every Hilbert C∗-module has such a
representation.

(2) Let I be an ideal of A and let XI be the closed linear span of the products xa for x ∈ X and a ∈ I . The inner product on
X modulo I gives an A/I-valued inner product on the quotient space X/XI and the quotient map Φ : X → X/XI is a
ϕ-morphism, where ϕ : A → A/I = B is the quotient map. For the exact sequence:

I
ı

−→ A
π
−→ A/I

we have the associated sequence of Hilbert C∗-modules XI
ȷ

−→ X
Π
−→ X/XI where ȷ is the inclusion map and Π is

the canonical quotient map. It is not difficult to see that ȷ is an ı-representation and Π is a π-representation. Bakić
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and Guljaš [18] gave a correspondence between the class of representations of Hilbert C∗-modules and the class of
morphisms of the corresponding linking algebras.

For a covariant representation theorem for an α-CP map, we introduce a compatible action and the covariance property
of a map on a Krein C∗-module. Let (A,G, θ) be a C∗-dynamical system and let (X, JX ) be a Krein A-module. A group
homomorphism τ from G into the JX -unitary group UJX (X) such that for any s ∈ G, a ∈ A and x, x′

∈ X ,

(i) τs(xa) = τs(x)θs(a),
(ii) ⟨τs(x), τs(x′)⟩JX = θs(⟨x, x′

⟩JX ),

is called a θ-compatible action of G on (X, JX ). Let (Y , JY ) and (Z, JZ ) be Krein B-modules. For a θ-compatible action τ of G on
(X, JX ) and amapΦ : X → L(Y , Z), if there are a JY -unitary representation v : G → UJY (Y ) and a JZ -unitary representation
σ : G → UJZ (Z) such that

Φ(τs(x)) = σsΦ(x)vJY
s for any x ∈ X and s ∈ G,

then Φ is said to be (τ , σ , v)-covariant.
In the following theorem, we construct a covariant representation associated to a pair of two covariant maps under a

technical assumption which can be replaced by the existence of some element in X (see Remark 3.3).

Theorem 3.2. Let X be a Hilbert A-module and let Y , Z be Hilbert B-modules. If ρ : A → L(Y ) is a unital (θ, u)-covariant
α-CP linear map and if Φ : X → L(Y , Z) is a (τ , σ , u)-covariant ρ-map such that

(P) the closure [Φ(X)Y ] is orthogonal complemented in Z,

then there exists a pair

(π, V , (E, J)) , (Π,W , F)


such that

(i) (E, J) is a Krein B-module and F is a Hilbert B-module,
(ii) π : A → L(E) is a J-representation,
(iii) Π : X → L(E, F) is a J ◦ π-map,
(iv) V ∈ L(Y , E) is an isometry and W ∈ L(Z, F) is a projection

satisfying the conditions (i)–(iii) in Theorem 2.3 and Φ(x) = W ∗Π(x)V for all x ∈ X. Moreover, there exist a J-unitary
representation v and a map σ ′

: G → U(F) such that

(1) (π, v, (E, J)) is a covariant J-representation of (A,G, θ),
(2) Π is (τ , σ ′, v)-covariant.

Remark 3.3. In Theorem 3.2, if B = C and Y , Z are Hilbert spaces, then the hypothesis (P) is redundant (see [4]). Moreover,
we see that the hypothesis (P) in Theorem 3.2 can be replaced by the existence of x0 ∈ X withΦ(x0)Φ(x0)∗ = 1L(Z) as in [3].
Indeed, we consider the algebraic tensor product X ⊗ Z equipped with

i

xi ⊗ zi,


j

x′

j ⊗ z ′

j


=


i,j

⟨zi, Φ(x′

j)Φ(xi)∗z ′

j ⟩.

The Hilbert B-module F is obtained by the completion of the quotient space X ⊗ Z/N , where N is the kernel space of ⟨·, ·⟩.
The map Π : X → L(E, F) defined by

Π(x)


i

π(ai)Vei + N


=


i

x0 ⊗ Φ(xai) + N

becomes a π-map and the map W : Z → F given by W (z) = x0 ⊗ z + N satisfies the relation W ∗Π(x)V = Φ(x) (x ∈ X).
However, this is not a minimal representation in the following sense.

Proof. By Theorem 2.3, there exist a Krein B-module (E = A ⊗ρ Y , J), a J-representation π : A → L(E) and an operator
V ∈ L(Y , E) such that the conditions (i)–(iii) in Theorem 2.3 hold. Let F be the closed linear span [Φ(X)Y ] of the set
Φ(X)Y =


i Φ(xi)yi : xi ∈ X, yi ∈ Y


in Z . It is clear that the set F becomes a HilbertB-module. For each x ∈ X , we define

a map Π(x) : π(A)V (Y ) → F by

Π(x)


n

i=1

π(ai)Vyi


=

n
i=1

Φ(xai)yi.

Let ai ∈ A and yi ∈ Y for i = 1, . . . , n. Since Φ is a ρ-map, we have thatΠ(x)


n

i=1

π(ai)Vyi


2

=

 n
i,j=1

⟨yi, ρ(a∗

i ⟨x, x⟩aj)yj⟩

 .
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It follows from (ρ3) in Definition 2.1 and (i), (iii) in Theorem 2.3 thatΠ(x)


n

i=1

π(ai)Vyi


2

=

 n
i,j=1

⟨yi, V ∗π(α(ai)∗α(⟨x, x⟩aj))Vyj⟩


≤ ∥Jπ(⟨x, x⟩)∥

 n
i=1

π(ai)Vyi


2

.

Thus,Π(x) is bounded onπ(A)V (Y )which is dense in E. Hence for each x ∈ X, Π(x) can be extended to E and the extension
is still denoted by the same symbol.

By similar arguments, we also have that
Π(x)


n

i=1

π(ai)Vyi


,

m
j=1

Φ(xj)y′

j


=


n

i=1

π(ai)Vyi,
m
j=1

Jπ

⟨x, xj⟩


Vy′

j


,

which implies that

Π(x)∗


m
j=1

Φ(xj)y′

j


=

m
j=1

Jπ

⟨x, xj⟩


Vy′

j.

Since the set Φ(X)Y is dense in the Hilbert B-module F , the operator Π(x) is adjointable. Hence, Π is a map from X into
L(E, F). Let ai, a′

j ∈ A and yi, y′

j ∈ Y (i = 1, . . . , n, j = 1, . . . ,m). It follows from (i) and (iii) in Theorem 2.3 that
Π(x)∗Π(x′)


n

i=1

π(ai)Vyi


,

m
j=1

π(a′

j)Vy
′

j


=


J ◦ π(⟨x, x′

⟩)

n
i=1

π(ai)Vyi,
m
j=1

π(a′

j)Vy
′

j


.

This equality implies that

Π(x)∗Π(x′) = (J ◦ π)(⟨x, x′
⟩) (3)

on the set π(A)V (Y ) for any x, x′
∈ X , so that the map Π is a J ◦ π-map.

On the other hand, by the hypothesis (P), the space F = [Φ(X)Y ] is orthogonal complemented in Z , so that there exists
an orthogonal projection W from Z onto F as an adjointable map. In fact, the adjoint operator W ∗

: F ↩→ Z is the inclusion
map. For any x ∈ X and y ∈ Y , we have that

W ∗(Π(x)Vy) = W ∗(Π(x)(π(1)Vy)) = W ∗(Φ(x)y) = Φ(x)y. (4)

From Theorem 2.4, there exists a covariant J-representation (π, v, (E, J)) of (A,G, θ). For any x ∈ X and s ∈ G, we obtain
that

Π(τs(x))


n

i=1

π(ai)Vyi


=

n
i=1

Φ

τs(xθs−1(ai))


yi

= WσsW ∗Π(x)vJ
s


n

i=1

π(ai)Vyi


.

Put σ ′
s = WσsW ∗ for each s ∈ G. Since Φ is (τ , σ , u)-covariant, the set Φ(X)Y is a invariant subspace under the set

{σs : s ∈ G}. Thus, we have that σ ′
s is the restriction of σs to [Φ(X)Y ] and that σ ′ is a unitary representation on F . Since F is

the closed linear span of the set Φ(X)Y , we obtain that

Π(τs(x)) = σ ′

sΠ(x)vJ
s for any x ∈ X and s ∈ G.

This implies that Π is (τ , σ ′, v)-covariant. �

Remark 3.4. By the definition of Π and its continuity, it is easy to see that

Π(xa) = Π(x)π(a) (x ∈ X, a ∈ A). (5)

A pair

(π, V , (E, J)), (Π,W , F)


satisfying the conditions (i) and (iii) in Theorem 2.3 and Φ(x) = W ∗Π(x)V (x ∈ X) is

called a KSGNS type representation for a pair (ρ, Φ). Such a representation is said to beminimal if
E = [π(A)V (Y )] and F = [Φ(X)(Y )].

Hence the pair

(π, V , (E, J)), (Π,W , F)


constructed in Theorem 3.2 is minimal.

The following theorem says that the representations constructed in Theorem 3.2 are unique up to unitary equivalence.
The proof is routine, but we give a proof for the reader’s convenience.
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Theorem 3.5. Let

(π1, V1, (E1, J1)), (Π1,W1, F1)


be another minimal KSGNS representation for (ρ, Φ) which is given as

in Theorem 3.2. Then there exist two unitary operators U : E → E1 and U1 : F → F1 such that

(1) UV = V1,Uπ(a) = π1(a)U for any a ∈ A,
(2) W ∗

1 U1 = W ∗,U1Π(x) = Π1(x)U for any x ∈ X.

Proof. From Theorem 2.3, there is a unitary operator U in L(E, E1) such that π1(a) = Uπ(a)U∗ and V1 = UV where π and
V ∈ L(Y , E) are given as in Theorem 2.3. In fact, we have that

U


n

i=1

π(ai)Vyi


=

n
i=1

π1(ai)V1yi.

We similarly define U1 : F → F1 by U1(
n

i=1 Π(xi)Vyi) =
n

i=1 Π1(xi)V1yi for any xi ∈ X and yi ∈ Y , i = 1, . . . , n for
n ≥ 1. Then we obtain that n

i=1

Π1(xi)V1yi


2

=

 n
i,j=1

⟨yi, V ∗

1 π1

α(⟨xi, xj⟩)


V1yj⟩

 =

 n
i=1

Π(xi)Vyi


2

.

Hence,U1 is an isometry and it can be extended to thewhole space F as a unitary. From theminimality of two representations
for (ρ, Φ), we have that

Φ(x) = W ∗Π(x)V = W ∗

1 Π1(x)V1 = W ∗

1 U1Π(x)V for any x ∈ X .

Hence we have that (W ∗
− W ∗

1 U1)Π(x)V = 0, i.e., (W ∗
− W ∗

1 U1)Π(x)Vy = 0 for all y ∈ Y . Since Π(x)VY is dense in F , we
getW ∗

= W ∗

1 U1. Moreover, we have that

U1Π(x)


n

i=1

π(ai)Vyi


= U1


n

i=1

Π(xai)Vyi


= Π1(x)U1


n

i=1

π(ai)Vyi


,

which completes the proof. �

4. Representations of crossed products of Hilbert C∗-modules

Let G be a locally compact group with left Haar measure dt . By uniqueness of left Haar measure, there exists a function
∆ : G → (0, ∞) such that d(ts) = ∆(s)dt and d(t−1) = ∆(t)−1dt . If ∆ ≡ 1, then G is said to be unimodular. It is known
that G is unimodular if and only if a left Haar measure is also a right Haar measure.

Let (A,G, θ) be a unital C∗-dynamical system and let Cc(G, A) be the set of all continuous functions from G into A with
compact support. The set Cc(G, A) is a linear space with the multiplication, involution and norm of Cc(G, A) as follows:

(f ∗ g)(s) =


G
f (t)θt(g(t−1s))dt, f ∗(s) = ∆(s)−1

[θs(f (s−1))]∗,

∥f ∥1 =


G
∥f (t)∥dt.

The completion of Cc(G, A) with respect to ∥ · ∥1 becomes a Banach ∗-algebra for which we denote by L1(G, A). Now, we
define a new norm on L1(G, A) by

∥f ∥ = sup
π

∥π(f )∥,

where π ranges over all Hilbert space representations of L1(G, A). Then the norm ∥ · ∥ becomes a C∗-norm. The completion
of L1(G, A) with respect to this norm is called the crossed product of A by G, and denoted by Aoθ G.

Let X be a Hilbert A-module. The linear space Cc(G, X) is a pre-Hilbert Aoθ G-module with the action of Aoθ G on
Cc(G, X) and the inner product given by

(ξ · f )(s) =


G
ξ(t)θt


f (t−1s)


dt, (ξ ∈ Cc(G, X), f ∈ Cc(G, A)), (6)

⟨ξ, ξ ′
⟩(s) =


G
θt−1


⟨ξ(t), ξ ′(ts)⟩


dt, (ξ , ξ ′

∈ Cc(G, X)), (7)

respectively. The crossed product Xoτ G of X by G is defined by the completion of Cc(G, X)with respect to the inner product.
Then Xoτ G becomes a Hilbert Aoθ G-module (see [13, Proposition 3.5]).

In this section, we give a covariant J-representation of a crossed product of a C∗-algebra and an associated covariant map
of a crossed product of a Hilbert C∗-module by a discrete group. To do this, we first extend an α-CP map to a C∗-crossed
product. However, it is not easy in general, to show that a map on a C∗-algebra is α-CP.
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From now on, let X be a Hilbert A-module and let Y , Z be Hilbert B-modules. Suppose that ρ : A → L(Y ) is
a unital (θ, u)-covariant α-CP linear map and that Φ : X → L(Y , Z) is a (τ , σ , u)-covariant ρ-map satisfying the
condition (P) in Theorem 3.2. By Theorem 3.2, there exists a KSGNS type representation


(π, V , (E, J)), (Π,W , F)


for a

pair (ρ, Φ) such that (π, v, (E, J)) is a covariant J-representation of (A,G, θ) and Π is (τ , σ ′, v)-covariant. The bounded
maps (π × v) : Cc(G, A) → L(E) and Π × v : Cc(G, X) → L(E, F) defined by

(π × v)(f ) =


G
π(f (s))vsds, f ∈ Cc(G, A), (8)

(Π × v)(ξ) =


G
Π

ξ(s)


vsds, (ξ ∈ Cc(G, X)), (9)

can be extended to Aoθ G and Xoτ G, respectively, and the extensions are denoted by the same symbols. In fact, for each
f ∈ Cc(G, A) and x ∈ X , we have that

(Π × v)(ξ) =


G
Π(xf (s))vsds = Π(x)(π × v)(f ), ξ = xf ∈ Cc(G, X),

and that

(Π × v)(ξ)

∗
=

(π × v)(f )

∗
Π(x)

∗. We also obtain that the closed linear span [(Π × v)(Xoτ G)E] is equal to
the Hilbert B-module F , which means that Π × v is nondegenerate.

Proposition 4.1. Let (E, J) be a Krein B-module constructed in Theorem 3.2.

(1) (π × v) is a J-representation of Aoθ G on E,
(2) (Π × v) is a J ◦ (π × v)-map and

(Π × v)(ξ · f ) = (Π × v)(ξ) · (π × v)(f ) (10)

for ξ ∈ Cc(G, X) and f ∈ Cc(G, A).

Proof. (1) Since π is (θ, v)-covariant, for any f , g ∈ Cc(G, A),

(π × v)(f ∗ g) = (π × v)(f ) · (π × v)(g), (11)

(π × v)(f ∗) = (π × v)(f )J . (12)

(2) Let ξ, ξ ′
∈ Cc(G, X). Since π is (θ, v)-covariant, it follows from (7) and (3) that

(π × v)(⟨ξ, ξ ′
⟩) =


G


G
Jv∗

t


Π(ξ(t))

∗
Π(ξ ′(ts))vtsdsdt

= J

(Π × v)(ξ)

∗
(Π × v)(ξ ′)


,

which implies that (Π × v) is a J ◦ (π × v)-map. We can also get (10) from (5). �

In the remainder of this section, we assume that G is a discrete group and A is a unital C∗-algebra. Then the crossed
product Aoθ G has a unit element δe. We define mapsα : Aoθ G → Aoθ G andρ : Aoθ G → L(Y ) byα(f )(s) = α(f (s)), ρ(f ) = V ∗(π × v)(f )V (f ∈ Cc(G, A), s ∈ G).

We also define a group actionθ of G on Aoθ G by

(θt(f ))(s) = θt

f (t−1st)


, f ∈ Cc(G, A), (13)

where π and V are given as in Theorem 2.3 and v is given as in Theorem 2.4.

Theorem 4.2. If α and θ are equivariant, i.e. α ◦ θs = θs ◦ α (s ∈ G) and α(0) = 0, then

(1) α is a bounded Hermitian map withα2
= I andα(δe) = δe,

(2) ρ is a (θ, u)-covariant α-completely positive map such that

ρ(f ) =


G
ρ(f (s))usds, f ∈ Cc(G, A), (14)

(3)

Aoθ G,G,θ is a C∗-dynamical system,

(4) the triple (π × v, v, (E, J)) is a covariant J-representation of

Aoθ G,G,θ.

Proof. (1) The proof is straightforward.
(2) By (iii) and (i) in Theorem 2.4, we have that for any f ∈ Cc(G, A)

ρ(f ) = V ∗(π × v)(f )V =


G
V ∗π(f (s))vsVds =


G
ρ(f (s))usds,
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which gives the proof of (14). The conditions (i) and (ii) in Definition 2.1 are satisfied by the above argument. Since α and θ
are equivariant, it follows from (14) and (ρ3) in Definition 2.1 that for any f , g ∈ Cc(G, A),ρα(f ) ∗α(g)


=ρ(f ∗ g).

For any n ∈ N, let yi ∈ Y and fi ∈ Cc(G, A) (i = 1, . . . , n). By (11) and (12), we have that
n

i,j=1

⟨yi,ρ(α(fi)∗ ∗ fj)yj⟩ =

n
i,j=1

⟨Vyi,

(π × v)(fi)

∗
(π × v)(fj)Vyj⟩ ≥ 0.

Moreover, we see thatρ(α(f ∗ fi)∗ ∗ (f ∗ fj))

n×n ≤ ∥(π × v)(f )∥2 V ∗


(π × v)(fi)

∗
(π × v)(fj)V


= ∥(π × v)(f )∥2 ρ(α(fi)∗ ∗ fj)


.

Hence, the mapρ isα-completely positive. On the other hand, for any f ∈ Cc(G, A) and t ∈ G, by (14), (13) and (θ, u)-
covariant property of ρ, we have that

ρ θt(f ) =


G
utρ


f (t−1st)


ut−1stu

∗

t ds = utρ(f )u∗

t .

It follows from the boundedness that the mapρ is (θ, u)-covariant.
(3) It is enough to see that for each t ∈ G,θt is an automorphism on Aoθ G. Since each θt is bijective, we see thatθt is

also bijective. For any s, t ∈ G and f , g ∈ Cc(G, A), we have thatθt(f ∗ g)

(s) =


G
θt

f (k)


θtk

g(k−1t−1st)


dk

=


G
θt

f (t−1kt)


θkt

g(t−1k−1st)


dk

=
θt(f ) ∗

θt(g) (s),
and thatθt(f ∗)


(s) = θt


(f ∗)(t−1st)


= θs


θt

f (t−1s−1t)

∗
=
θt(f )∗ (s).

By continuity ofθt , we see that eachθt is a automorphism on Aoθ G.
(4) Let t ∈ G and f ∈ Cc(G, A). Since π is (θ, v)-covariant, we have that

(π × v)
θt(f ) =


G
vtπ(f (s))vsv

J
tds = vt(π × v)(f )vJ

t ,

where the first equality follows from the change of variables. �

For a given θ-compatible action τ of G on X , we define a group actionτ of G on the crossed product Xoθ G byτt(ξ)

(s) = τt


ξ(t−1st)


, ξ ∈ Cc(G, X)

and, by its boundedness, it can be extended to the crossed product Xoθ G. Also, we define a map Φ : Xoθ G → L(Y , Z) byΦ(ξ) = W ∗(Π × v)(ξ)V (ξ ∈ Xoθ G).

Let t ∈ G, f ∈ Cc(G, A) and ξ ∈ Cc(G, X). Since Φ is (τ , σ , u)-covariant, we have that

Φ(τt(ξ)) =


G
σtΦ


ξ(t−1st)


u∗

t usds = σtΦ(ξ)u∗

t ,

which shows that Φ is (τ , σ , u)-covariant.

Corollary 4.3. Letρ be given as in (14).

(1) The actionτ : G → U(Xoθ G) isθ-compatible.
(2) The above map Φ is aρ-map satisfying

Φ(ξ) =


G
Φ(ξ(s))usds for any ξ ∈ Cc(G, X). (15)

(3) The map Π × v defined as in (9) is (τ , σ ′, v)-covariant.
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Proof. (1) Indeed, we note that eachτt is a unitary operator on Xoθ G. Let s, t ∈ G, f ∈ Cc(G, A) and ξ, ξ ′
∈ Cc(G, X). Since

τ is θ-compatible, it follows from (6) and similar arguments used in the proof (3) in Theorem 4.2 that

τt(ξ · f )(s) =


G
τt

ξ(k)


θtk

f (k−1t−1st)


dk

=


G
τt

ξ(t−1kt)


θkt

f (t−1k−1st)


dk =

τt(ξ) ·θt(f ) (s).
By the definition (7) of the inner product, we have that

⟨τt(ξ),τt(ξ ′)⟩(s) =


G
θk−1t


⟨ξ(t−1kt), ξ ′(t−1kst)⟩


dk

=


G
θtk−1


⟨ξ(k), ξ ′(kt−1st)⟩


dk =θt⟨ξ, ξ ′

⟩

(s),

which implies thatτ isθ-compatible.
(2) For any ξ ∈ Cc(G, X), we have that

Φ(ξ) =


G
W ∗Π(ξ(s))vsVds =


G
W ∗Π(ξ(s))Vusds =


G
Φ(ξ(s))usds,

which gives the proof of (15). Let ξ, ξ ′
∈ Cc(G, X) be any elements. Since (Π × v) is a J ◦ (π × v)-map in Proposition 4.1, it

follows from (i) in Theorem 2.4 thatΦ(ξ),Φ(ξ ′)

= V ∗(Π × v)(ξ)∗(Π × v)(ξ ′)V

=


G
ρ

α(⟨ξ, ξ ′

⟩(s))

usds =ρ⟨ξ, ξ ′

⟩

.

Since Φ is bounded and Cc(G, X) is dense in Xoθ G,Φ is aρ-map of Xoθ G.
(3) Since Π is a (τ , σ ′, v)-covariant map constructed in Theorem 3.2, we have that for any t ∈ G and ξ ∈ Cc(G, X),

(Π × v)
τt(ξ)


=


G
σ ′

t Π

ξ(t−1st)


v
J
tvsds = σ ′

t (Π × v)(ξ)v
J
t ,

which implies that Π × v is (τ , σ ′, v)-covariant. �

Remark 4.4. (1) The pair

(π × v, V , (E, J)), (Π × v,W , F)


is a minimal KSGNS type representation of the pair (ρ,Φ),

whereρ and Φ are given as in (14) and (15), respectively.
(2) For any s ∈ G, a ∈ A and x ∈ X , we denote (a, s) and (x, s) elements of Aoθ G and Xoθ G, respectively. We can consider

inclusion maps A ∋ a ↩→ (a, e) ∈ Aoθ G and X ∋ x ↩→ (x, e) ∈ Xoτ G with the unit e in G. Then we see thatρ(a, e) = ρ(a) and Φ(x, e) = Φ(x).

Moreover, we have thatα(a, e) = α(a),θt(a, e) = θt(a) andτt(x, e) = τt(x) for any t ∈ G, a ∈ A and x ∈ X .
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