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Abstract— Online multiple kernel learning (OMKL) has pro-
vided an attractive performance in nonlinear function learn-
ing tasks. Leveraging a random feature (RF) approximation,
the major drawback of OMKL, known as the curse of dimen-
sionality, has been recently alleviated. These advantages enable
RF-based OMKL to be considered in practice. In this article,
we introduce a new research problem, named stream-based active
MKL (AMKL), in which a learner is allowed to label some
selected data from an oracle according to a selection criterion.
This is necessary for many real-world applications as acquiring
a true label is costly or time consuming. We theoretically prove
that the proposed AMKL achieves an optimal sublinear regret
O(

√
T) as in OMKL with little labeled data, implying that

the proposed selection criterion indeed avoids unnecessary label
requests. Furthermore, we present AMKL with an adaptive
kernel selection (named AMKL-AKS) in which irrelevant kernels
can be excluded from a kernel dictionary “on the fly.” This
approach improves the efficiency of active learning and the
accuracy of function learning. Via numerical tests with real data
sets, we verify the superiority of AMKL-AKS, yielding a similar
accuracy performance with OMKL counterpart using a fewer
number of labeled data.

Index Terms— Active learning (AL), multiple kernel learning
(MKL), online learning, reproducing kernel Hilbert
space (RKHS).

I. INTRODUCTION

LEARNING a nonlinear function is of great interest in
various machine learning tasks, such as classification,

regression, clustering, dimensionality reduction, and reinforce-
ment learning [1]–[4]. In particular, supervised functional
learning tasks, which are closely related to the subject of
this article, are formulated as follows. Given data {(xt , yt ) :
t = 1, . . . , T } with features xt ∈ R

d and labels yt ∈ R,
the objective of a function learning is to learn (or estimate) a
function f : R

d → R which minimizes the accumulate loss
(1)/(T )

�T
t=1 L( f (xt), yt ), where f (xt) and L(·, ·) represent

an estimated label and a loss function, respectively. This
challenging problem can be tractable with the restriction that
f (·) belongs to a well-structured function class [e.g., repro-
ducing kernel Hilbert space (RKHS)] [1]. The accuracy of
the kernel-based learning fully relies on a preselected kernel,
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which is chosen manually either by task-specific a priori
knowledge or by some intensive cross-validation process.
Multiple kernel learning (MKL), using a predetermined set
of kernels (called a kernel dictionary), is more powerful. This
is because it can enable a data-driven kernel selection from
a given dictionary, i.e., a linear or nonlinear combination
of multiple kernels is optimized as the part of a learning
process [2], [5]–[8].

In many real-world applications, functional learning tasks
are expected to be performed in an online fashion. For
example, online learning is required when data arrive sequen-
tially, such as online spam detection [9] and time series
prediction [10], and when a large number of data makes,
it impossible to carry out data analytic in batch form [11].
For such cases, online MKL (OMKL) has been proposed,
which seeks the optimal combination of pools of single-kernel
functions in an online fashion. Two popular methods to learn
the best kernel combination are called the Hedge algorithm
and the online gradient descent (OGD) algorithm [12], [13].
It was shown in [11], [12], and [14] that OMKL can provide
superior accuracy and enjoy great flexibility compared with
single-kernel online learning. In contrast, OMKL generally
suffers from a high computational complexity as the dimension
of optimization variables grow with time (i.e., the number of
data T ) [2], [15]. Recently in [14], this problem has been
alleviated by applying a random feature (RF) approxima-
tion [16] to OMKL. In the resulting method, called RF-based
OMKL (a.k.a., Raker), the dimension of the optimization
variables can be determined irrespective of the number of
data. Another advantage of RF-based OMKL is that function
learning can be solved using the powerful toolboxes from
online convex optimization and online learning developed
under vector spaces [14]. More related works of OMKL have
been well-summarized in [14].

Unlabeled data may be abundant but acquiring labels is
difficult, time-consuming, or expensive, in particular, when
only experts whose time is precious can generate reliable
labels [17]–[19]. One motivating example is the labeling
process of medical data [e.g., magnetic resonance imag-
ing (MRI) data]. In this case, label acquisition requires the
data analysis by a well-trained expert, such as an electroen-
cephalographer, a cardiologist, or a medical imaging expert.
In addition, it would need an invasive or expensive medical
procedure (e.g., an angiogram). Because of them, the labeling
of medical data would be expensive and time consuming.
Active learning (AL), a subfield of machine learning, aims
at overcoming the labeling bottleneck by allowing the learner
to actively decide whether or not to acquire the label of
an incoming data from the oracle (e.g., a human annotator,
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Fig. 1. Description of two types of AL. (a) Pool-based setting and (b)
Stream-based setting.

such as a medical expert) [20]. From AL (or sampling),
the desired accuracy of functional learning can be attained
using little labeled data. Motivated by this, we introduce a
new research problem to construct an AL framework for
(RF-based) OMKL. To the best of our knowledge, this problem
has not been investigated yet, regardless of its necessity in
various real-world applications.

A. Related Works

Many AL approaches have been proposed in the litera-
ture [20]–[24]. According to the different ways of incom-
ing unlabeled data, AL can be categorized into pool-based
AL [21], [22] and stream-based AL [20], [23], [24], as shown
in Fig. 1. In pool-based AL, a pool of unlabeled data is given
and the goal is to optimally choose some data to label so that a
learned function from them can generate the best label for the
remaining data. Whereas, in stream-based AL, each unlabeled
data is drawn one at a time from the data source and the learner
must decide whether to query or discard it [20]. The latter is
the subject of this article as it is most relevant to OMKL frame-
works. The stream-based AL has been investigated in several
functional learning tasks, such as speech tagging [25], sensor
scheduling [26], information retrieval [27], drifting stream-
ing data [28], and expert advice [29]. However, under the
(RF-based) OMKL framework, none of the above-mentioned
methods yield a performance guarantee, which is the main
subject of this article.

B. Contributions

We propose a novel stream-based AL framework suitable
for OMKL. The proposed method is referred to as active MKL
(AMKL). Focusing on streaming (or sequential) data, at every
time, a learner in AMKL decides whether to query or discard
an incoming data according to a selection criterion. On the
other hand, all the incoming data in OMKL are assumed to
be labeled. We contribute to the subject in the following ways.

1) We propose a selection criterion with an analytic
performance guarantee. The proposed selection crite-
rion ensures that skipping the labeling only causes a
ηc-bounded loss, where ηc > 0 can control the tradeoff
of AL efficiency and function-learning accuracy.

2) Theoretically, it is proved that AMKL with ηc =
O(1/

√
T ) achieves an optimal sublinear regret as in

OMKL, implying that the proposed selection criterion
indeed avoids unnecessary label requests.

3) In addition, we present AMKL with adaptive kernel
selection (termed AMKL-AKS). The proposed AKS

can exclude irrelevant kernels from a kernel dictionary
“on the fly,” in which they are determined on the
basis of accumulated losses (i.e., kernel reliabilities).
AMKL-AKS can considerably enhance AL efficiency
as the selection criterion in this method is evaluated
only with the refined kernels having accurate estimates.
In contrast, the irrelevant kernels in AMKL can produce
inaccurate estimates, which makes the evaluation of the
selection criterion imprecise, regardless of the informa-
tiveness of labeling.

4) Via numerical tests with real data sets, we demonstrate
that AMKL-AKS achieves almost the same performance
with RF-based OMKL (a.k.a., Raker), using a fewer
number of labeled data. Therefore, AMKL-AKS can
provide an elegant accuracy–efficiency tradeoff.

Finally, we provide some discussions about the proposed
AMKL-AKS. Regarding the hyper-parameter ηc, it is proved
in Section IV that ηc = O(1/

√
T ) is asymptotically optimal,

in the sense of achieving the best AL efficiency (denoted
by ALeff ) by maintaining the learning accuracy of OMKL
counterpart. Throughout this article, AL efficiency is formally
defined as

ALeff
�= (number of labeled data)/T . (1)

In nonasymptotic cases, however, the performance of
AMKL-AKS can be further enhanced by carefully optimizing
the parameter ηc in a data-dependent way. For example, a time-
varying ηc(t) can be optimized ‘on the fly’ as similarly in [14]
and [30]–[32]. Such hyper-parameter optimization is beyond
the scope of this article and is left for interesting future work.
For the numerical tests of this article, ηc = 0.0005 is used
for all the data sets without the data-dependent optimiza-
tion. This value is chosen from the theoretical analysis of
ηc-bounded loss and with the assumption that about 10−4

loss is acceptable. We next emphasize that the proposed
AKS can enhance the accuracy performance of OMKL as
using a large kernel dictionary may deteriorate the accuracy
of a function learning or cause a slower convergence to an
optimal function if too many irrelevant kernels are included.
In addition, it is a randomized algorithm that can provide
robustness to potential adversarial attacks. Via martingale
argument, we theoretically prove that both AMKL-AKS and
OMKL-AKS (i.e., AMKL-AKS with ALeff = 1) also achieve
the optimal sublinear regret with high probability.

C. Outline and Notations

The remainder of this article is organized as follows.
In Section II, we briefly review RF-based MKL which is the
underlying method of the proposed algorithms. In Section III,
we describe the proposed AL frameworks, named AMKL and
AMKL-AKS. Regret analysis is provided in Section IV to
verify the asymptotic optimality of the proposed methods.
In Section V, beyond the asymptotic analysis, we verify the
superiority of the proposed AMKL-AKS via numerical tests
with real data sets. Some concluding remarks are provided
in Section VI.

Notations: Bold lowercase letters will denote column vec-
tors. For any vector x, xT stands for the transpose of x and �x�

Authorized licensed use limited to: Hanyang University. Downloaded on January 25,2023 at 07:53:24 UTC from IEEE Xplore.  Restrictions apply. 



2982 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 7, JULY 2022

denotes the �2-norm of x. E[·] denotes the expectation and
�·, ·� denotes the inner product in Euclidean space. To sim-
plify notations, we let [N] �= {1, 2, . . . , N} for any positive
integer N .

II. PRELIMINARIES

We briefly review MKL based on RF approximation as
it is the baseline method for the proposed AMKL and
AMKL-AKS. Given the training data {(x1, y1), . . . , (xT , yT )},
where xt ∈ X ⊆ R

d and yt ∈ Y ⊆ R, the objective is to
learn a (nonlinear) function f : X → Y which minimizes the
accumulate loss (1)/(T )

�T
t=1 L( f (xt), yt ), where f (xt) and

L(·, ·) represent an estimated label and a loss function, respec-
tively. In kernel-based learning [7], [8], [33], it is assumed that
a target function f (x) belongs to a reproducing Hilbert kernel
space (RKHS), defined as H �= { f : f (x) = �∞

t=1 αtκ(x, xt)},
where κ(x, xt) : X × X → Y is a symmetric positive
semidefinite basis function (called kernel), which measures
the similarity between x and xt . Among various kernels,
one representative example is the Gaussian kernel with a
parameter σ 2, given as

κ(x, xt) = exp(−�x − xt�2/2σ 2). (2)

In addition, a kernel is said to be reproducing if

�κ(x, xt), κ(x, xt 
)�H = κ(xt, xt 
) (3)

where �·, ·�H denotes an inner product defined in the Hilbert
space H. The associated RKHS norm is defined as � f �2

H
�=�

t

�
t 
 αtαt 
κ(xt, xt 
). The function learning problem over

RKHS can be formulated as

min
f ∈H

1

T

T�
t=1

L( f (xt), yt). (4)

We remark that loss function can be chosen in a task-specific
way, e.g., least-square cost for regression and logistic cost for
classification. Especially when the number of data is finite
(e.g., T training data), the representer theorem in [15] shows
that the optimal solution of (4) is represented as

f̂ (x) =
T�

t=1

αtκ(x, xt). (5)

The major drawback of this approach is the curse of dimen-
sionality as the number of parameters αt ’s (to be optimized)
grows with the number of data T .

In [16], it has been addressed by introducing RF approxi-
mation for kernels. As in [16], the kernel κ is assumed to be
shift-invariant, i.e., κ(xt , xt 
) = κ(xt − xt 
) for any t, t 
 ∈ [T ].
Note that Gaussian, Laplacian, and Cauchy kernels satisfy
the shift-invariance [16]. For κ(xt − xt 
) absolutely integrable,
its Fourier transform πk(v) exists and represents the power
spectral density. In addition, when κ(0) = 1 it can also be
viewed as a probability density function (PDF). For a Gaussian
kernel in (2), we have πκ(v) = N (0, σ−2I). Then, the kernel
function can be rewritten as κ(xt−xt 
) = E[exp( jvT(xt−xt 
))].
Having a sufficient number of independent and identically

distributed (i.i.d.) samples {vi : i ∈ [D]} from πκ(v), κ(xt−xt 
)
can be well-approximated by the sample mean such as

κ(xt − xt 
) ≈ 1

D

D�
i=1

Re
�

exp
�

jvT
i

�
xt − xt 


���
(6)

where Re(a) denotes the real part of a complex value a.
Clearly, the accuracy of this approximation grows as the
number of samples D increases. In numerical tests, a proper
D will be chosen by considering the accuracy-complexity
tradeoff. The approximation in (6) can be rewritten as a vector
form κ(xt − xt 
) = zT(xt)z(xt 
), where

z(x) = 1√
D

�
sin vT

1 x, . . . , sin vT
D(x), cos vT

1 x, . . . , cos vT
Dx

�T
.

(7)

Based on this, the optimal solution f̂ (x) in (5) can be
well-approximated as

f̂ (x) =
T�

t=1

αt zT(xt)z(x)
�= θ̂

T
z(x) (8)

where the optimization variable θ̂ is a 2D-vector. Note that its
dimension 2D can be determined irrespective of the number
of data T .

RF-based kernel learning can be naturally extended into
MKL framework, where a target function is formed as a
linear (or convex) combination of multiple preselected kernels
{κi : i ∈ [P]}. From [34], the function approximation can be
represented as

f̂ (x) =
P�

i=1

p̂i f̂i (x) ∈ H̄ (9)

where H̄ �= H1
�

H2
� · · · �HP and f̂i (x) ∈ Hi which is

an RKHS induced by the kernel κi , and p̂i ∈ [0, 1] denotes
the combination weight of the associated kernel function f̂i .
In addition, under RF approximation, the kernel functions
in (9) can be further simplified as f̂i (x) = θ̂

T
i zi(x) for i ∈ [P],

where zi (x) is defined in (7) with D number of i.i.d. samples
from πκi (v). Assuming RF-based MKL, kernel functions in
the above are considered in the following section.

III. METHODS

We first define the problem setting of OMKL framework.
The main purpose of OMKL is to learn a sequence of functions
f̂t+1(x), t ∈ [T ], in an online fashion: at each time t , a function
f̂t+1 : X × Y is estimated from the observed training data
{(xτ , yτ ) : τ ∈ [t]}, where xτ ∈ X ⊆ R

d and yτ ∈ Y ⊆ R

represent the feature and the label, respectively. To evaluate
the accuracy of learned functions, we let L : Y×Y → R be a
loss function. Throughout this article, it is assumed that there
are P kernels in a kernel dictionary. Then, OMKL framework
consists of the following two steps.

1) Local Step: Each kernel function f̂t+1,i (x) is optimized
independently of the other kernel functions.

2) Global Step: The learner seeks the best function approx-
imation f̂t+1(x) by combining the kernel functions
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{ f̂t+1,i (x), i ∈ [P]} with proper weights { p̂t+1(i),
i ∈ [P]}:

f̂t+1(x) =
P�

i=1

p̂t+1(i) f̂t+1,i (x). (10)

Then, the objective of OMKL is to optimize the local
functions { f̂t+1,i (x) : i ∈ [P]} and the weights
{ p̂t+1(i), i ∈ [P]} such that the following (cumulative)
regret is minimized:

regretT =
T�

t=1

L( f̂t (xt), yt) − min
1≤i≤P

T�
t=1

L( f 

i (xt), yt)

where the regret compares the cumulative loss of the
learner to the cumulative loss of the best kernel in
hindsight. Note that f 


i (·) denotes the best function in
each kernel Hi .

In the following subsections, RF-based OMKL is assumed
as the baseline method of the proposed AMKL framework,
due to the advantages of attractive learning accuracy and
scalability [14]. Accordingly, a learned function f̂t (x) is
assumed to have the form of f̂t,i (x) = θ̂

T
t,i zi (x), where

zi(x) is defined in (7) with D number of i.i.d. samples
from πκi (v). It is remarkable that the proposed AMKL frame-
work can be directly applied to OMKL frameworks without
RF approximation in [11] and [12]. In Section III-A, we pro-
pose a novel stream-based AL (termed AMKL) suitable for
RF-based OMKL framework. We then improve AMKL in
Section III-B by introducing an AKS. The resulting method is
named AMKL-AKS.

A. Proposed AL Framework

We propose AMKL in which the label of an incoming
data is revealed only when the learner has made a request to
acquire the label from an oracle. Whereas, in OMKL, the label
of every incoming data is always revealed to the learner.
The active labeling in AMKL can be necessary for many
real-world applications as the label acquisition is expensive
or time consuming. Our major contribution is to construct an
AMKL algorithm that can achieve almost the same accuracy as
the OMKL counterpart with a fewer number of labeled data.
Namely, it can reduce the labeling cost of OMKL without
sacrificing the learning accuracy. In this extension, the key
challenge is to decide when the learner should or should not
request the label of incoming data to the oracle. This decision
can be efficiently made by introducing a selection criterion.
To be specific, the proposed AMKL performs in the following
way: the learner skips the label request for an incoming data
if the selection criterion is satisfied; otherwise, the learner
directly follows the OMKL algorithm (e.g., RF-based OMKL
(a.k.a., Raker) in [14]). Definitely, the selection criterion plays
a crucial role in determining the AL efficiency and learning
accuracy of the proposed AMKL, where AL efficiency is
defined in (1). We, in this article, propose a new selection
criterion by leveraging the structure of MKL. In addition,
in Section IV, we theoretically prove that the proposed selec-
tion criterion indeed avoids unnecessary label requests, mean-
ing that AMKL achieves the same asymptotic performance

Fig. 2. Description of the proposed stream-based AL. The solid-line and
dashed-line boxes denote the active and inactive kernels, respectively.

of OMKL counterpart with little labeled data. We further
improve AMKL by introducing an AKS in which irrelevant
kernels are excluded from a kernel dictionary “on the fly.”
Specifically, this can improve AL efficiency considerably as
the selection criterion, which is evaluated only with refined
kernels, generates a precise output. Without using AKS, some
irrelevant kernels may produce inaccurate outputs, which
makes the output of the selection criterion imprecise, regard-
less of the informativeness of labeling. The proposed AMKL
with AKS is referred to as AMKL-AKS. In the remaining
part of this section, we will provide the detailed procedures
of AMKL-AKS, as shown in Fig. 2.

We first introduce a binary sequence {at ∈ {0, 1} : t ∈ [T ]}
to indicate whether the label yt is revealed or not, i.e., at = 1
if the learner requested the label of an incoming data xt

(i.e., the selection criterion is not satisfied), and at = 0, other-
wise. Let At = {τ : aτ = 1, τ ∈ [t]} denote the index subset of
revealed labels until time t . Focusing on time t , the procedures
of AMKL-AKS are explained as follows. At time t , the learner
observes an incoming unlabeled data xt , and from the previous
times, has the knowledge of the following.

1) { f̂t,i : i ∈ [P]}: the estimated kernel functions (equiva-
lently, {θ̂ t,i : i ∈ [P]}).

2) At−1: the index subset of revealed labels until time t −1.
3) the losses {L( f̂τ,i (xτ ), yτ ) : τ ∈ At−1}.
4) the kernel subset Vst ⊆ [P] containing the indices of

active kernels at time t .
Differently from OMKL [14], losses in AMKL-AKS are
defined only when the labels are revealed. The construc-
tion of Vst ⊆ [P] will be explained in Section III-B.
As in OMKL [12], [14], the choice of the weight vec-
tor (i.e., the weight distribution) p̂t = ( p̂t(1), . . . , p̂t(P))T

in (10) should be well-optimized. Following the online learn-
ing framework [13], we optimize the weight vector using the
so-called exponential strategy (EXP strategy). In this strategy,
the weights are determined on the basis of the past losses as

p̂t(i) = ŵt (i)�P
i=1 ŵt (i)

(11)

where the initial values are ŵ1(i) = 1 and

ŵt (i) = exp

	
− ηg

�
τ∈At−1

L( f̂i,τ (xτ ), yτ )



(12)

for some parameter ηg > 0.
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We are now ready to describe the procedures of
AMKL-AKS, which consists of three steps: active labeling,
active local, and active global.

1) Active Labeling Step: This step decides whether or not to
acquire the label of an incoming data xt from the oracle. The
decision is quickly made by the proposed selection criterion.
To define the selection criterion, we first introduce a confidence
condition, such as

max
j∈Vst

�
i∈Vst

p̂t(i)L( f̂t,i (xt), f̂t, j (xt)) ≤ ηc (13)

for some parameter ηc > 0. From (13), we observe that the
condition is simply evaluated with the up-to-date estimated
functions, without knowing the true label yt . The proposed
confidence condition ensures that skipping the labeling only
causes a ηc-bounded loss, where the parameter ηc can control
the tradeoff of AL efficiency and learning accuracy. The
theoretical evidence is provided in Lemma 4. Intuitively,
the confidence condition can measure the similarities of the
learned kernel functions: if the condition holds, all the active
kernels generate the estimates having similar losses with the
true label yt , i.e., acquiring the label yt has little impact on the
updates of the weights (i.e., reliabilities of the kernels). Thus,
in this case, it would be better to skip the label-request in terms
of the efficiency-accuracy tradeoff. We notice that avoiding
label-requests has an also impact on the updates of local
kernel functions (see an active local step in the following).
However, the confidence condition in (13) only focuses on
the updates of weights. In order to take the local updates into
account, we introduce the parameter M to ensure sufficient
local updates, where M indicates the maximum number of
consecutive unlabeling. Then, the proposed AMKL-AKS has
the parameters ηc and M . In asymptotic case, it is proved
in Section IV that choosing ηc = O(1/

√
T ) and M as any

constant can achieve an optimal sublinear regret. In the nonas-
ymptotic case, however, the parameters should be carefully
determined by considering the tradeoff of AL efficiency and
learning accuracy. As noticed in Section I-B, such optimization
is beyond the scope of this article. Instead, for numerical tests
of this article, the constant values (e.g., ηc = 0.0005 and
M = 1) are selected without careful optimization.

Given the parameters ηc and M , the selection criterion of
the proposed AMKL-AKS is obtained as follows.

[Selection Criterion] Given M ≥ 1 and ηc > 0, the label
of an incoming data xt is not requested (i.e., at = 0) only
when

�M
τ=1 at−τ �= 0 and the confidence condition in (13) is

satisfied. For ease of exposition, M = 0 is assumed that all
the labels are revealed as in OMKL, i.e, at = 1 for all t ∈ [T ].

From the sequence of indicator variables {at : t ∈ [T ]},
AL efficiency is computed as ALeff = (1)/(T )

�T
t=1 at .

Unfortunately, this value cannot be obtained theoretically since
it is data-dependent. We can only prove the lower bound as a
function of M , such as ALeff ≥ 1 − (M)/(M + 1).

2) Active Local Step: This step learns a set of single-kernel
functions f̂t+1,i (x) ∈ Hi for i ∈ [P]. When at = 0
(i.e., the label yt is not revealed), local functions cannot be
updated as, in this case, the loss function L(·, yt ) is undefined.

Namely, we have

f̂t+1,i (x) = f̂t,i (x) ∀i ∈ [P], if at = 0. (14)

When at = 1, the learner can observe the labeled data (xt , yt)
and optimize the local functions f̂t+1,i (x) for i ∈ [P], via
online optimization. Following the RF approximation in (8),
each kernel function is determined by 2D-vector θ̂ t+1,i as

f̂t+1,i (x) = θ̂
T
t+1,i zi(x) (15)

where zi(x) is defined in (7). In this article, the parameter
vector θ̂ t+1,i is optimized via the well-known OGD [35] as

θ̂ t+1,i = θ̂ t,i − ηl∇L
�
θ̂

T
t,i zi(xt), yt

�
(16)

where ∇L(θ̂
T
t,i zi(xt), yt) denotes the gradient at θ̂ = θ̂ t,i .

To sum up, each kernel function i in AMKL-AKS is opti-
mized, such as

θ̂ t+1,i =
�

θ̂ t,i , if at = 0

θ̂ t,i − ηl∇L
�
θ̂

T
t,i zi(xt , yt )

�
, if at = 1.

(17)

3) Active Global Step: This step learns a target function
f̂t+1(x) by properly combining the single kernel functions
{ f̂t+1,i (x) : i ∈ [P]}. This step consists of AKS and function
combining.

1) Adaptive kernel selection: This step finds the subset of
P kernels (denoted by Vst+1) which contain the kernels having
higher accuracy local functions. Toward this, the weights of
P kernels are updated as

p̂t+1(i) = ŵt+1(i)�P
i=1 ŵt+1(i)

(18)

where

ŵt+1(i) = exp

⎛
⎝−ηg

�
τ∈At

aτL( f̂i,τ (xτ ), yτ )

⎞
⎠. (19)

Then, the subset Vst+1 ⊂ [P] is determined on the basis of the
updated weights (see Section III-B for detailed procedures).

2) Function combining: Given the selected subset Vst+1 ,
AMKL-ASK learns a target function f̂t+1(x) as

f̂t+1(x) =
�

i∈Vst+1

q̂t+1(i) f̂t+1,i (x) (20)

where the weight distribution is refined as

q̂t+1(i) = ŵt+1(i)�
�∈Vst+1

ŵt+1(�)
. (21)

Then, the learned function can generate the estimated label of
incoming data xt+1 as ŷt+1 = f̂t+1(xt+1).

Remark 1: We would like to mention that AMKL-AKS
can encompass various OMKL algorithms as its special
cases. When AKS is not used (i.e., Vst = [P],∀t ∈ [T ]),
AMKL-AKS is reduced to AMKL. In addition, when all
incoming data are labeled (i.e., ALeff = 1), the resulting algo-
rithm (AMKL-AKS with ALeff = 1) is named OMKL-AKS
since, in this case, active labeling is not used. Finally when
Vst = [P],∀t ∈ [T ], and ALeff = 1, AMKL-AKS is reduced
to RF-base OMKL (a.k.a., Raker [14]). Both OMKL-AKS and
AMKL-AKS with ALeff = 1 will be used interchangeably.

Authorized licensed use limited to: Hanyang University. Downloaded on January 25,2023 at 07:53:24 UTC from IEEE Xplore.  Restrictions apply. 



HONG AND CHAE: AL WITH MULTIPLE KERNELS 2985

B. Proposed AKS

We describe the proposed AKS in the active global step of
AMKL-AKS. At every time t , the subset of P kernels, denoted
by Vst+1 ⊆ [P] is determined on the basis of the weights (i.e.,
the accumulated losses) p̂t(i), i ∈ [P]. Here, the weight p̂t(i)
can be thought of as the accuracy of the local function f̂t,i at
time t (i.e., the reliability of the information provided by the
kernel i at the current time). As mentioned before, the goal
of AKS is to select the kernel functions with higher accuracy
since it can improve the AL efficiency and learning accuracy.
To explain the proposed AKS, we introduce a design parameter
Kt+1 ∈ [P] which indicates the number of kernels to be used
for the construction of a function f̂t+1(x). One reasonable way
is to choose the parameter Kt+1, such as

Kt+1 = |{i ∈ [P] : p̂t+1(i)/ p̂

t+1 > δt+1}| (22)

for some parameter δt+1 > 0, where p̂

t+1 = max j∈[P] p̂t+1( j).

This approach will be used for our numerical tests in
Section V. We remark that the proposed AMKL-AKS with
any choice of Kt+1 can guarantee the optimal asymptotic
performance. Given Kt+1, the collection of all size-Kt+1

subsets of [P] is defined as

�(Kt+1) = {V : V ⊆ [P], |V| = Kt+1} (23)

where |�(Kt+1)| = � P
Kt+1

�
. In addition, the |�(Kt+1)| elements

in �(Kt+1) are denoted as {V1, . . . ,V|�(Kt+1)|}. This construc-
tion ensures the so-called uniform frequency property such that
each kernel index occurs uniformly in the collection �(Kt+1).
The corresponding frequency, denoted by Jt+1, is computed as

Jt+1 = Kt+1

	
P

Kt+1


�
P (24)

since P · Jt+1 = |�(Kt+1)|·Kt+1. By construction, Jt+1 in (24)
should be an integer. In the example of P = 4 and Kt+1 = 2,
we have

�(Kt+1 = 2) = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}
where each kernel index occurs exactly Jt+1 = 3 times,
thereby satisfying the uniform frequency.

Then, a size-Kt+1 subset is chosen randomly from �(Kt+1)
according to a certain probability distribution. The specific
selection procedure will be explained at the bottom of this
section. One may concern the complexity problem to generate
all the subsets belonging to �(Kt+1), especially for a large P .
To address this problem, we choose Jt+1 = γt+1 Kt+1 with
a parameter γt+1 such that Jt+1 is an integer, where γt+1 is
chosen by considering the size of the collection. Given Jt+1

and Kt+1, define a collection �(Jt+1, Kt+1) whose size is
determined as

|�(Jt+1, Kt+1)| �= �Jt+1 · P/Kt+1� = �γt+1 P� (25)

where �x� denotes a floor function which produces the greatest
integer less than or equal to x . Although there might be various
methods to construct the elements (i.e., the subsets of [P]) of
�(Jt+1, Kt+1), the experiments in this article use a simple
balls-bins random construction in Remark 2.

Remark 2 (Balls-Bins Construction): Given Jt+1 and Kt+1,
the elements of �(Jt+1, Kt+1) are determined via Balls-Bins

construction. Here, kernels and subsets (i.e., elements of
�(Jt+1, Kt+1)) correspond to balls and bins, respectively.
Then, there are P balls and |�(Jt+1, Kt+1)| bins. As in
well-known balls and bins problem, consider the process of
tossing P balls into |�(Jt+1, Kt+1)| bins. The tosses are
uniformly at random and independent of each other. Repeat
this process Jt+1 times so that each ball i belongs to Jt+1

distinct bins. Definitely, each bin contains Kt+1 balls on
average. Once these balls and bins processes are completed,
the collection of the corresponding subsets, that is,

�(Jt+1, Kt+1)
�= {Vi ⊆ [P] : i = 1, . . . , �γt+1 P�} (26)

is formed such that Vi takes the balls’ indices belong to the
bin i as elements. The notation in (26) can be rewritten as

�(Kt+1) = �

	
Jt+1 =

	
P

Kt+1



, Kt+1



. (27)

That is, with the particular choice of Jt+1, the above-
mentioned collection contains the all subsets of size Kt+1 as
before. In addition, we remark that the proposed collection
�(Jt+1, Kt+1) satisfies the uniform frequency, i.e., each kernel
occurs exactly Jt+1 times.

We finally propose a randomized algorithm to choose a sub-
set of kernels from �(Jt+1, Kt+1). Define a discrete random
variable St+1 with the probability mass function (PMF):

α̂t+1( j) =
�

i∈V j
ŵt+1(i)

Jt+1
�P

i=1 ŵt+1(i)
(28)

for j ∈ [|�(Jt+1, Kt+1)|], where ŵt+1(i) is defined in (12).
Due to the uniform frequency (see Remark 2), we can easily
verify that (28) is a valid PMF. Letting

α̂t+1 = (α̂t+1(1), . . . , α̂t+1(|�(Jt+1, Kt+1)|)). (29)

AMKL-AKS chooses a subset in the following way.
1) Sampling St+1 according to α̂t+1 in (29). The corre-

sponding sample is denoted as st+1.
2) Accordingly, the selected subset is denoted as Vst+1 ∈

�(Jt+1, Kt+1).

IV. REGRET ANALYSIS

We analyze the cumulative regrets of the proposed online
and AL algorithms. For the regret analysis of this section,
the following conditions are assumed.

1) (a1) For any fixed zi(xt) and yt , the loss function
L(θTzi (xt), yt) = L(yt , θ

Tzi(xt)) is convex with respect
to θ and is bounded as L(θTzi(xt), yt) ∈ [0, �u].

2) (a2) For any kernel i , θ t,i belongs to a bounded set
�i ⊆ R

2D , i.e., �θ t,i� ≤ C for any t ∈ [T ].
3) (a3) The loss function is L-Lipschitz continuous,

i.e., �∇L(θTzi(xt), yt )� ≤ L.
It is remarkable that (a1)–(a3) are usually assumed for the
analysis of online convex optimizations and online learn-
ing frameworks [13], [14], [16]. In addition, let f 


i (x) =
(θ 


i )
Tzi(x) denote the optimal RF approximation function at

the kernel i

θ 

i

�= arg min
θ∈�i

T�
t=1

L(θTzi (xt), yt), i ∈ [P]. (30)
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Algorithm 1 Proposed AMKL-AKS
1: Input: Kernels κi , i ∈ [P], parameters ηl, ηg, ηc, γt >

0, M ≥ 1, the number of random features D (for RF
approximation).

2: Output: A sequence of functions f̂t (x), t ∈ [T + 1].
3: Initialization: θ̂1,i = 0 (i.e., f̂1,i (x) = 0), and ŵ1(i) = 1

for all i ∈ [P].
4: Iteration: t = 1, . . . , T
• Receive a streaming data xt .
• Construct zi(xt) via (7) using the kernel κi for i ∈ [P].
• Active labeling step:

− If
�M

τ=1 at−τ �= 0 and the confidence condition in (13)
is satisfied:
◦ Set at = 0 and f̂t+1(x) = f̂t (x).
◦ Skip the local and global steps.

− Otherwise, set at = 1 and receive yt from the oracle.
• Active local step (when at = 1):

− Update θ̂ t+1,i via OGD in (16).
− Set f̂t+1,i (x) = θ̂ t+1,i zi (x) for i ∈ [P].

• Active global step (at = 1):
− Adaptive kernel selection:

◦ Obtain Kt+1 via (22) and Jt+1 = γt+1 Kt+1.
◦ Construct �(Jt+1, Kt+1) from Remark 2.
◦ Obtain α̂t+1 via (29).
◦ Choose a subset Vst+1 ∈ �(Jt+1, Kt+1) according

to PMF St+1 ∼ α̂t+1.
− Function combining:

◦ Update ŵt+1(i) via (19).
◦ Obtain q̂t+1(i) from (21), for i ∈ [P].
◦ Update f̂t+1(x) = �

i∈Vst+1
q̂t+1(i) f̂t+1,i (x).

� AMKL performs with Vst = [P] for all t ∈ [T ], i.e,
the adaptive kernel selection in global step is skipped.

We state the main results of this section, i.e., the
regret analysis of the proposed OMKL-AKS, AMKL, and
AMKL-AKS.

Theorem 1: For any small δ > 0, OMKL-AKS (or
AMKL-AKS with ALeff = 1) with parameters ηl = ηg =
O(1/

√
T ) guarantees the following regret bound with proba-

bility 1-δ:

regretOL−A
T

=
T�

t=1

L

⎛
⎝�

i∈VSt

q̂t(i) f̂t,i(xt), yt

⎞
⎠ − min

1≤i≤P

T�
t=1

L( f 

i (xt), yt)

≤ O(
√

T )

where a randomness is from an internal random kernel
selection.

Remark 3: We emphasize that Theorem 1 is valid with any
choices of Jt and Kt as long as the uniform frequency in the
construction of collection (i.e., set of subsets of P kernels)
is satisfied, i.e., each kernel i occurs exactly Jt times in the
collection. Note that OMKL-AKS with Kt = P for all t ∈ [T ]
is equivalent to OMKL (a.k.a., Raker). In this case, the analysis
in Theorem 1 holds with δ = 0 as the randomness for a random

subset selection disappears. Thus, Theorem 1 encompasses the
regret analysis in [14].

For the analysis of AMKL and AMKL-AKS, we further
assume that

1) (a4) If L(θ̂
T
t,i ut , θ̂

T
t, j ut ) ≤ � for an input ut with

�ut� = 1, then there exists a small B > 0 such that
L(θ̂

T
t,i u, θ̂

T
t, j u) ≤ �B for any u with �u� = 1.

2) (a5) L(·, ·) obeys the triangle inequality.
For example, 0–1 loss for classification and �1/�2-norm loss
in regression satisfy the triangle inequality.

Theorem 2: AMKL with the parameters ηl = ηg = ηc =
O(1/

√
T ) guarantees the sublinear regret as

regretAL
T

=
T�

t=1

L( f̂t (xt), yt ) − min
1≤i≤P

L( f 

i (xt), yt) ≤ O(

√
T ).

Theorem 3: For any δ > 0, AMKL-AKS with the parame-
ters ηl = ηg = ηc = O(1/

√
T ) guarantees the sublinear regret

with probability 1 − δ as

regretAL−A
T

=
T�

t=1

L

⎛
⎝ �

i∈VSt

q̂t(i) f̂t,i (xt), yt

⎞
⎠ − min

1≤i≤P
L( f 


i (xt), yt)

≤ O(
√

T ).

The proofs of the main theorems will be provided in the
following Sections IV-A and IV-B.

A. Proof of Theorem 1

We prove that the proposed OMKL-AKS achieves the
sublinear regret with high probability. We provide key lem-
mas for the proof of Theorem 1. Lemma 1 in the fol-
lowing states that OGD in the local update can guarantee
the sublinear regret. Lemmas 1 and 2 in the following are
immediately obtained from [35, Th. 3.1] and [13, Th. 2.1],
respectively.

Lemma 1: For any kernel i , OGD in (16) with step size ηl

guarantees the following:

regretlT =
T�

t=1

L( f̂t,i (xt), yt) −
T�

t=1

L( f 

i (xt), yt)

≤ C2

2ηl
+ ηl L2T

2
.

Lemma 2: For any fixed ηg > 0, OMKL with the EXP
strategy in (11) satisfies

regretg
T =

T�
t=1

P�
i=1

p̂t(i)L( f̂t,i (xt), yt)

− min
1≤i≤P

T�
t=1

L( f̂t,i (xt), yt ) ≤ log P

ηg
+ ηg T �2

u

8
.

We are now ready to prove Theorem 1. Note that Lemma 1
holds for any kernel i . Thus, from Lemma 1, Lemma 2,
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and the convexity of the loss function L(·, yt) for any fixed
label yt , we can get

regretOL
T

=
T�

t=1

L
�

P�
i=1

p̂t(i) f̂t,i(xt), yt

�
− min

1≤i≤P

T�
t=1

L( f 

i (xt), yt)

≤ C2

2ηl
+ ηl L2T

2
+ log P

ηg
+ ηg T �2

u

8
. (31)

Setting ηl = (C)/(
√

T ) and ηg = 2((2 log P)/(T ))1/2,
OMKL (or Raker) guarantees the sublinear regret O(

√
T ).

This proves the special case of Theorem 1 with Kt = P
for all t ∈ [T ]. Then, the general case will be proved
using Azuma–Hoeffding’s ineqality (i.e., the concentration
bound for a martingale difference sequence). Define a random
variable Xt as

Xt =
�

i∈VSt

ŵt (i)�
�∈VSt

ŵt (l)
L( f̂t,i (xt), yt) − Ut

where Ut = �P
i=1 p̂t(i)L( f̂t,i(xt), yt ). Let Ft =

σ(S1, S2, . . . , St ) be the smallest signal algebra such
that S1, S2, . . . , St is measurable. Then, {Ft : t = 1, . . . , T }
is filtration and Xt is Ft measurable.Note that condition on
Ft−1, the ŵt (i) in (12), p̂t−1(i) in (11), and qSt (i) in (28) are
fixed, and St is only random variable. Using this fact, we first
show that {X1, . . . , XT } is a martingale difference sequence
with respect to filtration F1 ⊆ F2 ⊆ · · · ⊆ FT , by showing
that E[Xt |Ft−1] = 0. Then, this claim is proved as follows:

E[Xt |Ft−1]

= E

⎡
⎣�

i∈VSt

ŵt(i)�
�∈VSt

ŵt(�)
L( f̂t,i (xt), yt ) − Ut

���Ft−1

⎤
⎦

(a)= E

⎡
⎣�

i∈VSt

ŵt(i)�
�∈VSt

ŵt(�)
L( f̂t,i (xt), yt )

���Ft−1

⎤
⎦ − Ut

(b)=
|�(Jt ,Kt )|�

j=1

qSt ( j)

⎛
⎝�

i∈V j

ŵt (i)�
�∈V j

ŵt(�)
L( f̂t,i (xt), yt )

⎞
⎠ − Ut

=
|�(Jt ,Kt )|�

j=1

�
i∈V j

ŵt (i)

Jt
�P

i=1 ŵt (i)
L( f̂t,i (xt), yt ) − Ut

(c)= 0

where (a) and (b) follow from the fact that ŵt(i), p̂t(i), and
qSt (i) are functions of random variables S1, . . . , St−1, and (c)
follows:
|�(Jt ,Kt )|�

j=1

�
i∈V j

ŵt(i)L( f̂t,i (xt), yt) = Jt

P�
i=1

ŵt (i)L( f̂t,i(xt), yt ).

Since {Xt : t ∈ [T ]} is a martingale difference sequence
and Xt ∈ [At , At + ct ] is bounded, where At =
− �P

i=1 p̂t(i)L( f̂t,i (xt), yt) is a random variable and Ft−1

measurable, and ct = �u . From Azuma–Hoeffding’s inequal-
ity [36], the following bound holds for some δ > 0 with high
probability 1 − δ:

T�
t=1

Xt =
T�

t=1

�
i∈VSt

ŵt(i)�
l∈VSt

ŵt (l)
L( f̂t,i (xt), yt )

−
T�

t=1

P�
i=1

p̂t(i)L( f̂t,i (xt), yt)≤
�

log(δ−1)

2
T �2

u . (32)

From (32), the following bound holds with probability 1 − δ:

T�
t=1

�
i∈VSt

ŵt(i)�
�∈VSt

ŵt(�)
L( f̂t,i (xt), yt )

− min
1≤i≤P

T�
t=1

L( f 

i (xt), yt) ≤

T�
t=1

P�
i=1

p̂t(i)L( f̂t,i (xt), yt)

− min
1≤i≤P

T�
t=1

L( f 

i (xt), yt) +

�
T �2

u log(δ−1)

2

(a)≤ C2

2ηl
+ ηl L2T

2
+ log P

ηg
+ ηg T �2

u

8
+ �u

�
T log(δ−1)

2

where (a) directly follows from Lemma 1 and Lemma 2. The
proof is completed from the convexity of the loss function and
by setting ηl = ηg = O(1

√
T ).

B. Proofs of Theorem 2 and Theorem 3

We prove the optimal sublinear regrets of the proposed
AMKL and AMKL-AKS. We first derive the regret analysis of
OGD in the active local step. This analysis is different from
Lemma 1 since, as shown in (17), kernel functions cannot
be updated at sometimes. The following lemma shows that
the active local step can still guarantee the sublinear regret as
long as the number of consecutive unlabeled data is a certain
constant (i.e., not grow with T ).

Lemma 3: Let M denote the maximum consecutive zeros
(i.e., unlabeling) in {at : t ∈ [T ]}. For any kernel i , OGD
in (17) (i.e., in active local step) with step size η� guarantees
the following:

regretal
T =

T�
t=1

L( f̂t,i (xt), yt) −
T�

t=1

L( f 

i (xt), yt)

≤ M + 1

2

	
C2

ηl
+ ηl L

2T



.

Setting ηl = O(1/
√

T ), OGD in the active local step can
achieve the sublinear regret.

Proof: The proof is provided in Appendix A.
For the purpose of AMKL analysis, we introduce a virtual

OMKL. This method employs the same kernel functions with
AMKL, i.e., both AMKL and virtual OMKL use the kernel
functions f̂t,i , i ∈ [P], t ∈ [T ] in active local update. Whereas,
in virtual OMKL, the weights are updated as if all labels
{yt : t ∈ [T ]} are revealed, namely

p̃t(i)
�= w̃t (i)�P

i=1 w̃t (i)
(33)

where w̃t (i) = exp(−ηg
�t−1

�=1 L( f̂i,�(x�), y�)) for some para-
meter ηg > 0 and with the initial values w̃1(i) = 1, i ∈ [P].
Then, virtual OMKL learns a target function f̃t as

f̃t (x) =
P�

i=1

p̃t(i) f̂t,i (x). (34)
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Comparing virtual OMKL and AMKL, we derive the follow-
ing key lemmas.

Lemma 4: For a small constant ηc > 0, the confidence
condition in (13) for AMKL (i.e., Vst = [P],∀t ∈ [T ]) implies
L( f̂t (xt), f̃t (xt)) ≤ ηc.

Proof: The proof is provided in Appendix B.
Lemma 5: Letting at = 0 and at+1 �= 0, we have

L( f̂t+1(xt+1), f̃t+1(xt+1)) ≤ ηc B .
Proof: The proof is provided in Appendix B.

Lemma 6: Setting ηc = O(1/
√

T ), the following sublinear
regret holds:

regreta
T =

T�
t=1

L( f̂t (xt), yt ) −
T�

t=1

L( f̃t (xt), yt) ≤ O(
√

T ).

Proof: The proof is provided in Appendix C.
From now on, we will prove the main theorem using

the above-mentioned key lemmas. From Lemma 2 and the
convexity of the loss function, we can obtain the regret bound
of vOMKL with ηg = O(1/

√
T ), which is given as

regret1T =
T�

t=1

L( f̃t (xt), yt) − min
1≤i≤P

T�
t=1

L( f̂i,t (xt), yt )

≤ O(
√

T ).

Then, the proof is completed as

regretAL
T = regreta

T + regret1
T + regretal

T ≤ O(
√

T )

where regreta
T from Lemma 5 and regretal

T ≤ O(
√

T ) from
Lemma 3 with ηl = O(1/

√
T ). This completes the proof

of Theorem 2. In addition, in the proof of Theorem 1,
it was shown that the proposed kernel selection can keep the
sublinear regret with high probability, as long as the underlying
OMKL can do it. The same argument can be applied for
the case of AMKL and AMKL-AKS. From Theorem 1 and
Theorem 2, thus, the proof of Theorem 3 is completed.

V. EXPERIMENTS

In the following experiments, we evaluate the performances
of the proposed AMKL-AKS, and its special cases AMKL
and OMKL-AKS (or AMKL-AKS with ALeff = 1) for
various online learning tasks, such as online regressions,
online classifications, and time-series predictions. Regarding
loss functions, the regularized least-square function is used
for online regressions and time-series predictions, and the
regularized logistic function is used for online classifications.
Due to the randomness of the above-mentioned algorithms
caused by zi(x) in (7), the averaged performances over 30 tri-
als are evaluated. MATLAB is employed as the programming
language. We consider the following performance measures
to evaluate the learning accuracy, AL efficiency, and compu-
tational complexity of various learning algorithms. Let ŷτ and
yτ denote an estimated label and a true label, respectively.

1) Learning Accuracy: For online regressions and
time-series predictions, the accuracy of a function
learning is measured by the mean-square error (MSE),
defined as MSE(t) = (1)/(t)

�t
τ=1(ŷτ − yτ )

2. In
addition, for online classifications, it is measured

by an error probability, defined as Error(t) =
(1)/(t)

�t
τ=1 max{0, sign(−yτ ŷτ )}.

2) AL Efficiency: The AL efficiency, denoted by ALeff ,
is measured as in (1).

3) Computational Complexity: We consider the CPU run-
ning time [i.e., execution time (second)] to compare
the computational complexities of various learning algo-
rithms.

We remark that ALeff = 1 for OMKL and OMKL-AKS as
all the incoming data are labeled. In AMKL and AMKL-AKS,
however, ALeff could be less than 1, and note that a fewer
number of labeled data is used as ALeff decreases. In addition,
it is remarkable that ALeff cannot be chosen in advance and
it is determined as a consequence of the AL process. Thus,
in our experimental results, ALeff is data dependent. For com-
parisons, the following benchmark methods are considered.

1) RBF: The online single-kernel learning method using
Gaussian kernels with the parameters σ 2 = [0.1, 1, 10]
[e.g., KL-RBF(σ 2)].

2) POLY: The online single-kernel learning method using
polynomial kernels with degree d = {2,3} (e.g.,
POLY2 and POLY3).

3) LINEAR: The online single-kernel learning method
using a linear kernel.

4) OMKR: The famous OMKL algorithm without RF
approximation [12].

5) OMKL-B: The OMKL algorithm on a budget [11].
6) RAKER: The OMKL algorithm based on RF approxi-

mation [14].
Regarding the above-mentioned online algorithms, the fol-
lowing parameters will be used throughout the experiments.
The parameter settings closely follow the most relevant work
in [14] for fair comparisons. For all MKL algorithms as
OMKR, OMKL-B, Raker, OMKL-AKS, AMKL, and AMKL-
AKS, we use the kernel dictionary consisting of 17 Gaussian
kernels, whose parameters are given as σ 2

i = 10(i−9)/(2), i =
1, . . . , 17. In addition, for RF-based OMKL algorithms, such
as Raker, OMKL-AKS, AMKL, and AMKL-AKS, the asso-
ciated parameters are set by

ηl = ηg = 1√
T

, D = 50, and λ = 0.01. (35)

The budget size of OMKL-B is chosen as B = 50. In OMKL-
AKS and AMKL-AKS, the size-Kt subset from the kernel
dictionary is selected at every time t , where Kt is determined
from (22) for OMKL-AKS and AMKL-AKS, respectively,
with δt = 0.8 for all t ∈ [T ] and γt = min{� P

Kt

�
/P, 2}. In this

way, the size of a collection is manageable during experiments
as it is always less than or equal to γt P = 34. Finally, for
AMKL and AMKL-AKS, the following parameters are chosen
for the proposed selection criterion:

ηc = 0.0005 and M = 1. (36)

Obviously, these parameters can control the tradeoff between
AL efficiency and learning accuracy of AMKL-AKS, as shown
in Fig. 3. Instead of optimizing them for each data set, one
pair of the parameters in (36) is used for all test data sets.
As explained in Section I-B, such optimization is left for
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TABLE I

SUMMARY OF REAL DATA SETS FOR EXPERIMENTS

Fig. 3. Tradeoff between AL efficiency and learning accuracy of AMKL
and AMKL-AKS for Tom’s hardware data set (a) Active-learning efficiency.
(b) MSE performance.

future work. We remark that, in this section, we specifically
focus on revealing the superiority of AMKL-AKS compared
with Raker, OMKL-AKS, and AMKL since Raker has already
proved its superiority over (O)MKL methods in terms of both
error performance and CPU time on various online learning
tasks in [14].

A. Real-Data Tests for Online Regressions

For the experiments of online regressions, the following
real data sets from UCI Machine Learning Repository are
considered, which are also summarized in Table I.

1) Twitter [37]: Data contains buzz events from Twitter,
where each attribute are used to predict the popularity
of a topic. A higher value indicates more popularity. The
larger data set with T = 98704 [termed Twitter(L)] is
included to test algorithms.

2) Tom’s Hardware [37]: Data consist of samples acquired
from a forum, where each feature represents, such as the
number of times content is displayed to visitors. The task
is to predict the average number of displays on a certain
topic.

3) Air Quality [38]: Data include samples of which features
include an hourly response from an array of chemical
sensors embedded in a city of Italy. The goal is to predict
the concentration of polluting chemicals in the air.

4) Appliances Energy [39]: This data set contains samples
describing appliances energy use, such as temperature
and pressure in houses. The goal is to predict energy
use in a low-energy building. A higher value denotes
higher energy consumption.

5) Naval Propulsion Plants [40]: This data set has been
obtained from the Gas Turbine plant. The data set
contains samples with 16 features, such as ship speed
and fuel flow. The goal is to determine the turbine decay
state coefficient.

Performance Evaluation: In particular, we consider two
types of AMKL-AKS, one of which uses all the labeled data
(called OMKL-AKS) and the other follows the proposed selec-
tion criterion, in order to show the tradeoff of AL efficiency
and learning accuracy. Fig. 4 shows the MSE performances
of various online and AL algorithms. The numerical results of
AMKL and AMKL-AKS are also summarized in Table II,
where MSE and ALeff are measured at the end of time.
In Fig. 4, as observed in [14], RF-based algorithms as Raker,
OMKL-AKS, AMKL, and AMKL-AKS, significantly outper-
form the famous (O)MKL methods and single-kernel methods
(e.g., Gaussian, POLY, and Linear methods). Here, we more
focus on the accuracy–efficiency tradeoff of the proposed
AMKL-AKS in Table II. In stream-based AL frameworks,
the following two factors play a key role in determining
performances: one is to set a sharp selection criterion which
enables an algorithm to choose essential data for labeling,
and the other is to exploit the most relevant kernels for
predicting a label precisely. In Table II, AMKL-AKS provides
notable performances, showing its solidity in terms of the
above-mentioned two factors. Namely, AMKL-AKS shows
comparable MSE performances with OMKL-AKS, ensuring
that the proposed selection criterion is accurate enough to
avoid unnecessary label requests. Furthermore, we observe
that AMKL-AKS performs better than AMKL using a fewer
number of labeled data in most of the test data sets. These
results imply that the elimination of irrelevant kernels (in a
data-driven way) has a positive impact on AMKL, thereby
improving the learning accuracy. In the comparisons of Raker
and OMKL-AKS, a similar impact is observed.

Regarding the AL efficiency, Table II clearly demonstrates
that the objective of AMKL-AKS is attained since it yields
highly close performances as Raker and OMKL-AKS, only
using 60% ∼ 70% of labeled data (i.e., ALeff = 0.6 ∼ 0.7).
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Fig. 4. Comparisons of MSE performances of various learning methods on online regression tasks. Note that to highlight the effectiveness of AMKL-AKS,
the number of labeled data rather than time t is used as x-axis (a) Twitter data. (b) Twitter data (large). (c) Tom’s hardware data. (d) Air quality data.
(e) Appliances energy data. (f) Naval propulsion plant data.

TABLE II

COMPARISONS OF MSE (×10−3 ) AND AL EFFICIENCY ON ONLINE REGRESSIONS

Remarkable, in the Plant data set, AMKL-AKS achieves the
almost same performance as OMKL-AKS with 60% of labeled
data. Moreover, it shows the outstanding performance over
Raker with a fewer number of labeled data, which proves the
superiority of AMKL-AKS. From Fig. 4, it is clearly shown
that AMKL-AKS significantly outperforms the other methods
[e.g. (O)MKL and POLY, and KL-RBF] with a fewer number
of labeled data. Based on these results, we emphasize that
AMKL-AKS can have a significant impact on the economical
aspect having 30% ∼ 40% cost reduction for label acquisi-
tions. As mentioned in Section I, this cost reduction would be
crucial for learning tasks with medical data.

In the aspect of computational complexity, it is noticeable
that AMKL-AKS yields attractive time efficiency. In Table III,
the execution times (or CUP running times) of various online
learning algorithms are provided. From Table III, we observe
that AMKL-AKS achieves superb competitiveness toward
Raker in regards to time-complexity and the MSE perfor-
mance. Especially, in Tom and Plant data sets, AMKL-AKS

TABLE III

COMPARISONS OF CPU TIME (s) ON ONLINE REGRESSIONS

shows better MSE performances than Raker with 20% and
15% of CPU time saving, respectively. The computational
efficiency of AMKL-AKS mainly comes from two factors.
One is to employ the RF approximation as in Raker [14],
where the computational complexity does not grow with T ,
while the other MKL methods suffer from it. On top of this,
due to the proposed selection criterion, AMKL-AKS enjoys its
solid computational efficiency since it can skip the unnecessary
active local and global steps. Although the active labeling step
may seem to require some additional computation time, it may
be negligible compared with the reduction of unnecessary
function learning steps.
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TABLE IV

COMPARISONS OF ERROR (%), AL EFFICIENCY, AND CPU TIME (s) ON ONLINE CLASSIFICATIONS

Remark 4: We shed light on an important relationship
between AKS and AL efficiency. From the experimental
results, we observe that the proposed AKS has a crucial role in
enhancing the AL efficiency. Table II shows that AMKL-AKS
attains a similar or better MSE performance than AMKL
(using the entire 17 kernels) with higher efficiency in all test
data sets. This interesting observation leads us to conclude
that AMKL-AKS indeed enjoys the advantage of refined
kernels. Specifically, the kernel selection enables to improve
the accuracy of the proposed selection criterion (for active
labeling) as inaccurate information from irrelevant kernels can
be excluded at every time. In other words, AMKL-AKS can
predict a function with higher accuracy by removing irrelevant
kernels, so that it is in need of just a few labeled data compared
with AMKL.

Remark 5 (Comparisons with uniform sampling): We
notice the preciseness of the proposed selection criterion for
all the online learning tasks in our experiments. To verify its
effectiveness, we consider OMKL-AKS with uniform sample
selection, where a learner decides whether to query or discard
an incoming data randomly and uniformly. That is, the incom-
ing data can be labeled with a predetermined probability
of ps . We call this method rOMKL-AKS. We compare the
performances of AMKL-AKS and rOMKL-AKS to manifest
the superiority of the proposed selection criterion. Note that
in rOMKL-AKS, the parameter ps , which determines AL effi-
ciency, should be chosen in advance, and this may not be prac-
tical. Whereas, in AMKL-AKS, AL efficiency is determined
as the consequence of the AL process. For fair comparisons,
ps is chosen according to ALeff obtained from AMKL-AKS,
so that rOMKL-AKS yields a similar AL efficiency with
AMKL-AKS. From the experiments, we observe that for most
of the data sets, rOMKL-AKS performs worse in accuracy than
AMKL-AKS, even with a larger number of labeled data. For
example, rOMKL-AKS demonstrates the MSE = 3.46 × 10−3

with ALeff = 0.76 on Twitter data, MSE = 4.44 × 10−3 with
ALeff = 0.76 on Tom data and MSE = 2.51 × 10−3 with
ALeff = 0.92 on Air data. A similar tendency has been also
observed in the classification and time series prediction tasks.
For example, rOMKL-AKS shows the 1% classification error
with ALeff = 0.74 on activity data, and MSE = 0.221 × 10−3

with ALeff = 0.74 on temperature data. By comparing with
the performances of AMKL-AKS, we can conclude that the
proposed selection criterion is indeed meaningful.

B. Real-Data Tests for Online Classifications

We more deeply investigate the performances of
Raker, OMKL-AKS, AMKL, and AMKL-AKS on online
classification tasks. For consistency with the related work,

we test the above-mentioned algorithms on the same data sets
in [14].

1) Movement [41]: This data set contains received signal
strength measured between the nodes of a sensor net-
work comprising four anchor nodes where each attribute.
Data are collected during user movement at the fre-
quency of 8 Hz. The binary label yt indicates whether
the user’s trajectory will change into the spatial context
or not.

2) Electronic Device [42]: This data set contains samples
of which each feature vector represents electricity read-
ings from different households. Binary label yt indicates
the type of electronic devices used at a certain interval
of time: dishwasher or kettle.

3) Human Activity [43]: These data are collected from a
group of 30 volunteers wearing a smartphone on their
waist. Feature vectors measure body movements. Binary
label yt represents the activity during a certain period:
walking or not walking.

Performance Evaluation: As similarly in online regression
tasks, AMKL-AKS shows the notable efficiency and compa-
rable performance in online classification tasks in Table IV.
On the Activity data set, AMKL-AKS performs accurate
enough compared with Raker while having higher efficiency.
Specifically, with 63% of entire samples, AMKL-AKS shows
only about 0.05% of accuracy difference with Raker. In addi-
tion, the error probability of OMKL-AKS is notable as it even
performs 0.3% better than Raker, which implies the effective-
ness of the proposed AKS. From this, we can conclude that
the proposed AKS and selection criterion have indeed shown
its effect on the process of the function learning task.

In the perspective of computational complexity,
AMKL-AKS enjoys the advantage of the proposed selection
criterion in online classification tasks as well. On Movement
and Activity data set, each proves about 25% and 23%
time efficiency with comparable error probability to Raker.
This remarkable observation implies that the proposed
AMKL-AKS demonstrates its universal applicability on
various learning tasks.

C. Real-Data Tests for Time Series Predictions
We discuss the natural extensions of the proposed

AMKL-AKS into time series prediction tasks which predict
the future values in online fashion. Toward this, the famous
time series prediction method called Autoregressive (AR)
model is considered. An AR(p) model predicts the future
value yt assuming the linear dependence on its past p values,
that is,

yt = c +
p�

i=1

αi yt−i + �t (37)
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TABLE V

COMPARISON OF MSE, AL EFFICIENCY, AND CPU
TIME (s) ON TIME-SERIES PREDICTIONS

where c is a constant, αi denotes the weight associated with
yt−i , and �t denotes a Gaussian noise at time t . Based on this,
the kernelized AR(p) model, which can explore a nonlinear
dependence, is introduced in [12], where it is formulated as

yt = c + f (yt−1, yt−2, . . . , yt−p) + �t (38)

= c + f (xt ) + �t (39)

where xt
�= [yt−1, yt−2, . . . , yt−p]T and f (xt) belongs to

kernel space. In this section, we further consider its nat-
ural extension to RF-based kernelized AR(p). Based on RF
approximation, f (xt) can be well approximated as in (8).
Finally, this can be directly plugged into AMKL framework
to solve time series prediction tasks. The proposed algorithms
are tested with the following univariate time series data sets
from UCI Machine Learning Repository.

1) Traffic [44]: T = 5600 time series traffic data obtained
from Department of Transportation in the U.S. Data
are collected from hourly traffic volume at the street
in Minneapolis.

2) Temperature [44]: T = 5500 time series temperature
data obtained from the same source as earlier.

Performance Evaluation: We consider the AR(p) model
with p = 5 and 10. For experiments, the data sets in the earlier
are normalized to [0, 1]. The performances of AMKL and
AMKL-AKS on time series data sets are provided in Table V.
In both p = 5 and p = 10, the proposed AMKL-AKS
shows notable performance and high AL efficiency compared
with Raker and OMKL-AKS. Specifically, in temperature data
with p = 5, AMKL-AKS shows the outstanding perfor-
mance over Raker only using 67% of entire samples, which
naturally results in its time efficiency (i.e., lower execution
time). In addition, among the algorithms, AMKL-AKS shows
the almost same performance by maintaining the shortest
execution time.

VI. CONCLUSION

In this article, we proposed a stream-based (or sequen-
tial) AL for OMKL frameworks. The proposed method is
named AMKL. We further improved the learning accu-
racy and AL efficiency of AMKL by introducing an AKS,
which is named AMKL-AKS. Theoretically, it was proved
that AMKL-AKS achieves an optimal sublinear regret as in

OMKL, implying that the proposed selection criterion indeed
avoids unnecessary label requests. Beyond the asymptotic
analysis, numerical tests with real data sets verified that
AMKL-AKS yields a similar or better accuracy than the
existing OMKL (termed Raker) using a fewer number of
labeled data. Therefore, the proposed AMKL-AKS can pro-
vide an elegant accuracy–efficiency tradeoff. One interesting
extension is to improve AMKL-AKS by exploiting a priori
knowledge on a kernel dictionary. For example, in addition
to the accumulated loss information, kernel dependencies can
be also used for an AKS. Another extension is to develop
an AL for online graph learning frameworks, in which the
graph dependencies of data samples can be exploited for active
labeling.

APPENDIX A
PROOF OF LEMMA 3

Let A be the index set of revealed labels. Then, the regret
can be decomposed as�
t∈A

L( f̂t,i (xt), yt ) −
�
t∈A

L( f 

i (xt), yt)� �� �

�=(
)

+
�
t∈Ac

L( f̂t,i (xt), yt ) −
�
t∈Ac

L( f 

i (xt), yt)� �� �

�=(

)

.

Clearly, the part (
) is the regret of the usual online gradient
descent (OGD) with time indices belong to A. Then, from
Lemma 1, we can get

(
) ≤ C2

2η1
+ ηl L2|A|

2
. (40)

Now, we focus on the part (

), which is different from the
usual OGD. Let Ac �= {t1, . . . , t|Ac |} with t1 < t2 < · · · < t|Ac|.
Let Ac

n be the subset of Ac only containing nonconsecutive
indices, where among consecutive indices, the maximum index
is only included. For example, if Ac = {3, 4, 5, 9, 11, 12, 15},
then we have Ac

n = {5, 9, 12, 15}. Following this notation,
we let Ac

n = {t�1 , . . . , t�|Ac
n | } with t�1 < t�2 < · · · < t�|Ac

n
.

To simplify the notation, we let ∇t
�= ∇L(θ̂

T
i,t zi (xt), yt). For

any t� j , t� j+1 ∈ Ac
n , we define the index set as T j = {t� j +

1, . . . , t� j+1 −1}∩A. Using this, we have the following bound:

�θ̂ i,t� j+1
− θ 


i �2 =
���θ̂ i,t� j

− ηl∇t� j
− ηl

�
t∈T j

∇t − θ 

i

���2

≤ �θ̂ i,t� j
− ηl∇t� j

− θ 
�2 + η2
l

�
t∈T j

�∇t�2

(a)≤ �θ̂ i,t� j
− ηl∇t� j

− θ 

i �2 + |T j |η2

l L2

= �θ̂ i,t� j
− θ 


i �2 + η2
l �∇t� j

�2

− 2ηl∇T
t� j

(θ̂ i,t� j
− θ 


i ) + |T j |η2
l L2 (41)

where (a) is due to the fact that loss functions are L-
Lipschitz. Note that the above-mentioned inequality always
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holds since it is ensured that t� j and t� j+1 are not consecutive.
By rearranging (41), we obtain the following bound:

∇T
t� j

(θ̂ i,t� j
− θ 


i )

≤ �θ̂ i,t� j
− θ


i �2 − �θ̂ i,t� j+1
− θ 


i �2

2ηl
+

ηl�∇T
t� j

�2

2
+ |T j |η2

l L2. (42)

In addition, the convexity of the loss function implies that

L(θ̂
T
i,t� j

zi (xt� j
), yt� j

) − L((θ 

i )

Tzi(xt� j
), yt� j

)

≤ ∇T
t� j

(θ̂ i,t� j
− θ 


i )

≤ �θ̂ i,t� j
− θ


i �2 − �θ̂ i,t� j+1
− θ 


i �2

2ηl
+

ηl�∇T
t� j

�2

2
+ |T j |η2

l L2

where the second inequality follows from (42). By telescoping
sum over t ∈ Ac

n , we can get�
t∈Ac

n

L(θ̂
T
i,t zi(xt), yt ) −

�
t∈Ac

n

L((θ 

i )

Tzi (xt), yt)

≤
�θ̂ i,t�1

− θ 

i �2 − �θ̂ i,t�|Ac

n |
− θ 


i �2

2η1
+ η1 L2|Ac

n|
2

+ η1 L2

2

|Ac
n |�

j=1

|T j | ≤ C2

2η1
+ η2

l L2T

2
(43)

where the last inequality is due to the fact that |Ac
n| +�|Ac

n |
j=1 |T j | ≤ T . By following the above-mentioned procedures

with the indices belong to Ac \Ac
n , we have a similar bound.

Since the number of consecutive unlabeling data is less than
or equal to M , the following bound holds:�
t∈Ac

L
�
θ̂

T
i,t zi(xt), yt

� −
�
t∈Ac

L
�
(θ 


i )
Tzi(xt), yt

�
≤ M

	
C2

2η1
+ η2

l L2T

2



. (44)

From (40) and (44), the proof is completed.

APPENDIX B
PROOFS OF LEMMA 4 AND LEMMA 5

We first prove Lemma 4. Leveraging the convexity of the
loss function, we have

L( f̂t (xt), f̃t (xt))

= L
�

P�
i=1

p̂t(i) f̂t,i(xt), f̃t (xt)

�

≤
P�

i=1

p̂t(i)L( f̂t,i (xt), f̃t (xt))

≤
P�

j=1

p̃t( j)

�
P�

i=1

p̂t(i)L( f̂t,i (xt), f̂t, j (xt))

�
≤ ηc

where the last inequality follows from the confidence condition
in (13). This completes the proof.

We next prove Lemma 5. Since at = 0, we have p̂t+1(i) =
p̂t(i) and f̂t+1,i (x) = f̂t,i (x) for all i ∈ [P]. From them,
we have

L( f̂t+1(xt+1), f̃t+1(xt+1))

= L
�

P�
i=1

p̂t(i) f̂t,i(xt+1), f̃t+1(xt+1)

�

≤
P�

j=1

p̃t+1( j)

�
P�

i=1

p̂t(i)L( f̂t,i(xt+1), f̂t, j (xt+1))

�
≤ ηc B

where the last inequality is due to at = 0 and the
assumption (a4).

APPENDIX C
PROOF OF LEMMA 6

Let A = {t ∈ [T ] : at = 1} be the index set of the revealed
labels. Then, we have

regreta
T =

T�
t=1

L( f̂t (xt), yt) − L( f̃t (xt), yt)

(a)≤
T�

t=1

L( f̂t (xt), f̃t (xt))

=
�
t∈A

L( f̂t (xt), f̃t (xt)) +
�
t∈Ac

L( f̂t (xt), f̃t (xt))

(b)≤
�
t∈A

L( f̂t (xt), f̃t (xt)) + ηc|Ac| (45)

where (a) is due to the assumption (a5) (i.e., triangle inequal-
ity) and (b) follows from Lemma 4. In the remaining part
of this proof, we will show that he first term in (45) is
also bounded by ηc B . Consider an arbitrary time index t ∈
A with t1 < t < t2 for t1, t2 ∈ Ac. From Lemma 5,
for t = t1 + 1, we obtain the following upper bound as
L( f̂t1+1(xt1+1), f̃t1+1(xt1+1)) ≤ ηc B . In addition, for t1 + 1 <
t < t2 and any fixed value xt , we have

L( f̂t (xt), f̃t (xt))
(a)≤ L( f̂t1+1(xt), f̃t1+1(xt))

(b)≤ ηc B (46)

where (a) is because the difference between f̂t (x) and f̃t (x)
is smaller as t1 +1 < t < t2 increases, i.e., the labeling makes
them closer, and (b) is from Lemma 5. From this analysis,
we have �

t∈A
L( f̂t (xt), f̃t (xt)) ≤ ηc B|A|. (47)

From (45) and (47), we can get regreta
T ≤ T ηc B and setting

ηc = O(1/
√

T ), the proof is completed.
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