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Abstract

Sulcal depth that is one of the quantitative measures of cerebral cortex has been widely used as an important marker for
brain morphological studies. Several studies have employed Euclidean (EUD) or geodesic (GED) algorithms to measure
sulcal depth, which have limitations that ignore sulcal geometry in highly convoluted regions and result in under or
overestimated depth. In this study, we proposed an automated measurement for sulcal depth on cortical surface reflecting
geometrical properties of sulci, which named the adaptive distance transform (ADT). We first defined the volume region of
cerebrospinal fluid between the 3D convex hull and the cortical surface, and constructed local coordinates for that restricted
region. Dijkstra’s algorithm was then used to compute the shortest paths from the convex hull to the vertices of the cortical
surface based on the local coordinates, which may be the most proper approach for defining sulcal depth. We applied our
algorithm to both a clinical dataset including patients with mild Alzheimer’s disease (AD) and 25 normal controls and a
simulated dataset whose shape was similar to a single sulcus. The mean sulcal depth in the mild AD group was significantly
lower than controls (p = 0.007, normal [mean6SD]: 7.2960.23 mm, AD: 7.1160.29) and the area under the receiver
operating characteristic curve was relatively high, showing the value of 0.818. Results from clinical dataset that were
consistent with former studies using EUD or GED demonstrated that ADT was sensitive to cortical atrophy. The robustness
against inter-individual variability of ADT was highlighted through simulation dataset. ADT showed a low and constant
normalized difference between the depth of the simulated data and the calculated depth, whereas EUD and GED had high
and variable differences. We suggest that ADT is more robust than EUD or GED and might be a useful alternative algorithm
for measuring sulcal depth.
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Introduction

Many researchers in neuroimaging studies have extracted and

analyzed various brain morphological features, including curva-

ture [1–3], fractal dimension [4,5], thickness [1,2,6,7], gyrification

index [2,8,9], sulcal pits [10,11] and sulcal depth [1,3,9], based on

the characteristics of the brain, which is a highly convoluted and

folded structure. In particular, sulcal depth has been studied as an

important index for cerebral health and has been widely used to

study the morphology of the cortical folding [1,3,11–13]. Sulcal

depth has two specific properties. First, the spatial distribution of

deep sulcal regions is relatively robust against interindividual

variability [10,14,15]. The structural deepening and folding

process of sulci is related to functional areas and occurs during

brain development, including early radial growth and later

tangential growth. This brain developmental trajectory leads to

complex sulcal geometry containing both spatial invariants and

interindividual variability [10,16–19]. The deep sulcal regions are

thought to be the first cortical folds in the early stages during

development [20,21] and their formation might be related to

genetic control and cytoarchitectonic areas [16]. Furthermore,

brain morphological studies have used sulcal depth as deep sulcal

landmarks such as sulcal fundi [22], lines [23] and pits [10,11]

have been extracted using a sulcal depth map. The second

property is that sulcal depth is sensitive to cortical atrophy.

Cortical atrophy is thought to be related to reduction in cortical

thickness and gyral white matter volume [1] or tension of the

cortico–cortical connections in subcortical white matter [24].

Sulcal depth has been used in several studies that analyzed the

brain morphological changes caused by age-related trends,

Williams syndrome, schizophrenia or Alzheimer’s disease (AD)

[1,9,12,24–26]. These studies reported generally shallower sulcal

depths related to cortical atrophy or disease progression. Because

cortical structures including sulci are affected by multiple

influences such as genetic factors, neurological/psychiatric disor-

ders and aging, it is important that the algorithm for sulcal depth

needs to be highly sensitive to morphological change while

remaining robust against sulcal variability.

Various algorithms have been proposed to compute sulcal depth

from 3-dimensional (3D) T1-weighted magnetic resonance images

or cortical surface models [1,4,22–25]. These conventional

algorithms are generally classified into two major approaches
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according to their definition of distance: Euclidean depth (EUD) or

geodesic depth (GED), described in Fig. 1. EUD is defined as the

straight line distance between a convex hull and each vertex, and

GED on a mesh represents the shortest paths from a gyral region

to the vertices [13,27].

Although both EUD and GED have been used in previous

neuroimaging studies and have produced clinically or methodo-

logically significant results in brain morphology, they have some

limitations reflecting sulcal geometry. Because it does not consider

the degree of sulcal folding, the shortest path of EUD (Fig. 1 (a))

could result in underestimates of depth and erroneous specification

of deep sulcal regions for convoluted sulci. Although GED can

fully reflect the degree of sulcal folding (Fig. 1 (b)), the approach

has other limitations caused by the positions of seed points and

detour characteristics. In particular, it is very difficult to extract

gyral regions automatically, even though they are generally

defined as seed points of GED. Moreover, the results of GED

vary depending on the positions of seed points. The characteristics

of GED mean that, at the path around point D in Fig. 1 (b), the

algorithm must make a detour along the surface instead of taking

the shortest path; GED may therefore overestimate results and

detect the deepest points inaccurately. Points B, C and D in Fig. 1

demonstrate extreme cases of sulci to illustrate the limitations of

the two major approaches; however, these anatomical cases can be

shown in human brain structures such as the Sylvian fissure. Use

of these two algorithms could result in under- or overestimations of

sulcal depth in aspects of methodological properties or biological

meaning. To overcome these limitations and to benefit studies of

brain morphology, an algorithm that reflects the geometric

properties of the highly convoluted and folded structure of sulci

is needed.

In this paper, we proposed a novel algorithm that is sensitive

and robust, defined as the shortest path from an outer convex hull

to vertices in the cortical surface following sulcal geometry (Fig. 1

(c)). This algorithm, named the adaptive distance transform

(ADT), was based on Dijkstra’s algorithm [28,29], which is a

graph-searching algorithm to find the shortest path from a source.

We compared the proposed method with EUD and GED in terms

of its robustness and sensitivity for sulcal depth. A simulated

dataset that was similar to real sulcal shapes with known deepest

locations was used to analyze the robustness of the proposed

method. We also investigated the difference in sensitivity between

the algorithms when applied to data from patients with mild AD

and control subjects.

Materials and Methods

Ethics Statement
Data used in the preparation of this article were obtained from

the OASIS database. Written informed consent was obtained from

all subjects and all studies were approved by the University’s

Institutional Review Board.

Subjects
Fifty right-handed subjects (aged 65–96 yr) were selected from

the Open Access Series of Imaging Studies (OASIS) database

(www.oasis-brains.org) [30]. The OASIS cross-sectional dataset

has a collection of 416 subjects aged from 18 to 96, including older

adults with dementia. T1-weighted magnetization-prepared rapid

gradient echo images were acquired. The scans were acquired

using a 1.5T Vision scanner (Siemens, Erlangen, Germany). We

excluded 181 subjects for whom no clinical dementia rating (CDR)

was available. The remaining subjects were divided into four

groups according to CDR: very mild AD patients (CDR 0.5;

n = 70), mild AD patients (CDR 1; n = 28), moderate AD patients

(CDR 2; n = 2) and normal controls (CDR 0; n = 135). For this

study, we selected data from all 28 mild AD patients but three of

them were excluded because they failed in brain extraction (see

section ‘‘Image processing’’). We also selected 25 normal controls

that were age- and sex-matched with the mild AD patients. The

subject demographics are summarized in Table 1.

Image Acquisition
For each subject, three to four individual T1-weighted

magnetization-prepared rapid gradient echo (MP-RAGE) scans

were obtained on a 1.5T Vision system (Siemens, Erlangen,

Germany) with the following protocol: in-plane resolution = 256

6256 (1 mm 6 1 mm), slice thickness = 1.25 mm, TR = 9.7 ms,

TE = 4 ms, flip angle = 10u, TI = 20 ms, TD = 200 ms. Images

Figure 1. Illustration of algorithms for computing sulcal depth:
(A) EUD, (B) GED, (C) ADT. The red lines illustrate the distance paths
of each approach and the blue lines denote the convex hull, i.e., the
seeds for depth calculations.
doi:10.1371/journal.pone.0055977.g001

Table 1. Demographic characteristics of normal controls and
subjects with Alzheimer’s disease.

NC (n = 25) mild AD (n = 25)

Age 74.8867.6 (86–66) 77.7667.1 (96–65)

Gender 8 males, 17 females 8 males, 17 females

CDR 0 1

MMSE score 28.5661.6 (25–30) 21.5263.7 (15–29)

Years of education 2.8461.3 (1–5) 2.661.4 (1–5)

Data for age, mini–mental state examination (MMSE) score and years of
education: mean 6 SD (range).
doi:10.1371/journal.pone.0055977.t001

Sulcal Depth Reflecting Geometrical Properties
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were motion corrected and averaged to create a single image with

a high contrast-to-noise ratio [30].

Image Processing
T1-weighted images were registered in the ICBM 152 average

template using an affine transformation and corrected for intensity

nonuniformity artifacts [31,32]. Following nonuniformity correc-

tion, brain mask was segmented using BET (brain extraction tool)

[33]. The images after skull removal were then classified into white

matter (WM), gray matter (GM), cerebrospinal fluid (CSF) and

background using an advanced neural net classifier [34].

Hemispheric cortical surfaces were automatically extracted from

each T1-weighted image using the Constrained Laplacian-based

Automated Segmentation with Proximities (CLASP) algorithm,

which reconstructed the inner cortical surface by deforming a

spherical mesh onto the WM/GM boundary and then expanding

the deformable model to the GM/CSF boundary [35,36]. The

reconstructed hemispheric cortical surfaces consisted of 40,962

vertices, each forming high-resolution meshes. The cortical

surfaces were inversely transformed from the ICBM 152 template

space to native space to calculate sulcal depth in native space.

Computing the Adaptive Distance Transform
Local coordinates. The implementation of ADT on the

cortical surface requires a convex hull and local coordinates. Local

coordinates are 3D Cartesian coordinates between the convex hull

and the cortical surface model [22]. We converted resolution of T1

weighted images to 1 mm isotropic voxel size because anisotropic

voxel resolution could result biased sulcal depth. Searching and

calculating the distance using ADT to the neighbor nodes in

anisotropic local coordinates were lopsided by directionally

dependent distance between nodes. Since it would become a

serious problem that spatial orientation of sulci would affect

measuring sulcal depth, we converted local coordinates to isotropic

level. Converted volume images were then constructed the convex

hull on volume images that had been used in previous studies

[1,13]. We made masked volume images isolating the voxels inside

the cortical surface. Each masked image was binarized and we

performed a 3D morphological closing operation with a 10 mm

spherical kernel known as large enough radius (see Supplementary

Table S1) that could fill the sulci in previous studies [1,13]. The

Laplacian of a Gaussian mask was used to construct a convex hull

from the closed image. On volume images, the local coordinates

were represented in voxel dimensions. We used the closed volume

image and cortical surface to construct the local coordinates. As

with the masked image, the voxels inside the surface were

eliminated from the closed image. The remaining voxels became

the local coordinates, which had a 1 mm isotropic level according

to our dataset. Due to short distance between vertices of cortical

surface (in our data, mean distance is 0.8760.03 mm), we divided

the local coordinates to the 0.5 mm level to improve the accuracy

of ADT. Lower level of local coordinates seemed to generate

precise paths and depth value but it was practically inefficient

because of efficiency-accuracy trade-off. The lower level of

coordinates we sampled, the higher accuracy we could obtain.

The improvement of accuracy, however, was inefficient, and was

at the cost of much longer computation time (see Supplementary

Figure S1 and S2). Hence, we concluded that the increase in

computation time through the low level of local coordinates was

ineffective and finally we chose 0.5 mm level. All the procedures

are described in Fig. 2.

The constructed local coordinates, which are the same as those

in Kao et al. [22], do not include the convex hull and the cortical

surface. However, our purpose in implementing the ADT

algorithm is to map the sulcal depth on the cerebral sulci and

the path of ADT starts from the convex hull. We modified the

local coordinates used in Kao’s method, combining them with the

convex hull and the vertices of the cortical surface. These

reconstructed local coordinates are used as the input to ADT

(Fig. 3 (a)).

Adaptive distance transform. The basic idea of ADT is to

apply Dijkstra’s algorithm to local coordinates [28]. Dijkstra’s

algorithm computes the minimum cost of reaching any node on a

network, producing the shortest path. For a rectangular network,

the minimum total cost Uij of reaching the node xij is the sum of

the edge path cost C and the minimum U of neighbors [29]:

Uij~ min (Ui{1,Uiz1,Uj{1,Ujz1)zC ð1Þ

To find the minimum total cost, the algorithm separates nodes

into three classes: ‘‘Far’’ (no information about U ), ‘‘Accepted’’ (U

has been computed) and ‘‘Considered’’ (the neighborhood of

‘‘Accepted’’). The algorithm changes ‘‘Considered’’ xij into the

‘‘Accepted’’ set and its ‘‘Far’’ neighbors into the ‘‘Considered’’ set.

All nodes on the network were changed to the ‘‘Accepted’’ set

according to Eq. [1].

Our approach is different from the conventional Dijkstra’s

algorithm, which has prior information about edges and costs.

Because the points of local coordinates do not have any

information about ‘‘Considered’’ nodes or costs around ‘‘Accept-

ed’’ nodes, we searched temporary ‘‘Considered’’ nodes and

calculated a temporary cost around ‘‘Accepted’’ nodes. Each node

located inside the 26-neighborhood of an ‘‘Accepted’’ node is

classified as a ‘‘Considered’’ node and the Euclidean distance

between the ‘‘Accepted’’ node and each ‘‘Considered’’ node

becomes a cost (Fig. 3 (b)). For ADT, the modified Eq. [1] is

Uijk~ min (UijknzCijkn ) ð2Þ

The Uijkn
denotes the minimum total cost of the nth

neighborhood of xijk from the convex hull (starting nodes) and

Cijkn
denotes the cost between Uijkn

and Uijk. The detailed

procedure of the ADT algorithm is as follows.

(1) Set the U of local coordinates to infinity and the convex hull

(‘‘Accepted’’) to 0.

(2) Find an ‘‘Accepted’’ node xijk.

(3) Search the temporary ‘‘Considered’’ nodes around the

‘‘Accepted’’ node selected via (2) and calculate Cijkn
.

(4) Apply Eq. [2] to the ‘‘Accepted’’ node.

(5) Repeat (2) through (4) for all points in the local coordinates

until no U changes any further.

Computing EUD and GED
We implemented and applied EUD and GED to our dataset to

compare their performance with that of our algorithm [13,27]. In

simple terms, the EUD was calculated as the shortest distance

between the convex hull and the vertices of the cortical surface. All

vertices of gyral regions were set to zero and the Eikonal equation

was solved to measure GED in vertices of sulcal regions from gyral

regions.

Sulcal Depth Reflecting Geometrical Properties
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Simulation Data
The locations of the deepest points of sulci can be defined using

a sulcal depth map, but they have spatial variability according to

the measurement algorithm used. For complicated sulci, conven-

tional algorithms for sulcal depth might detect erroneous locations

because of their methodological properties, and thus could

produce under- or overestimated results. To analyze the robust-

ness, we therefore created a simulation dataset that is similar to

real sulcal shapes; in the simulations, the location of the deepest

point is easily defined (Fig. 4 (a)). We assumed that three

components mainly contribute to sulcal morphology: sulcal width

(w), folding degree (h) and length (l) of the medial line of the sulcus.

Fifty-six simulated sulci were designed by changing these

components from w = 10,…,50, h = 0,…,90 and l = 120,…150

(Fig. 4 (b)).

First, the simulation dataset was constructed as a volume image,

and then the modified CLASP algorithm [35,36] was applied to

extract surface models of the simulation dataset consisting of

20,480 discrete triangular elements (10,242 vertices). Finally, we

defined the deepest point (d) as an end point of a medial line and

the measured length of the medial line as the depth of the

simulation dataset (Dd ).

Data Analysis
We analyzed group differences of whole-brain mean sulcal

depth using an analysis of covariance (ANCOVA) with intracra-

nial volume, age and sex as covariates to compare the algorithms

in terms of sensitivity. The area under receiver operating

characteristic (ROC) curve (AUC) for normal control and mild

AD groups were calculated as a measure of performance for

classifying subjects as control or mild AD. These statistical

measures to capture the change in sulcal depth were used as the

level of sensitivity.

Even in the same sulcus, deep sulcal regions have different

locations defending on algorithms. For instance, point D in Fig. 1

(c) indicated the deepest point measured by ADT but the location

of the deepest point could be different by properties of algorithms.

For this reason, we used the simulation dataset to compare the

algorithms’ robustness and ability to cope with intersubject

variability in deep sulcal regions. To evaluate the robustness of

each algorithm, we compared the normalized differences between

Dd and the maximum depth value (Dmax) estimated by each

algorithm in the simulation dataset. The differences in simulation

data were categorized and averaged by components.

Figure 2. Procedures and intermediate results of image processing. Block diagram of image processing and local coordinate construction
steps (A) and intermediate results: (B) cortical surface, (C) masked image, (D) closed image, (E) convex hull.
doi:10.1371/journal.pone.0055977.g002

Sulcal Depth Reflecting Geometrical Properties
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Results

Clinical Data
Individual sulcal depth map of all three algorithms are shown in

Fig. 5 and the difference among the algorithms are shown in Fig. 6.

The sensitivity of ADT was compared with that of EUD and GED

using the clinical dataset. Comparisons of whole-brain mean sulcal

depth for normal control subjects and mild AD patients using the

three algorithms are shown in Fig. 7. ADT showed significant

differences in mean depth between control subjects and patients

with mild AD (p = 0.007). Sulcal depth measured using EUD was

significantly shallower for patients with mild AD than for controls

(p = 0.001). Although GED for controls trended slightly higher

than for mild AD subjects, the effective size of the group difference

did not achieve statistical significance (p = 0.066). The ROC curves

for all three algorithms are shown in Fig. 8. The AUC values were

as follows: ADT 0.818, EUD 0.834 and GED 0.702. A higher

AUC value indicates that the algorithm more clearly distinguishes

patients from normal controls.

Simulation Data
The performance-normalized differences for the 56 simulated

sulci and a range of each component are plotted in Fig. 9. Within

all of the ranges of components shown, the ADT algorithm

exhibited lower difference rates (0.11–5.98%) than EUD (0.01–

34.98%) and GED (1.12–28.59%). In general, the difference

consistently increased in all three algorithms as the values of

components increased. However, the difference rate for ADT

increased only slightly whereas EUD and GED produced

dramatically higher difference rates.

Discussion

We have proposed a novel algorithm for measuring sulcal

depth, named ADT, to overcome the limitations of the EUD and

GED. The basic idea of ADT is to apply Dijkstra’s algorithm to

local coordinates. ADT produced low and constant normalized

differences in the simulation dataset for all three components

associated with sulcal complexity. Its results for sensitivity were

similar to those from EUD but better compared with GED.

Consequently, ADT was demonstrated to be a robust and sensitive

measure for the sulcal depth compared with existing approaches.

Robustness against Variable Sulcal Geometry
In previous studies, deep sulcal regions were used as sulcal

landmarks because of their robustness against sulcal geometry

[10,11,14,15,22,23,37]. Although this robustness could be com-

pared according to each algorithm in terms of the location of the

Figure 3. An illustrative figure to show the local coordinates.
(A) Local coordinates, (B) ‘‘Accepted’’ nodes and their ‘‘Considered’’
nodes with temporary edges. Gray nodes are in the voxel space
between the convex hull (blue nodes) and the cortical surface (yellow
nodes). The edge cost Cijkn

is indicated by the length of the blue line.
doi:10.1371/journal.pone.0055977.g003

Figure 4. Extracted simulation data using the modified CLASP algorithm (A), and its diagram (B). The components managing the
morphometry of the simulation data are shown in (B). w is sulcal width; h is the folding degree from an outside point located on a line parallel to the
seed of distance (blue line); and l is the length of the medial line (red dotted line) with its end point defined as the deepest point (d).
doi:10.1371/journal.pone.0055977.g004

Sulcal Depth Reflecting Geometrical Properties
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deepest points in the sulci, there is no gold standard for deepest

points. Therefore, the simulation dataset was designed to analyze

this robustness. The normalized difference of ADT was lower and

more consistent than that of the other algorithms. In particular,

the ADT algorithm had a low effect and constant normalized

difference rate on the component ‘‘degree’’ whereas EUD and

GED produced extremely large differences. The component

‘‘degree’’ reflects how complicated and convoluted a sulcus is. In

other words, ADT appears to be independent of the sulcal

complexity and has superior robustness to other algorithms. This

result can be explained by ADT’s property of reflecting sulcal

geometry; that is, it can define deep sulcal regions even though

sulcal shape is arbitrary. The robustness of sulcal depth against

sulcal variability could influence the extraction of deep sulcal

landmarks such as sulcal pits, fundi and lines in highly convoluted

and folded sulcal structures. We therefore conclude that ADT is a

more powerful method for brain morphological studies than EUD

or GED in terms of robustness.

Sensitivity to Morphological Changes in the Brain
Cortical atrophy on the pial surface decreases the sulcal depth.

Many previous studies used EUD or GED algorithms to

investigate age- or disease-related changes in sulcal depth as

sensitive features of cortical atrophy [1,3,8,9,24,25], and reported

Figure 5. Sulcal depth maps on cortical surface of 5 randomly selected clinical dataset are inflated to display deep sulcal region.
doi:10.1371/journal.pone.0055977.g005

Figure 6. An example of the differences among the algorithms in the 5 subjects.
doi:10.1371/journal.pone.0055977.g006

Sulcal Depth Reflecting Geometrical Properties
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significant differences between control subjects and patients with

AD [1]. Shallower depth patterns have been found in AD patients

than in control subjects. Our results corroborate the findings of

significant differences in sulcal depth between control subjects and

patients with mild AD. In terms of distinctions between controls

and mild AD patients, the AUC analysis suggests that ADT and

EUD algorithms are ‘‘good’’ tests but GED is only ‘‘fair’’. Our

results show that ADT offers a sensitive measure for computing

sulcal depth. The ADT and EUD algorithms were similar in terms

of sensitivity, with evidently similar results between the two

algorithms. There are two reasons for this. First, in pial surfaces,

because the sulcus is a very narrow structure and most sulci have

simple shapes, the paths of each algorithm showed small

differences, thus little affecting the algorithms’ sensitivities.

Second, the mean sulcal depth of all vertices can distort the effect

of different paths. Gyral regions and sulcal walls were found to give

no information for calculating the mean sulcal depth. Although

recent researches in brain morphology have used vertex-wise or

lobar2/regional-level comparison utilizing sphere-to-sphere

warping surface registration [38,39], this surface registration used

depth potential map [40] computed by solving a time independent

Poisson equation as feature field to match sphere to sphere. It

could be biased in this study, comparisons of 3 algorithms

measuring sulcal depth, because the pattern of depth potential

map was different to all 3 algorithms. Eventually, it was not fair

comparison involved surface registration based on depth potential

to lobal2/regional- analysis of sulcal depth. It was also not

clarified if we analyzed sulcal depth using vertex-wise comparison,

the statistically significant vertices were really significant sulcal

region. Because gyral region, sulcal wall and deep sulcal region

were not defined even in surface template, it could confuse us to

interpret results. Furthermore, some previous studies [1,3] defined

sulcal regions setting the threshold of sulcal depth value by

eliminating the effects of regions with no information. However, in

this study, differences in depth values calculated by the three

algorithms made it difficult to set sensible threshold values, as in

previous studies. To compensate the limited results, we showed the

individual sulcal depth maps of the 3 measurements in Fig. 5. We

also showed an example of the differences among the algorithms in

the 5 subjects in Fig. 6. In future work, the sensitivity to sulcal

depth may be needed for more exact distinctions between groups

Figure 7. The group difference of mean sulcal depth. Box plot displaying the data distributions and differences in average mean sulcal depth
between groups of normal controls and patients with mild AD measured using ADT, EUD and GED.
doi:10.1371/journal.pone.0055977.g007

Figure 8. ROC curve results. ROC curves are plots of sensitivity and
specificity of algorithms for distinguishing normal controls from
patients with mild AD. AUCs are added in the figure.
doi:10.1371/journal.pone.0055977.g008

Sulcal Depth Reflecting Geometrical Properties
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using parcellation of deep sulcal region and unbiased registration

methods.

Adaptive Distance Transform Using Modified Local
Coordinates

The local coordinates between the convex hull and the cortical

surface used in this study were constructed based on Kao’s

method. Indeed, ADT is similar to the algorithm proposed in Kao

et al. [22]. However, we computed sulcal depth using Dijkstra’s

algorithm with reconstructed local coordinates that combined the

vertices of the cortical surface model whereas Kao solved the

Eikonal equation on local coordinates that did not include vertices.

The difference of local coordinate could produce different results

because ADT computes sulcal depth on vertices directly while Kao

performs linear interpolation to vertices. Besides, it should be

noted that difference between Dijkstra’s algorithm and Eikonal

equation could affect paths of sulcal depth. The basic concept of

these two algorithms is same for computing shortest paths on a

network. Dijkstra’s algorithm computes paths along the discrete

Figure 9. Average normalized difference of each algorithm in the simulation dataset. The normalized difference is measured using the
following difference rate equation: D(Dd{Dmax)=Dd

D|100.
doi:10.1371/journal.pone.0055977.g009

Sulcal Depth Reflecting Geometrical Properties
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network edges but Eikonal equation approximates paths under-

lying partial differential equation. This difference between

Dijkstra’s algorithm and Eikonal equation could result in similar

or little bit different paths. Although Eikonal equation makes more

fluid path than that of Dijkstra’s algorithm, it is more intuitive that

node to node path generated by Dijkstra’s algorithm in that

Dijkstra’s algorithm could calculate real depth on local coordinates

instead of approximated depth.

Conclusions
This study demonstrates the potential of ADT as an alternative

method for measuring sulcal depth, in terms of improved

robustness and sensitivity. We have shown that ADT is more

robust than the conventional approaches and has enough

sensitivity to identify cortical atrophy and diagnose AD. The

ADT algorithm should be used for morphometric and clinical

analysis to generate better results.

Supporting Information

Figure S1 Computation time with division level in five
individual subjects. X-axis indicates division level and y-axis

means computation time for ADT.

(TIF)

Figure S2 Mean sulcal depth changed by division level
in five individual subjects.
(TIF)

Table S1 Closed volume(mm3) changed by kernel size in three

AD subjects.

(DOCX)

Acknowledgments

The authors would like to thank the following grants (P50AG05681,

P01AG03991, R01AG021910, P50MH071616, U24RR021382,

R01MH56584) for providing OASIS dataset.

Author Contributions

Conceived and designed the experiments: HJY JML. Analyzed the data:

HJY JJY. Wrote the paper: HJY KHI UCY.

References

1. Im K, Lee JM, Seo SW, Hyung Kim S, Kim SI, et al. (2008) Sulcal morphology
changes and their relationship with cortical thickness and gyral white matter

volume in mild cognitive impairment and Alzheimer’s disease. Neuroimage 43:
103–113.

2. White T, Andreasen NC, Nopoulos P, Magnotta V (2003) Gyrification

abnormalities in childhood- and adolescent-onset schizophrenia. Biol Psychiatry
54: 418–426.

3. Van Essen DC (2005) A Population-Average, Landmark- and Surface-based

(PALS) atlas of human cerebral cortex. Neuroimage 28: 635–662.

4. Im K, Lee JM, Yoon U, Shin YW, Hong SB, et al. (2006) Fractal dimension in
human cortical surface: multiple regression analysis with cortical thickness, sulcal

depth, and folding area. Hum Brain Mapp 27: 994–1003.

5. King RD, Brown B, Hwang M, Jeon T, George AT (2010) Fractal dimension

analysis of the cortical ribbon in mild Alzheimer’s disease. Neuroimage 53: 471–
479.

6. Lerch JP, Evans AC (2005) Cortical thickness analysis examined through power

analysis and a population simulation. Neuroimage 24: 163–173.

7. Im K, Lee JM, Lee J, Shin YW, Kim IY, et al. (2006) Gender difference analysis

of cortical thickness in healthy young adults with surface-based methods.

Neuroimage 31: 31–38.

8. Magnotta VA, Andreasen NC, Schultz SK, Harris G, Cizadlo T, et al. (1999)
Quantitative in vivo measurement of gyrification in the human brain: changes

associated with aging. Cereb Cortex 9: 151–160.

9. Kippenhan JS, Olsen RK, Mervis CB, Morris CA, Kohn P, et al. (2005) Genetic
contributions to human gyrification: sulcal morphometry in Williams syndrome.

J Neurosci 25: 7840–7846.

10. Lohmann G, von Cramon DY, Colchester AC (2008) Deep sulcal landmarks
provide an organizing framework for human cortical folding. Cereb Cortex 18:

1415–1420.

11. Im K, Jo HJ, Mangin JF, Evans AC, Kim SI, et al. (2010) Spatial distribution of
deep sulcal landmarks and hemispherical asymmetry on the cortical surface.

Cereb Cortex 20: 602–611.

12. Turetsky BI, Crutchley P, Walker J, Gur RE, Moberg PJ (2009) Depth of the
olfactory sulcus: a marker of early embryonic disruption in schizophrenia?

Schizophr Res 115: 8–11.

13. Im K, Lee JM, Lyttelton O, Kim SH, Evans AC, et al. (2008) Brain size and
cortical structure in the adult human brain. Cereb Cortex 18: 2181–2191.

14. Lohmann G, von Cramon DY, Steinmetz H (1999) Sulcal variability of twins.

Cereb Cortex 9: 754–763.

15. Le Goualher G, Procyk E, Collins DL, Venugopal R, Barillot C, et al. (1999)
Automated extraction and variability analysis of sulcal neuroanatomy. IEEE

Trans Med Imaging 18: 206–217.

16. Smart IH, McSherry GM (1986) Gyrus formation in the cerebral cortex of the
ferret. II. Description of the internal histological changes. J Anat 147: 27–43.

17. Hasnain MK, Fox PT, Woldorff MG (2001) Structure–function spatial

covariance in the human visual cortex. Cereb Cortex 11: 702–716.

18. Hasnain MK, Fox PT, Woldorff MG (2006) Hemispheric asymmetry of sulcus-
function correspondence: quantization and developmental implications. Hum

Brain Mapp 27: 277–287.

19. Rakic P (2004) Neuroscience. Genetic control of cortical convolutions. Science
303: 1983–1984.

20. Cachia A, Mangin JF, Riviere D, Kherif F, Boddaert N, et al. (2003) A primal

sketch of the cortex mean curvature: a morphogenesis based approach to study

the variability of the folding patterns. IEEE Trans Med Imaging 22: 754–765.

21. Regis J, Mangin JF, Ochiai T, Frouin V, Riviere D, et al. (2005) ‘‘Sulcal root’’

generic model: a hypothesis to overcome the variability of the human cortex

folding patterns. Neurol Med Chir (Tokyo) 45: 1–17.

22. Kao CY, Hofer M, Sapiro G, Stem J, Rehm K, et al. (2007) A geometric method

for automatic extraction of sulcal fundi. IEEE Trans Med Imaging 26: 530–540.

23. Seong JK, Im K, Yoo SW, Seo SW, Na DL, et al. (2010) Automatic extraction of

sulcal lines on cortical surfaces based on anisotropic geodesic distance.

Neuroimage 49: 293–302.

24. Van Essen DC, Dierker D, Snyder AZ, Raichle ME, Reiss AL, et al. (2006)

Symmetry of cortical folding abnormalities in Williams syndrome revealed by

surface-based analyses. J Neurosci 26: 5470–5483.

25. Kochunov P, Mangin JF, Coyle T, Lancaster J, Thompson P, et al. (2005) Age-

related morphology trends of cortical sulci. Hum Brain Mapp 26: 210–220.

26. Rettmann ME, Kraut MA, Prince JL, Resnick SM (2006) Cross-sectional and

longitudinal analyses of anatomical sulcal changes associated with aging. Cereb

Cortex 16: 1584–1594.

27. Rettmann ME, Han X, Xu C, Prince JL (2002) Automated sulcal segmentation

using watersheds on the cortical surface. Neuroimage 15: 329–344.

28. Dijkstra EW (1959) A note on two problems in connection with graphs.

Numerische Mathematik 1: 269–271.

29. Andrews J, Sethian JA (2007) Fast marching methods for the continuous

traveling salesman problem. Proc Natl Acad Sci U S A 104: 1118–1123.

30. Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, et al. (2007) Open

Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young,

middle aged, nondemented, and demented older adults. J Cogn Neurosci 19:

1498–1507.

31. Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject

registration of MR volumetric data in standardized Talairach space. J Comput

Assist Tomogr 18: 192–205.

32. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for

automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med

Imaging 17: 87–97.

33. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:

143–155.

34. Zijdenbos AP, Evans AC, Riahi F, Sled JG, Chui J, et al. (1996) Automatic

quantification of multiple sclerosis lesion volume using stereotaxic space

Visualization in Biomedical Computing Volume 1131/1996: 439–448.

35. Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab’bagh Y, et al. (2005) Automated 3-D

extraction and evaluation of the inner and outer cortical surfaces using a

Laplacian map and partial volume effect classification. Neuroimage 27: 210–

221.

36. MacDonald D, Kabani N, Avis D, Evans AC (2000) Automated 3-D extraction

of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12: 340–

356.

37. Cykowski MD, Coulon O, Kochunov PV, Amunts K, Lancaster JL, et al. (2008)

The central sulcus: an observer-independent characterization of sulcal

landmarks and depth asymmetry. Cereb Cortex 18: 1999–2009.

Sulcal Depth Reflecting Geometrical Properties

PLOS ONE | www.plosone.org 9 February 2013 | Volume 8 | Issue 2 | e55977



38. Robbins S, Evans AC, Collins DL, Whitesides S (2004) Tuning and comparing

spatial normalization methods. Med Image Anal 8: 311–323.
39. Lyttelton O, Boucher M, Robbins S, Evans A (2007) An unbiased iterative group

registration template for cortical surface analysis. Neuroimage 34: 1535–1544.

40. Boucher M, Whitesides S, Evans A (2009) Depth potential function for folding

pattern representation, registration and analysis. Med Image Anal 13: 203–214.

Sulcal Depth Reflecting Geometrical Properties

PLOS ONE | www.plosone.org 10 February 2013 | Volume 8 | Issue 2 | e55977


