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With the booming of video devices ranging from low-power visual sensors to mobile phones, the video sequences captured by these
simple devices must be compressed easily and reconstructed by relatively more powerful servers. In such scenarios, distributed
compressed video sensing (DCVS), combining distributed video coding (DVC) and compressed sensing (CS), is developed as a
novel and powerful signal-sensing and compression algorithm for video signals. In DCVS, video frames can be compressed to
a few measurements in a separate manner, while the interframe correlation is explored by the joint recovery algorithm. In this
paper, a new DCVS joint recovery scheme using side-information-based belief propagation (SI-BP) is proposed to exploit both
the intraframe and interframe correlations, which is particularly efficient over error-prone channels. The DCVS scheme using SI-
BP is designed over two frame signal models, the mixture Gaussian (MG) model and the wavelet hidden Markov tree (WHMT)
model. Simulation results evaluated on two video sequences illustrate that the SI-BP-based DCVS scheme is error resilient when
the measurements are transmitted through the noisy wireless channels.

1. Introduction

Current video coding paradigms, such as MPEG and the
ITU-T H.26x, are traditionally designed for the applications
followed the so-called “broadcast” model, as shown in the
left part of Figure 1. The video sequence is complicatedly
encoded at the powerful server only once, and then the com-
pressed video stream is distributed and decoded frequently
on many cheap and simple user devices. So MPEG and H.26x
standards both have complicated encoder and light decoder.

However, with the booming of video devices ranging
from low-power visual sensors to camera mobile phones,
visual applications now have already developed beyond this
broadcast model. The video processing paradigm in camera
sensor networks, which are composed of spatially distributed
smart camera devices capable of processing images or videos
of a scene from a variety of viewpoints, is more like a “multi-
ple-access” model, as shown in the right part of Figure 1. In
this scenario, these video devices with limited battery power
and storage memory need to send their captured video

streams to the monitor server. Meanwhile, high compression
efficiency is also required considering both the limitations
of wireless bandwidth and transmission power. The require-
ments of the video processing paradigms here are diamet-
rically opposed to MPEG and H.26x. Thus, lightweight and
efficient encoding technologies are developed to satisfy such
requirements of these multiaccess applications.

The first step to satisfy the multiaccess model has been
taken by exploiting the interframe statistics at the decoder
only, known as distributed video coding (DVC) [1], and
the information-theoretic basis of DVC is distributed source
coding (DSC) [2]. It states that the correlated sources can be
separately encoded and jointly decoded using the correlation
between them; furthermore, this separate encoding will
achieve the same coding efficiency as the joint encoding. The
concept of DSC has achieved a lot of attentions with the
booming of wireless sensor networks where the correlated
sources captured by sensors have to be encoded without
communications with each other while decoded jointly at the
sink node.
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Figure 1: The comparison of the “Broadcast” model and the “Multiple-access” model.

Slepian-Wolf theorem [2] for lossless coding and Wyner-
Ziv theorem [3] for lossy coding are the most important
theoretical foundations of DSC. The first practical strategy
of DSC is proposed in [4] to exploit the potential of the
Slepian-Wolf theorem by introducing channel codes. The
statistical dependence between the two sources is modeled as
a virtual correlation channel. One source is used as the side
information to help the decoding of the other source.

DVC combines DSC methods with traditional intraframe
video coding systems so as to shift the complicated motion
search operations from the encoder to the decoder, and per-
fectly suits the “multiple-access” model. A classical frame-
work called power-efficient, robust, high-compression, syn-
drome-based multimedia coding (PRISM) is proposed in
[5]. They encoded the P frames following the same proce-
dures as that of I frames but at lower rates, while the motion
search is used at the decoder to estimate the side information
from the neighboring recovered I frames. Based on the side
information, the P frames can be successfully reconstructed
using DSC decoding algorithms.

Girod et al. [6] investigated DVC in the similar format
but using turbo codes instead of the trellis codes in [5].
The scheme in [7] tackled the multiview correlations using
DVC methods. DVC not only provides light video encoder
but also contributes to the low-cost protection of traditional
video coding. The layered Wyner-Ziv video coding system
[8] achieved robust video transmission by adding Wyner-Ziv
bitstream layers as the enhanced layers.

Another recent direction to achieve light encoder is to
exploit the intraframe signal’s sparsity property, known as
compressed sensing (CS) [9–14]. In traditional intraframe
coding, a large number of pixel values are firstly transformed,
and then only the important low-frequency coefficients are
entropy coded while other coefficients are discarded. In CS,
we denote an N-dimensional vector as X = (x1, . . . , xN ) ∈
RN that can be represented as X = Ψθ, where Ψ is an
orthogonal N-by-N matrix and θ ∈ RN is the projection of
X on basis Ψ. If θ has only K nonzero entries, K � N , we
say that X is K-sparse with respect to representing matrix Ψ.
If θ is approximately sparse with K larger entries, X is called
compressible.

As long as an M-by-N sensing matrix Φ can be found
incoherent with the representing matrix Ψ, the signal X can
be sampled as Y = ΦX , where Y = {y1, . . . , yM} ∈ RM , M <
N , is the measurement vector. With the measurements, the
signal can be recovered by solving the �p-norm minimization
problem:

min
˜θ∈RN

∥

∥

∥
˜θ
∥

∥

∥

p
s.t. Y = ΦΨ˜θ. (1)

The solution to the optimization program is ̂θ, and then

the estimated signal is ̂X = Ψ̂θ. According to the compressive
sensing theory [9–14], the recovery can be achieved with
probability close to one, ifM satisfiesM ∼ 2K log(N/K) [14].

Sparsity [11] is one of the essential factors of CS which
guarantees the signal can be compressively sampled, and the
other is the incoherence [12] which provides the sensing
matrices. Usually, random matrices are largely incoherent
with any fixed representing matrix. In the CS methodology,
the image or video signals are usually sparse on the basis of
discrete cosine transform (DCT) matrix and discrete wavelet
transform (DWT) matrix [15], where the frame signal can
be directly compressed to a small number of measurements.
Thus, CS may greatly improve the efficiency and decrease the
complexity of intraframe compression. CS has been applied
in image coding by many researchers [16, 17], and [18, 19]
discussed the modified transforming, blocking and quantiz-
ing methods for video coding according to the feature of CS
measurements.

Combining DVC and CS is a main research direction for
video compressed sensing, so called distributed video com-
pressed sensing (DCVS). In [20], the authors reconstructed
the difference between frame signals firstly using ordinary
gradient projection for sparse reconstruction (GPSR) [21]
algorithm, and then recovered each signal. GPSR is essen-
tially a gradient projection algorithm applied to a quadratic
programming formulation of (1), in which the search path
from each iteration is obtained by projecting the negative-
gradient direction onto the feasible set. [22] tried to explore
the correlation between random measurements of signals
using Wyner-Ziv method, but such cascaded design needs
two sets of encoders and decoders, which will consequently
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increase the complexity. Taking the side information into
account, the scheme in [23] modified the initializations and
various stopping criteria within GPSR recovery. The idea
is similar to ours, but the recovery algorithm using basis
pursuit is different from ours. It also has to be noted that all
these schemes did not consider the transmission noise of the
measurements.

In this paper, a novel DCVS scheme using side-infor-
mation-based belief propagation (SI-BP) to utilize both the
interframe and intraframe correlations of video sequence
is proposed. Each frame is compressed separately using
structured sensing matrices. However, the P frame has lower
compression ratio because it can be jointly decoded using SI-
BP where the reconstructed adjacent I frames can be utilized
to generate the side information. The algorithm SI-BP is
derived from the Bayesian inference, so the frame signal
model is crucial for the performance of the DCVS scheme.
Two signal models are introduced, the mixture Gaussian
(MG) and the wavelet hidden Markov tree (WHMT). Due
to the recovery method based on Bayesian inference, our
scheme is resilient to the noisy transmission channel which
is inevitable in wireless networks. Although the recovery
method based on the belief propagation (BP) has been intro-
duced into CS in [24], it is only designed for single signal not
for image or video signals.

The proposed DCVS scheme has three advantages. First,
the system structure of DVC is introduced so that the motion
search is moved from encoder to decoder to alleviate the
complexity of the encoder. Second, a coding-theory-like
sensing and recovery scheme is proposed based on Bayesian
inference where the SI-BP algorithm is used, which is quite
different from the optimization recovery schemes in prior
work. Third, the MG and WHMT models of wavelet coeffi-
cients are exploited to recover signals not only from the point
of sparsity but also the point of statistical distribution. The
sufficient utilization of the video frame signal’s properties
makes our scheme robust to noise-prone transmission
channels.

The rest of the paper is organized as follows. Section 2
introduces the two MG and WHMT frame signal models.
In Section 3, we present the details of the proposed DCVS
scheme consisting of separate compression and joint recov-
ery algorithms. In Section 4, simulation results are illustrated
and discussed. And finally, Section 5 gives some concluding
thoughts with directions for future works.

2. Frame Signal Models

In our SI-BP based DCVS scheme, the correlations between
the frames are used to initialize the decoding iteration. So
the correlation models deeply affect the performance of the
decoder. Generally, the frame signal of videos is compressible
in the DCT basis or DWT basis, and the transform coeffi-
cients constitute a compressible signal with special construc-
tion model. In this section, we will discuss the effectiveness
of the MG model and the WHMT model.

2.1. Mixture Gaussian Model. The MG model has been
proved to be a simple yet effective model of real sparse signals

in image processing and inference problems. The wavelet
coefficients of the video frames can be regarded as a K-
sparse signal X = (x1, . . . , xi, . . . , xN ) ∈ RN . According to
the magnitude of these coefficients, there are divided into K
large elements and N−K small elements. Thus, it is modeled
as a two-state MG, where the large elements (“large” state)
and small elements (“small” state) are picked from Gaussian
distributions N(0, σ2

1 ) and N(0, σ2
0 ), respectively, where σ2

1 >
σ2

0 . So the probability density function of the element in the
frame signal is given as

p(xi) ∼ K

N
N
(

0, σ2
1

)

+
N − K

N
N
(

0, σ2
0

)

. (2)

The investigation of the information-theoretic bounds
for the performance of CS is always a focal point [25–27]
based on the particular sparse representations. For such two-
state MG sparse signal, [25] has derived the rate-distortion
bounds using the mean squared error (MSE) distortion mea-
sure. The simple upper bound on D(R) is obtained using an
adaptive two-step code. Firstly, the appearance of the “large”
and “small” states obeys the Bernoulli distribution. Then,
the Gaussian distributions of the two states are encoded
respectively. Therefore, the distortion rate function of the
DWT coefficients is upper bounded by

D(R) ≤ c(t)σ2e−2R,

c(t) = exp

(

2Hb
(

μ(t)
)

+
(

1− μ(t)
)

log
σ2

1 (t)
σ2

+ μ(t) log
σ2

0

σ2

)

.

(3)

The lower bound on D(R) is found by considering the
Markov chain of the S → X → ̂X , where S is a hidden dis-
crete variance of the sparse pattern. The lower bound is

D(R) ≥ min
{Rs}

∑

πsσ
2
s 2−2Rs s.t.

∑

πsRs = R, Rs ≥ 0. (4)

These results are for a single DWT vector, while for video
coding, the correlation between I frame and P frame should
be exploited. Thus, we discuss the rate-distortion bound for
one sparse signal X with the side information Y . Based on
the correlation model X = Y + Z, where Y and Z are inde-
pendent sparse signals, we have the lower bound according
to the conclusions in Wyner-Ziv coding [25]:

RX|Y (D)
.= H(Z)− 1

2
log 2πeD, (5)

where
.= denotes asymptotic equality for D → 0.

These results on rate-distortion bounds of DWT coef-
ficients are the theoretical foundations of our proposed
scheme. It can be noticed that the MG model is not unique
for video frame signal but a universal model for any sparse
signal. In other words, the particular features of video frame
signals are not demonstrated fully through this model. So we
adopt another model, WHMT model, which will be intro-
duced in the next sub-section.
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Figure 2: The quad tree structure of wavelet transform coefficients.

2.2. Wavelet Hidden Markov Tree Model. The DWT coef-
ficients of an image or a video frame have the quad tree
structure [15] which has been studied well before the advent
of CS. And recent wavelet-based CS [28, 29] used this prior
information into the CS reconstruction. We also introduce it
into our joint recovery scheme.

Figure 2 shows the tree structure of the 3-level DWT
coefficients of an image. The coefficients were decomposed
with high (H) and low (L) pass filters at each level. HLl, LHl,
HHl represent the sub-band directions at level l = 1, 2, 3,
respectively, and LL3 is the basic representation of the image.
Due to the analysis of DWT coefficient values, they tend to
persist through scales for each sub-band. Therefore, we can
construct a quad tree, where the coefficients at the highest
level l = L (L is the number of levels) is called the “root” with
scale s = 1, and coefficients at the lowest level l = 1 is the
“leaf” with scale s = L. The coefficients at LLL is denoted as
scale s = 0.

The DWT coefficients are modeled as a WHMT which
is the general version of the two-state MG model. The two
hidden states of this WHMT are also the “large” state and
“small” state. The coefficient values of each state are drawn
from a Gaussian distribution N(0, σ2

1 ) or N(0, σ2
0 ). However,

the transition probability of a coefficient (not a root
coefficient) between the two states is conditioned on the state
of its parent coefficient. If the parent coefficient is in the
“small” state, its children coefficients are in the “small” state
with probability close to one. If the parent coefficient is in the
“large” state, the “large” state and the “small” state are both
possible for its children coefficients. And the root coefficient
at scale s = 1 has high probability to be in the “large” state,
while the coefficient at scale s = 0 must be in the “large” state.
Thus, the prior probability of the ith coefficient at scale s is
given as

P
(

θ(s,i)
) ∼ π(s,i)N

(

0, (σs1)2
)

+
(

1− π(s,i)
)

N
(

0, (σs0)2
)

,

(6)

where π(s,i) is the transition probability to the “large” state of
coefficient θ(s,i), and σs1 and σs0 are the standard deviations

in the “large” state, and “small” state at scale s respectively.
Particularly, the setting of π(s,i) have some hints from the tree
structure that

π(s,i) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1, s = 0

π1 −→ 1, s = 1

πs1, s = 2, . . . , S, ωp(s,i) in “large” state

πs0 −→ 0, s = 2, . . . , S, ωp(s,i) in “small” state,
(7)

where ωp(s,i) denotes the parent coefficient of θ(s,i), and πs1
and πs0 mean the transition probability when the parent
coefficient is in “large” state and “small” state, respectively.

3. Implementation of DCVS Using SI-BP

In this section, we will focus on the implementation of DCVS
with SI-BP, including the separate compression and joint
recovery algorithms. The framework of DCVS is shown in
Figure 3. A frame group is assumed to consist of one I frame
and two P frames. The I frames XI , XI+1 and P frames XP ,
XP+1 are all transformed into their DWT coefficients denoted
by θI , θI+1 and θP , θP+1 respectively.

The coefficients of I frames and P frames are sampled
by sensing matrices ΦMI×N

I and ΦMP×N
P , respectively, where

MP < MI < N . The measurements YI , YI+1, YP , and YP+1

are transmitted through an AWGN channel with noise W ∼
N(0, σ2

W ), and the received versions are represented by Y ′I ,
Y ′I+1, Y ′P , and Y ′P+1. At the more powerful decoder, firstly

the coefficients of two I frames are reconstructed as ̂θI and
̂θI+1 so that the side information ̂θSI can be constructed via
interpolation. Then the P frames are reconstructed as ̂θP and
̂θP+1 with the help of the side information ̂θSI via the SI-BP
algorithm. Finally, these frames are inversely transformed as
̂XI , ̂XI+1, ̂XP , and ̂XP+1 to recover the original video.

3.1. Separate Compression. The BP and SI-BP algorithms for
recovery are processed on the bipartite graph, so the sensing
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Figure 3: The system model of the proposed DCVS.

matrices have to be designed as low-density sensing matrices
(LDSMs).

For the MG model, the LDSMs ΦMI×N
I and ΦMP×N

P , are
defined as ΦMI×N

I ∼ (dvI ,dcI ) and ΦMP×N
P ∼ (dvP ,dcP) similarly

to the regular LDSM that has dvI (dvP) non-zero elements in
each column (variable node degree) and dcI (dcP) non-zero
elements in each row (check node degree). The non-zero
elements in this matrix are uniformly picked from the set
{1,−1}. Intuitively, the larger dv∗ is, the more information
of signal samples is preserved in measurements.

For the WHMT model, according to the unequal impor-
tance of different part of the tree, the LDSM is redefined as

ΦM×N ∼
({

dv,1,dv,2, . . . ,dv,l, . . . ,dv,L
}

,dc
)

, (8)

where dv,l is the number of non-zero elements of the columns
corresponding to the coefficients of layer l, l = 1, 2, . . . ,L.

In other words, the LDSM is written in a layered format

ΦM×N =
[

ΦM×N1
1 ΦM×N2

2 · · ·ΦM×Nl

l · · ·ΦM×NL
L

]

, (9)

where Nl is the number of coefficients of layer l, and
∑L

l=1 Nl = N . ΦM×Nl

l ∼ (dv,l,dc) is the sub-LDSM for layer
l.

So, for both the MG and the WHMT model, the mea-
surements of frames are generated as

YI = ΦMI×N
I θI = ΦMI×N

I ΨWXI ,

YP = ΦMP×N
P θP = ΦMP×N

P ΨWXP.
(10)

The compression ratios are calculated as

RI = MI

N
= dvI

dcI
, RP = MP

N
= dvP

dcP
. (11)

3.2. Joint Recovery. Let us firstly recall the principles of BP
algorithm in traditional channel decoding. BP algorithm
approximately calculates the marginal distribution of all the
variable nodes from the global distribution by passing mes-
sages iteratively along the edges of the bipartite graph. At the
beginning of iterations, the variable nodes are initialized by
the received codeword, but the check nodes have no external
information. In contrast, the BP algorithm in CS [24] has
no prior information for variable nodes, while it has external
information for check nodes.

The proposed SI-BP algorithm is different from the
aforementioned situations because both the variable nodes
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and check nodes have prior information in SI-BP. The cor-
relation between the side information frame and the current
P frame to be decoded can be modeled as a virtual channel.
So the side information θSI is used to initialize the variable
nodes. And the measurements Y ′P are used to correct the
errors caused by the correlation noise and the transmission
noise.

For clarifying the iterative BP decoding algorithms, we
give the following assumptions firstly.

(i) Denote the variable nodes by θ1
F , θ2

F , . . . , θ
j
F , . . . , θNF

and the check nodes by y1
F , y2

F , . . . , ykF , . . . , yMF
F , where

F ∈ {I ,P}. The side information θSI is denoted as
s1, s2, . . . , s j , . . . , sN , and the measurements Y ′F is

denoted as m1
F ,m2

F , . . . ,mk
F , . . . ,mMF

F .

(ii) The messages sent on the edges of the bipartite graph
are probability density functions (pdfs). As the pdf
is real function over the interval (−∞, +∞), so we
represent the pdf with Q samples.

(iii) qj,k(x) represents the message sent from variable

node θ
j
F to check node ykF . rk, j(x) represents the mes-

sage sent from check node ykF to variable node θ
j
F .

(iv) C( j) is the set of check nodes connected with the vari-

able node θ
j
F . R(k) is the set of variable nodes con-

nected with the check node ykF .

The decoding algorithms for MG model and WHMT
model are similar but different at the initialization. However,
the WHMT model can be degenerated to MG model by
setting all π(s,i) equal to K/N , where K is the sparsity of the
frame. So we just discuss the WHMT model in what follows.

Each variable node of I frames is initialized as

q(0)
j (θ) = π(s,i)

1
√

2π(σs1)2
exp

(

− θ2

2(σs1)2

)

+
(

1− π(s,i)
) 1
√

2π(σs0)2
exp

(

− θ2

2(σs0)2

)

,

(12)

which is send to the corresponding check nodes. While for
the P frame, the variable node is initialized as

q(0)
j (θ) = π(s,i)

1
√

2π(σs1)2
exp

⎛

⎜

⎝−
(

θ − s j
)2

2(σs1)2

⎞

⎟

⎠

+
(

1− π(s,i)
) 1
√

2π(σs0)2
exp

⎛

⎜

⎝−
(

θ − s j
)2

2(σs0)2

⎞

⎟

⎠.

(13)

It can be found that the side information s j is used as
the prior mean of the variable node of P frame. This is
determined by the maximum a posteriori probability (MAP)
estimate. Then the other steps in recovery of I frames and P
frames are the same, and we listed them below.

The check node ykF receives the messages sent from vari-
able nodes in the previous half-iteration, and then calculates

the message to be transmitted back to variable nodes in
following steps:

r̃k,k(l)(θ) = w(θ)∗ qk(1),k
(

hk(1)θ
)∗ qk(2),k

(

hk(2)θ
)∗ · · ·

∗ qk(l−1),k
(

hk(l−1)θ
)∗ qk(l+1),k

(

hk(l+1)θ
)∗ · · ·

∗ qk(dcF ),k

(

hk(dcF )θ
)

rk,k(l)(θ) = r̃k,k(l)

(

−hk(l)θ − Δ
(

mk
F

))

,

(14)

where θk(l) ∈ R(k) and hk(l) is the non-zero element in row
k, l = 1, 2, . . . ,dcF . w(θ) is the pdf of the channel noise. And
Δ(mk

F) represents a function of measurement mk
F to adjust

the message. The function rk,k(l)(θ) is the final message sent
from check node ykF to variable node θk(l).

The variable node θ
j
F receives the messages sent from

connected check nodes, and calculates the message to be
transmitted back to check node as

qj, j(t)(θ) = q(0)
j (θ) · r j(1), j(θ)

· r j(2), j(θ) · · · r j(t−1), j(θ)

· r j(t+1), j(θ) · · · r j(dvF ), j(θ),

(15)

where y
j(t)
F ∈ C( j), t = 1, 2, . . . ,dvF . The function qj, j(t)(θ) is

the message sent from θ
j
F to check node y

j(t)
F .

The iteration is repeated for the desired number of
iterations. Finally, we get the pdf of each variable node as

pj(θ) = q(0)
j

∏

k∈C( j)
rk, j(θ).

(16)

The MAP estimate is used to determine the value of each
variable node.

In the SI-BP algorithm, the side information θSI is used
to initialize the pdfs of variable nodes, and affects the pdfs
in each iteration. This initialization is more reasonable than
using zeros uniformly when there is no side information.
And the θSI’s deviation from θP is gradually corrected by the
measurements Y ′P during the iterations.

4. Simulation Results and Analysis

For the simulations, we select the commonly used YUV
4 : 2 : 0 video sequences “Coastguard” and “Foreman” to test
the performance of the DCVS algorithm, where the first one
is in QCIF format and the last one is in CIF format. Here
only the Y frames are processed. For the CIF sequence, a
frame is divided into 32 × 32 blocks, and they are encoded
individually. While for the QCIF sequence, the block’s size
is 16 × 16. These settings are used to make good trade-
off between SI-BP efficiency and complexity. The group of
pictures (GOP) consists of one I frame and two P frames.
The forward and backward I frames are reconstructed
firstly to generate the side information by interpolation for
decoding the P frames.
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Figure 4: The PSNR performances for the: (a) “Foreman” CIF and (b) “Coastguard” QCIF sequences with the noiseless channel.

In order to evaluate the performance of SI-BP based
recovery scheme compared with traditional convex opti-
mization recovery schemes, we use the DCVS algorithm
[23] using GPSR in [21] for comparisons with our scheme
using SI-BP. The two-state MG model and WHMT model
are both simulated in our scheme. For the MG model, the
sparsity K , the standard deviation σ1 and σ0 are empirically
decided. And the LDSM is designed with dc = dcI = dcP =
20, and the variable node degrees are determined by the
compression ratios. The WHMT model is trained before
coding using the software in [30]. The average peak signal
to noise ratios (PSNRs) at different average compression
ratios Ravg is demonstrated to justify the performance, where
Ravg = (RI +RP×2)/3. For example, Ravg = 0.3 is achieved by
setting RI = 0.5 and RP = 0.2. When RI and RP both increase
0.1, the Ravg will increase 0.1 too.

4.1. The Noiseless Channel Case. Firstly, the ideal transmis-
sion channel is considered. The results are shown in Figure 4
and give the performance comparison between the proposed
SI-BP schemes and the GPSR scheme of these two video
sequences “Foreman” and “Coastguard”, respectively. It can
be found that the SI-BP scheme based on WHMT model
performs better than the SI-BP scheme based on MG model
and the GPSR scheme. This is because the WHMT model
is specific for the video frame signal, and it just relies on
the statistical properties of the signal which can be obtained
by training. Besides, the unregular density distribution of
LDSM protects the important part of the low-layer DWT
coefficients, so it performs better than the MG model. For the
MG model, its PSNR performance on Coastguard sequence
is worse than that obtained from GPSR scheme, while for

the Foreman sequence, it is better than that of GPSR. This
is due to that the MG model also considers both of the sparse
and statistical properties. And the SI-BP recovery algorithm
depends heavily on the accuracy of the signal model. We can
infer that the sparse property plays a more important role in
the noiseless channel case.

4.2. The Noisy Channel Case. And then the PSNR perfor-
mances of these three schemes in the error-prone channel
case are simulated, where the noise standard deviation σW

of the AWGN channel is set to 15. As shown in Figure 5. For
the “Foreman” CIF sequence, the SI-BP schemes on WHMT
and MG models both outperform the GPSR scheme. The
SI-BP scheme based on WHMT and MG model is superior
to GPSR scheme by at least 6 dB. For the “Coastguard”
QCIF sequence, the SI-BP scheme on MG still outperforms
the GPSR scheme up to 2.5 dB. It can be found that the
GPSR scheme almost keeps the same PSNR through all
the compression ratios. The performance is not improved
with increased measurements because the GPSR recovery
algorithm has little ability of resisting the errors of mea-
surements. In contrast, the noise does not degrade the
performance of our proposed SI-BP scheme. And because
of the unequal protection provided by the un-regular LDSM
matrix, the performance of SI-BP based on WHMT is about
0.5 dB higher than that of the MG model.

Figure 6 gives additional demonstration of the excellent
resiliency of the noisy measurements of the SI-BP scheme.
The PSNR performances of the SI-BP scheme based on
WHMT and MG models and the GPSR scheme are compared
at the average compression ratio Ravg = 0.4 with the changing
standard deviation of the channel noise. When the noise
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Figure 5: The PSNR performances for the: (a) “Foreman” CIF and (b) “Coastguard” QCIF sequences, where the transmission channel is
AWGN channel with the noise standard deviation σW = 15.
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Figure 6: The PSNR performances for the “Foreman” CIF sequences with the average compression ratio Ravg = 0.4.

is very small, the GPSR scheme is considerable with our
schemes, just as that in the noiseless case, but degrades
rapidly with increased noise variance. While the proposed
DCVS scheme using SI-BP, achieve the stable PSNR perfor-
mance, whether the frame model is WHMT or MG. So we
can come to the conclusion that the SI-BP based DCVS is
more suitable for the practical applications as the channel
noise is inevitable in wireless networks.

5. Conclusions and Future Works

In this paper, a novel DCVS scheme using side-information
based belief propagation (SI-BP) is proposed to deal with
the multiaccess model of video processing. Each video frame
signal is compressed to its measurements separately, and the
intra- and inter-correlations are utilized at the joint decoder.
The SI-BP recovery algorithm is proposed based on Bayesian
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inference, which is quite different from the optimization
recovery schemes in prior CS work and is error-resilient
when the measurements are transmitted through the noise-
prone channels.

The proposed DCVS scheme shifts the complexity of
video coding to the decoder and guarantees a light and effi-
cient encoder for the constrained camera sensors. The decod-
ing algorithm based on SI-BP is more suitable in practical
applications where the transmission noise is inevitable. In the
future, we will further improve the performance of SI-
BP based DCVS in noiseless scenarios and expand the
achievements of this paper in other video and image analysis
tasks, such as motion tracking and so on.
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