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Recently, agricultural products from diverse geographical

origins are widely available in markets due to increased

international trading via free trade agreement (FTA). There-

fore, there is a demand for analytical methods to correctly

identify their geographical origins to ensure public confidence

in fair evaluation of product value. The use of chromato-

graphic methods and/or DNA analysis enables the identi-

fication of geographical origins; however, these are slow and

requiring extensive sample preparation.1-6 When number of

target samples is large and efficient screening of them is

necessary, a fast and non-destructive analytical method such

as near-infrared (NIR) and Raman spectroscopy is adequate,

although the subsequent accuracy of identification would

degrade.

Since agricultural products are complex in composition,

the corresponding NIR or Raman spectra are highly over-

lapping without distinct signatures of individual compo-

nents. In this situation, multivariate discrimination methods

are typically employed to establish empirical correlation

between spectral features and relevant geographical origins.

Although diverse discrimination methods have been develop-

ed,7-12 three methods of principal component analysis-linear

discriminant analysis (PCA-LDA),8,9,13-15 partial least squares-

discriminant analysis (PLS-DA),8,9,16-18 and soft independent

modeling of class analogy (SIMCA)8,10,19-21 have been most

frequently adopted for many practical field applications. 

Recently, random forest (RF), one of the latest ensemble

methods in machine learning, has been recognized as an effec-

tive method for discrimination, largely in biomedical fields

such as gene analysis, metabolomics and medical image

analysis.22-26 Diverse analytical data such as mass spectra

and chromatograms has been directly fed into RF for either

discrimination or classification. RF combines many trees to

form a forest for analysis. An individual tree represents a

model describing the characteristics of an input feature that

is present in a subset of the whole dataset. Detail mathe-

matical descriptions of RF can be found in other publi-

cations.27-30

Here, the procedure for building a RF model is briefly

described. To build a tree, initially two thirds (66.7%) of n

total spectra are randomly selected. This procedure is called

out-of-bag (OOB) sampling.27 The percentage of the sample

selection could be changed, but the selection of two thirds

out of the total samples is typical. After the random selection

of samples, one third (33.3%) of the wavelengths out of p

total wavelengths are randomly selected again and are used

to build a tree. 

When variables (absorbance values in the case of NIR

spectra) are divided into two daughter nodes, a wavelength

that can minimize the variances of divided daughter nodes is

identified out of the randomly selected wavelengths. The

minimal sum of both variances corresponds to the more

distinct two daughter nodes. At the next two daughter nodes

divided at the previous node are further classified by search-

ing again for the best wavelengths out of the selected wave-

lengths. The same procedure of building nodes is repeated

until the selected samples for a given tree are fully classified.

Finally, each classified sample is assigned to the correspond-

ing group (geographical origin). After building the first tree,

the samples that remain (one third of n spectra) are passed

down the tree and then the resulting discrimination accuracy

is calculated. Next, by repeating the building of each tree, k

trees are built and finally form a RF model. 

For an unknown sample spectrum, the wavelengths em-

ployed in a given tree are again selected, and the correspond-

ing absorbance values are passed through the tree to decide

the group of a sample. Therefore, k predicted groups indivi-

dually determined by each tree are available for each sample.

Ultimately, the final predicted group of an unknown sample

is obtained by averaging these k predicted results. As described

above, each tree in a forest is developed by employing ran-

domly selected samples in a given dataset, and variables

(wavelengths or wavenumbers) used to build a tree are also

randomly selected, so each tree can be regarded as indepen-
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dent. When many independent trees are combined for analysis,

the risks of biased decisions or overfitting would greatly decrease.

Although applications of RF have been rapidly increased

in diverse areas, the potential of RF for vibrational spectro-

scopic discrimination for geographical origins of agricultural

products has been rarely investigated. In this study, we have

explored RF as a potential multivariate method for discrimi-

nation using three different NIR spectral datasets collected

from sesame, Angelica gigas and rice samples with different

geographical origins. 

To initially examine the spectral features of samples bet-

ween different geographical origins, all raw spectra were

converted to second derivative (2D) spectra to enhance the

spectral variations. Figure 1(a) shows the average 2D spectra

of the domestic (black) and imported (red) sesame samples.

As shown, the spectral features of the two groups are quite

similar to each other; while, minor spectral differences are

observed especially around 6500 and 5000 cm−1. Figure 1(b)

displays the average 2D spectra of domestic (black) and

imported (red) Angelica gigas samples. The spectral differ-

ence between the Angelica gigas samples of two different

origins is relatively more distinct compared with that of the

sesame samples. Figure 2(c) presents the average 2D spectra

of the domestic (black) and imported (red) rice samples. The

spectral difference is very small and only minute differences

are observed around 8300 and 7010 cm−1. In overall, the

spectral differences between two geographical origins for

these three samples are not significant, so a method able to

effectively reflect minor spectral differences in discrimina-

tion analysis becomes more beneficial.

For the purpose of comparison, PCA-LDA and PLS-DA

were also performed using the same datasets and the result-

ing discrimination accuracies were compared with those

acquired using RF. PCA was initially performed using each

spectral dataset and the resulting scores were used for the

LDA. A combination of two scores was employed since it

was easy to visualize the discrimination performance in the

two-dimensional domain. For the PLS-DA, discrimination

models were developed by assigning one group as 1 and the

other group as 2. The prediction accuracy was obtained by

evaluating the predicted values of the samples, whether

these were below or above 1.5. RF was performed as

described earlier.

The discrimination errors (percent errors) obtained by

predicting the samples in each validation set are summarized

in Table 1. The numbers in parentheses in the columns for

the PCA-LDA, PLS-DA, and RF correspond to the selected

optimal two-score combination, number of factors, and

number of trees, respectively, determined by leave-one-out

cross-validation using the corresponding calibration dataset.

As shown in the table, the discrimination accuracies improv-

ed in all three cases when RF was used.

In the case of factor-based analysis such as PCA-LCA and

PLS-DA, determination of an optimal number of factors

(eigenvectors) is inevitably required, since a model can be

easily overfit when excess factors are used. While, a RF

model would not be overfit even with the inclusion of large

number of trees. This non-overfitting nature of RF has been

Figure 1. Average 2D spectra of domestic (blue) and imported
(red) sesame (a), Angelica gigas (b) and rice (c) samples.

Table 1. The discrimination errors (percent errors) acquired using
PCA-LDA, PLS-DA and RF for sesame, Angelica gigas and rice
samples. The numbers in parentheses in the columns for the PCA-
LDA, PLS-DA and RF correspond to the selected optimal two-
score combination, the number of factors and the number of tress,
respectively

PCA-LDA PLS-DA RF

Sesame 9.8 (1st/4th) 9.4 (3) 6.7 (10000)

Angelica gigas 10.9 (1st/2nd) 8.6 (3) 5.5 (10000)

Rice 22.2 (2nd/3rd) 5.6 (7) 0.0 (10000)
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mathematically proven.27 Figure 2 shows the variation in

discrimination error as a function of the number of trees used

to discriminate the imported and domestic Angelica gigas

samples. For the examination of detail, the range up to 500

trees is enlarged in the figure. When the number of trees

used in an RF model is small, i.e., below 500, the resulting

discrimination errors are largely fluctuating with the continual

addition of trees, indicating insufficient robustness of the

built RF model. The fluctuation of error continues up to

4800 trees; while, the frequency of error fluctuation largely

decrease. After 4800 trees, the frequency of error fluctuation

substantially decreases further and no change in the error is

observed after the inclusion of 9000 trees. This insensitivity

of error to the number of trees implies that the prediction

performance of the model is now robust. In this case, 10000

trees are used in the RF model, since the discrimination

errors have sufficiently converged to a constant level. The

similar trends were also observed when the number of trees

varied in the RF models for geographical discrimination of

sesame as well as rice samples. Therefore, also 10000 trees

were used in both RF models as described in Table 1.

In conclusion, the potential of RF has been demonstrated

for NIR spectroscopic discrimination of agricultural samples

according to their geographical origins. Free of over-fitting

is the most important advantage of RF since many analysts

do not want to involve in argument for possible over-fitting

of a model when factor-based multivariate method is used.

The decreased discrimination error by the use of RF in this

study would not be generalized since only three different

samples were employed; however, it is clear that RF could

be an alternative potential discrimination method worth-

while to consider along with existing factor-based multi-

variate methods.

Experimental

In the case of sesame and Angelica gigas samples, diffuse

reflectance NIR spectral datasets were kindly supplied by

the National Agricultural Products Quality Management

Service (NAQS), Seoul, Korea. Also, NAQS also provided

the rice samples. All of the NIR spectra were collected with

a Foss NIRSystems Model 6500 spectrometer equipped with

a quartz halogen lamp and PbS detector. All of the samples

were ground into powders (20-mesh) for the collection of

diffuse reflectance spectra.

Table 2 describes the division of dataset into calibration

and validation set for three different agricultural samples.

The numbers in the table indicate the number of spectra

assigned to the corresponding calibration and validation set.

In all three cases, the calibration samples were randomly

selected. All of the spectral pre-treatments as well as the

discrimination analyses, including second derivative, PCA-

LDA, PLS-DA and RF, were performed using MATLAB

Version 7.0 (Math Works Inc., MA, USA).
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