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Abstract
In this paper, we investigate the orthogonal stability of functional equations in
orthogonality modules over a unital Banach algebra. Using a fixed point method, we
prove the Hyers-Ulam stability of the orthogonally Jensen additive functional
equation

2f
( x + y

2

)
= f (x) + f (y),

the orthogonally Jensen quadratic functional equation

2f
( x + y

2

)
+ 2f

(x – y
2

)
= f (x) + f (y),

the orthogonally cubic functional equation

f (2x + y) + f (2x – y) = 2f (x + y) + 2f (x – y) + 12f (x),

and the orthogonally quartic functional equation

f (2x + y) + f (2x – y) = 4f (x + y) + 4f (x – y) + 24f (x) – 6f (y)

for all x, y with x ⊥ y, where ⊥ is the orthogonality in the sense of Rätz.
MSC: Primary 39B55; 47H10; 39B52; 46H25

Keywords: Hyers-Ulam stability; orthogonally (Jensen additive, Jensen quadratic,
cubic, quartic) functional equation; fixed point; orthogonality module over Banach
algebra; orthogonality space

1 Introduction and preliminaries
Assume that X is a real inner product space and f : X →R is a solution of the orthogonal
Cauchy functional equation f (x + y) = f (x) + f (y), where 〈x, y〉 = . By the Pythagorean
theorem, f (x) = ‖x‖ is a solution of the conditional equation. Of course, this function
does not satisfy the additivity equation everywhere. Thus the orthogonal Cauchy equation
is not equivalent to the classic Cauchy equation on the whole inner product space.
Pinsker [] characterized orthogonally additive functionals on an inner product space

when the orthogonality is the ordinary one in such spaces. Sundaresan [] generalized
this result to arbitrary Banach spaces equipped with the Birkhoff-James orthogonality.
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The orthogonal Cauchy functional equation

f (x + y) = f (x) + f (y), x⊥ y,

in which ⊥ is an abstract orthogonality relation, was first investigated by Gudder and
Strawther []. They defined⊥ by a system consisting of five axioms and described the gen-
eral semi-continuous real-valued solution of the conditional Cauchy functional equation.
In , Rätz [] introduced a new definition of orthogonality by usingmore restrictive ax-
ioms than Gudder and Strawther. Moreover, he investigated the structure of orthogonally
additive mappings. Rätz and Szabó [] investigated the problem in a rather more general
framework.
Let us recall the orthogonality in the sense of Rätz [].
Suppose thatX is a real vector space (algebraicmodule) with dimX ≥ , and⊥ is a binary

relation on X with the following properties:

(O) Totality of ⊥ for zero: x⊥  and  ⊥ x for all x ∈ X ;
(O) Independence: if x, y ∈ X – {} and x ⊥ y, then x and y are linearly independent;
(O) Homogeneity: if x, y ∈ X and x⊥ y, then αx⊥ βy for all α,β ∈R;
(O) Thalesian property: if P is a -dimensional subspace of X , x ∈ P and λ ∈ R+, which

is the set of nonnegative real numbers, then there exists y ∈ P such that x ⊥ y and
x + y ⊥ λx – y.

The pair (X,⊥) is called an orthogonality space (resp.,module). By an orthogonality normed
space (normed module) we mean an orthogonality space (resp., module) having a normed
(resp., normed module) structure.
Some interesting examples are as follows:
() The trivial orthogonality on a vector space X defined by (O) and, for any non-zero

elements x, y ∈ X , x⊥ y if and only if x, y are linearly independent.
() The ordinary orthogonality on an inner product space (X, 〈·, ·〉) given by x ⊥ y if and

only if 〈x, y〉 = .
() The Birkhoff-James orthogonality on a normed space (X,‖ · ‖) defined by x⊥ y if

and only if ‖x + λy‖ ≥ ‖x‖ for all λ ∈R.
The relation ⊥ is called symmetric if x ⊥ y implies that y ⊥ x for all x, y ∈ X. Clearly,

Examples () and () are symmetric, but Example () is not. It is remarkable to note, how-
ever, that a real normed space of a dimension greater than  is an inner product space if
and only if the Birkhoff-James orthogonality is symmetric. There are several orthogonal-
ity notions on a real normed space such as Birkhoff-James, Boussouis, Singer, Carlsson,
unitary-Boussouis, Roberts, Phythagorean, isosceles and Diminnie (see [–]).
The stability problem of functional equations originated from the following question

of Ulam []: Under what condition is there an additive mapping near an approximately
additive mapping? In , Hyers [] gave a partial affirmative answer to the question of
Ulam in the context of Banach spaces. In , Rassias [] extended the theorem of Hyers
by considering the unbounded Cauchy difference

∥∥f (x + y) – f (x) – f (y)
∥∥ ≤ ε

(‖x‖p + ‖y‖p) (
ε > ,p ∈ [, )

)
.
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During the last decades, several stability problems of functional equations have been in-
vestigated in the spirit of Hyers-Ulam-Rassias. The readers refer to [–] and references
therein for detailed information on the stability of functional equations.
Ger and Sikorska [] investigated the orthogonal stability of the Cauchy functional

equation f (x + y) = f (x) + f (y), namely they showed that, if f is a mapping from an or-
thogonality space X into a real Banach space Y and

∥∥f (x + y) – f (x) – f (y)
∥∥ ≤ ε

for all x, y ∈ X with x ⊥ y and for some ε > , then there exists exactly one orthogonally
additive mapping g : X → Y such that ‖f (x) – g(x)‖ ≤ 

 ε for all x ∈ X.
The first author treating the stability of the quadratic equation was Skof [] by proving

that, if f is a mapping from a normed space X into a Banach space Y satisfying

∥∥f (x + y) + f (x – y) – f (x) – f (y)
∥∥ ≤ ε

for some ε > , then there is a unique quadratic mapping g : X → Y such that ‖f (x) –
g(x)‖ ≤ ε

 . Cholewa [] extended Skof ’s theorem by replacing X by an abelian group G.
Skof ’s result was later generalized by Czerwik [] in the spirit of Hyers-Ulam-Rassias.
The stability problem of functional equations has been extensively investigated by some
mathematicians (see [–]).
The orthogonally quadratic equation

f (x + y) + f (x – y) = f (x) + f (y), x ⊥ y

was first investigated by Vajzović [] when X is a Hilbert space, Y is the scalar field, f is
continuous and ⊥ means the Hilbert space orthogonality. Later, Drljević [], Fochi [],
Moslehian [, ] and Szabó [] generalized this result (see also [–]).
In [], Jun and Kim considered the following cubic functional equation:

f (x + y) + f (x – y) = f (x + y) + f (x – y) + f (x). (.)

It is easy to show that the function f (x) = x satisfies the functional equation (.), which
is called a cubic functional equation, and every solution of the cubic functional equation
is said to be a cubic mapping.
Let X be an orthogonality space and Y be a real Banach space. A mapping f : X → Y is

called orthogonally cubic if it satisfies the orthogonally cubic functional equation

f (x + y) + f (x – y) = f (x + y) + f (x – y) + f (x) (.)

for all x, y with x ⊥ y.
In [], Lee et al. considered the following quartic functional equation:

f (x + y) + f (x – y) = f (x + y) + f (x – y) + f (x) – f (y). (.)

http://www.advancesindifferenceequations.com/content/2012/1/173
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It is easy to show that the function f (x) = x satisfies the functional equation (.), which
is called a quartic functional equation, and every solution of the quartic functional equa-
tion is said to be a quartic mapping (for the stability of the ACQ and quartic functional
equations, see [, ] and others).
Let X be an orthogonality space and Y be a Banach space. Amapping f : X → Y is called

orthogonally quartic if it satisfies the orthogonally quartic functional equation

f (x + y) + f (x – y) = f (x + y) + f (x – y) + f (x) – f (y) (.)

for all x, y with x ⊥ y.
Let X be a set. A function d : X × X → [,∞] is called a generalized metric on X if d

satisfies the following conditions:
() d(x, y) =  if and only if x = y;
() d(x, y) = d(y,x) for all x, y ∈ X ;
() d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .
We recall a fundamental result in a fixed point theory.

Theorem . ([, ]) Let (X,d) be a complete generalized metric space and J : X → X
be a strictly contractive mapping with the Lipschitz constant α < . Then, for each given
element x ∈ X, either

d
(
Jnx, Jn+x

)
= ∞

for all nonnegative integers n or there exists a positive integer n such that
() d(Jnx, Jn+x) < ∞ for all n≥ n;
() the sequence {Jnx} converges to a fixed point y* of J ;
() y* is the unique fixed point of J in the set Y = {y ∈ X | d(Jnx, y) <∞};
() d(y, y*) ≤ 

–α
d(y, Jy) for all y ∈ Y .

In , Isac and Rassias [] were the first to provide applications of the stability theory
of functional equations for the proof of new fixed point theorems with applications. By
using fixed pointmethods, the stability problems of several functional equations have been
extensively investigated by a number of authors (see [–]).
This paper is organized as follows. In Section , we prove theHyers-Ulam stability of the

orthogonally Jensen additive functional equation in orthogonality modules over a unital
Banach algebra. In Section , we prove theHyers-Ulam stability of the orthogonally Jensen
quadratic functional equation in orthogonality modules over a unital Banach algebra. In
Section , we prove theHyers-Ulam stability of the orthogonally cubic functional equation
(.) in orthogonality modules over a unital Banach algebra. In Section , we prove the
Hyers-Ulam stability of the orthogonally quartic functional equation (.) in orthogonality
modules over a unital Banach algebra.
Throughout this paper, assume that (X,⊥) is an orthogonality module over a unital Ba-

nach algebra A and that (Y ,‖ · ‖Y ) is a real Banach module over A. Let A := {u ∈ A |
‖u‖ = }, and e be the unity of A.
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Park et al. Advances in Difference Equations 2012, 2012:173 Page 5 of 17
http://www.advancesindifferenceequations.com/content/2012/1/173

2 Stability of the orthogonally Jensen additive functional equation
In this section, applying some ideas from [, ], we deal with the stability problem for
the orthogonally Jensen additive functional equation

f
(
x + y


)
= f (x) + f (y)

for all x, y ∈ X with x⊥ y.

Definition . An additive mapping f : X → Y is called an A-additive mapping if f (ax) =
af (x) for all a ∈ A and x ∈ X.

Theorem . Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ(x, y) ≤ αϕ

(
x

,
y


)
(.)

for all x, y ∈ X with x⊥ y. Let f : X → Y be a mapping satisfying f () =  and

∥∥∥∥af
(
x + y


)
– f (ax) – f (ay)

∥∥∥∥
Y

≤ ϕ(x, y) (.)

for all a ∈ A and all x, y ∈ X with x⊥ y. If, for each x ∈ X, the mapping f (tx) is continuous
in t ∈ R, then there exists a unique orthogonally Jensen A-additivemapping L : X → Y such
that

∥∥f (x) – L(x)
∥∥
Y ≤ α

 – α
ϕ(x, ) (.)

for all x ∈ X.

Proof Putting y =  and a = e in (.), we get

∥∥∥∥f
(
x


)
– f (x)

∥∥∥∥
Y

≤ ϕ(x, ) (.)

for all x ∈ X since x ⊥ . So, we have

∥∥∥∥f (x) – 

f (x)

∥∥∥∥
Y

≤ 

ϕ(x, )≤ α · ϕ(x, ) (.)

for all x ∈ X. Consider the set

S := {h : X → Y }

and introduce the generalized metric on S:

d(g,h) = inf
{
μ ∈R+ :

∥∥g(x) – h(x)
∥∥
Y ≤ μϕ(x, ),∀x ∈ X

}
,

where, as usual, infφ = +∞. It is easy to show that (S,d) is complete (see []).
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Now, we consider the linear mapping J : S → S such that

Jg(x) :=


g(x)

for all x ∈ X. Let g,h ∈ S be given such that d(g,h) = ε. Then we have

∥∥g(x) – h(x)
∥∥
Y ≤ ϕ(x, )

for all x ∈ X. Hence,

∥∥Jg(x) – Jh(x)
∥∥
Y =

∥∥∥∥ g(x) –


h(x)

∥∥∥∥
Y

≤ αϕ(x, )

for all x ∈ X. So, d(g,h) = ε implies that d(Jg, Jh) ≤ αε. This means that

d(Jg, Jh) ≤ αd(g,h)

for all g,h ∈ S. It follows from (.) that d(f , Jf ) ≤ α. By Theorem ., there exists amapping
L : X → Y satisfying the following:
() L is a fixed point of J , i.e.,

L(x) = L(x) (.)

for all x ∈ X. The mapping L is a unique fixed point of J in the set

M =
{
g ∈ S : d(h, g) <∞}

.

This implies that L is a unique mapping satisfying (.) such that there exists a μ ∈ (,∞)
satisfying

∥∥f (x) – L(x)
∥∥
Y ≤ μϕ(x, )

for all x ∈ X;
() d(Jnf ,L) →  as n → ∞. This implies the equality

lim
n→∞


n

f
(
nx

)
= L(x)

for all x ∈ X;
() d(f ,L) ≤ 

–α
d(f , Jf ), which implies the inequality

d(f ,L)≤ α

 – α
.

This implies that inequality (.) holds.

http://www.advancesindifferenceequations.com/content/2012/1/173
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Let a = e in (.). It follows from (.) and (.) that

∥∥∥∥L
(
x + y


)
– L(x) – L(y)

∥∥∥∥
Y
= lim

n→∞

n

∥∥f (n–(x + y)
)
– f

(
nx

)
– f

(
ny

)∥∥
Y

≤ lim
n→∞


n

ϕ
(
nx, ny

) ≤ lim
n→∞

nαn

n
ϕ(x, y) = 

for all x, y ∈ X with x⊥ y. So,

L
(
x + y


)
– L(x) – L(y) = 

for all x, y ∈ X with x⊥ y. Hence, L : X → Y is an orthogonally Jensen additive mapping.
Let y =  in (.). It follows from (.) and (.) that

∥∥∥∥aL
(
x


)
– L(ax)

∥∥∥∥
Y
= lim

n→∞

n

∥∥af (n–x) – f
(
nax

)∥∥
Y

≤ lim
n→∞


n

ϕ
(
nx, 

) ≤ lim
n→∞

nαn

n
ϕ(x, ) = 

for all x ∈ X. So, we have

aL
(
x


)
– L(ax) = 

for all x ∈ X, and hence

L(ax) = aL
(
x


)
= aL(x)

for all a ∈ A and x ∈ X. By the same reasoning as in the proof of Theorem in [], we can
show that L : X → Y is R-linear since the mapping f (tx) is continuous in t ∈ R for each
x ∈ X. For each a ∈ A with a �= , we have

L(ax) = L
(

‖a‖ a
‖a‖x

)
= ‖a‖L

(
a

‖a‖x
)
= ‖a‖ a

‖a‖L(x) = aL(x)

for all x ∈ X. Thus L : X → Y is a unique orthogonally Jensen A-additive mapping satisfy-
ing (.). This completes the proof. �

Fromnow on, in corollaries, assume that (X,⊥) is an orthogonality normedmodule over
a unital Banach algebra A.

Corollary . Let θ be a positive real number and p be a real number with  < p < . Let
f : X → Y be a mapping satisfying f () =  and

∥∥∥∥af
(
x + y


)
– f (ax) – f (ay)

∥∥∥∥
Y

≤ θ
(‖x‖p + ‖y‖p) (.)

for all a ∈ A and x, y ∈ X with x ⊥ y. If, for each x ∈ X, the mapping f (tx) is continuous in
t ∈ R, then there exists a unique orthogonally Jensen A-additive mapping L : X → Y such

http://www.advancesindifferenceequations.com/content/2012/1/173
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that

∥∥f (x) – L(x)
∥∥
Y ≤ pθ

 – p
‖x‖p

for all x ∈ X.

Proof The proof follows fromTheorem. by taking ϕ(x, y) = θ (‖x‖p+‖y‖p) for all x, y ∈ X
with x⊥ y. Then we can choose α = p– and we get the desired result. �

Theorem . Let f : X → Y be a mapping satisfying (.) and f () =  for which there
exists a function ϕ : X → [,∞) such that

ϕ(x, y) ≤ α


ϕ(x, y)

for all x, y ∈ X with x ⊥ y. If, for each x ∈ X, the mapping f (tx) is continuous in t ∈ R, then
there exists a unique orthogonally Jensen A-additive mapping L : X → Y such that

∥∥f (x) – L(x)
∥∥
Y ≤ 

 – α
ϕ(x, ) (.)

for all x ∈ X.

Proof Let (S,d) be the generalized metric space defined in the proof of Theorem ..
Now, we consider the linear mapping J : S → S such that

Jg(x) := g
(
x


)

for all x ∈ X. It follows from (.) that d(f , Jf ) ≤ . So,

d(f ,L)≤ 
 – α

.

Thuswe obtain inequality (.). The rest of the proof is similar to the proof of Theorem..
This completes the proof. �

Corollary . Let θ be a positive real number and p be a real number with p > . Let
f : X → Y be a mapping satisfying f () =  and (.). If, for each x ∈ X, the mapping f (tx)
is continuous in t ∈ R, then there exists a unique orthogonally Jensen A-additive mapping
L : X → Y such that

∥∥f (x) – L(x)
∥∥
Y ≤ pθ

p – 
‖x‖p

for all x ∈ X.

Proof The proof follows fromTheorem. by taking ϕ(x, y) = θ (‖x‖p+‖y‖p) for all x, y ∈ X
with x⊥ y. Then we can choose α = –p and we get the desired result. �
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3 Stability of the orthogonally Jensen quadratic functional equation
In this section, applying some ideas from [, ], we deal with the stability problem for
the orthogonally Jensen quadratic functional equation

f
(
x + y


)
+ f

(
x – y


)
= f (x) + f (y)

for all x, y ∈ X with x⊥ y.

Definition . A quadratic mapping f : X → Y is called an A-quadratic mapping if
f (ax) = af (x) for all a ∈ A and x ∈ X.

Theorem . Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ(x, y) ≤ αϕ

(
x

,
y


)
(.)

for all x, y ∈ X with x⊥ y. Let f : X → Y be a mapping satisfying f () =  and

∥∥∥∥af
(
x + y


)
+ af

(
x – y


)
– f (ax) – f (ay)

∥∥∥∥
Y

≤ ϕ(x, y) (.)

for all a ∈ A and x, y ∈ X with x ⊥ y. If, for each x ∈ X, the mapping f (tx) is continuous
in t ∈ R, then there exists a unique orthogonally Jensen A-quadratic mapping Q : X → Y
such that

∥∥f (x) –Q(x)
∥∥
Y ≤ α

 – α
ϕ(x, ) (.)

for all x ∈ X.

Proof Putting y =  and a = e in (.), we get

∥∥∥∥f
(
x


)
– f (x)

∥∥∥∥
Y

≤ ϕ(x, ) (.)

for all x ∈ X, since x ⊥ . So, we have
∥∥∥∥f (x) – 


f (x)

∥∥∥∥
Y

≤ 


ϕ(x, )≤ α · ϕ(x, ) (.)

for all x ∈ X. By the same reasoning as in the proof of Theorem ., one can obtain an
orthogonally Jensen quadratic mapping Q : X → Y defined by

lim
n→∞


n

f
(
nx

)
=Q(x)

for all x ∈ X.
Let (S,d) be the generalized metric space defined in the proof of Theorem ..
Now, we consider the linear mapping J : S → S such that

Jg(x) :=


g(x)

http://www.advancesindifferenceequations.com/content/2012/1/173
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for all x ∈ X. It follows from (.) that d(f , Jf )≤ α. So,

d(f ,Q)≤ α

 – α
.

Thus we obtain inequality (.). Let y =  in (.). It follows from (.) and (.) that

∥∥∥∥aQ
(
x


)
–Q(ax)

∥∥∥∥
Y
= lim

n→∞

n

∥∥af (n–x) – f
(
nax

)∥∥
Y

≤ lim
n→∞


n

ϕ
(
nx, 

) ≤ nαn

n
ϕ(x, ) = 

for all x ∈ X. So, we have

aQ
(
x


)
–Q(ax) = 

for all x ∈ X, and hence

Q(ax) = aQ
(
x


)
= aQ(x)

for all a ∈ A and x ∈ X. By the same reasoning as in the proof of [, Theorem], we can
show that, for each t ∈ R, Q : X → Y satisfies Q(tx) = tQ(x) all x ∈ X since the mapping
f (tx) is continuous in t ∈R for each x ∈ X. For each a ∈ A with a �= , we have

Q(ax) =Q
(

‖a‖ a
‖a‖x

)
= ‖a‖Q

(
a

‖a‖x
)
= ‖a‖ a

‖a‖Q(x) = aQ(x)

for all x ∈ X. Thus Q : X → Y is a unique orthogonally Jensen A-quadratic mapping satis-
fying (.). This completes the proof. �

Corollary . Let θ be a positive real number and p be a real number with  < p < . Let
f : X → Y be a mapping satisfying

∥∥∥∥af
(
x + y


)
+ af

(
x – y


)
– f (ax) – f (ay)

∥∥∥∥
Y

≤ θ
(‖x‖p + ‖y‖p) (.)

for all a ∈ A and x, y ∈ X with x ⊥ y. If, for each x ∈ X, the mapping f (tx) is continuous
in t ∈ R, then there exists a unique orthogonally Jensen A-quadratic mapping Q : X → Y
such that

∥∥f (x) –Q(x)
∥∥
Y ≤ pθ

 – p
‖x‖p

for all x ∈ X.

Proof The proof follows fromTheorem. by taking ϕ(x, y) = θ (‖x‖p+‖y‖p) for all x, y ∈ X
with x⊥ y. Then we can choose α = p– and we get the desired result. �
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Theorem . Let f : X → Y be a mapping satisfying (.) and f () =  for which there
exists a function ϕ : X → [,∞) such that

ϕ(x, y) ≤ α


ϕ(x, y)

for all x, y ∈ X with x ⊥ y. If, for each x ∈ X, the mapping f (tx) is continuous in t ∈ R, then
there exists a unique orthogonally Jensen A-quadratic mapping Q : X → Y such that

∥∥f (x) –Q(x)
∥∥
Y ≤ 

 – α
ϕ(x, ) (.)

for all x ∈ X.

Proof Let (S,d) be the generalized metric space defined in the proof of Theorem ..
Now, we consider the linear mapping J : S → S such that

Jg(x) := g
(
x


)

for all x ∈ X. It follows from (.) that d(f , Jf ) ≤ . So, we obtain inequality (.). The rest
of the proof is similar to the proofs of Theorems . and .. �

Corollary . Let θ be a positive real number and p be a real number with p > . Let
f : X → Y be a mapping satisfying (.). If, for each x ∈ X, the mapping f (tx) is continuous
in t ∈ R, then there exists a unique orthogonally Jensen A-quadratic mapping Q : X → Y
such that

∥∥f (x) –Q(x)
∥∥
Y ≤ pθ

p – 
‖x‖p

for all x ∈ X.

Proof The proof follows fromTheorem. by taking ϕ(x, y) = θ (‖x‖p+‖y‖p) for all x, y ∈ X
with x⊥ y. Then we can choose α = –p and we get the desired result. �

4 Stability of the orthogonally cubic functional equation
In this section, applying some ideas from [, ], we deal with the stability problem for
the orthogonally cubic functional equation

f (x + y) + f (x – y) = f (x + y) + f (x – y) + f (x)

for all x, y ∈ X with x⊥ y.

Definition . A cubic mapping f : X → Y is called an A-cubic mapping if f (ax) = af (x)
for all a ∈ A and x ∈ X.

Theorem . Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ(x, y) ≤ αϕ

(
x

,
y


)
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for all x, y ∈ X with x⊥ y. Let f : X → Y be a mapping satisfying f () =  and

∥∥af (x + y) + af (x – y) – f (ax + ay) – f (ax – ay) – f (ax)
∥∥
Y

≤ ϕ(x, y) (.)

for all a ∈ A and x, y ∈ X with x ⊥ y. If, for each x ∈ X, the mapping f (tx) is continuous in
t ∈R, then there exists a unique orthogonally A-cubic mapping C : X → Y such that

∥∥f (x) –C(x)
∥∥
Y ≤ 

 – α
ϕ(x, )

for all x ∈ X.

Proof Putting y =  and a = e in (.), we get

∥∥f (x) – f (x)
∥∥
Y ≤ ϕ(x, ) (.)

for all x ∈ X since x ⊥ . So, we have

∥∥∥∥f (x) – 

f (x)

∥∥∥∥
Y

≤ 


ϕ(x, )

for all x ∈ X.
Let (S,d) be the generalized metric space defined in the proof of Theorem ..
Now, we consider the linear mapping J : S → S such that

Jg(x) :=


g(x)

for all x ∈ X. The rest of the proof is similar to the proofs of Theorems . and .. This
completes the proof. �

Corollary . Let θ be a positive real number and p be a real number with  < p < . Let
f : X → Y be a mapping satisfying

∥∥af (x + y) + af (x – y) – f (ax + ay) – f (ax – ay) – f (ax)
∥∥
Y

≤ θ
(‖x‖p + ‖y‖p) (.)

for all a ∈ A and x, y ∈ X with x ⊥ y. If, for each x ∈ X, the mapping f (tx) is continuous in
t ∈R, then there exists a unique orthogonally A-cubic mapping C : X → Y such that

∥∥f (x) –C(x)
∥∥
Y ≤ θ

( – p)
‖x‖p

for all x ∈ X.

Proof The proof follows fromTheorem. by taking ϕ(x, y) = θ (‖x‖p+‖y‖p) for all x, y ∈ X
with x⊥ y. Then we can choose α = p– and we get the desired result. �
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Theorem . Let f : X → Y be a mapping satisfying (.) and f () =  for which there
exists a function ϕ : X → [,∞) such that

ϕ(x, y) ≤ α


ϕ(x, y)

for all x, y ∈ X with x ⊥ y. If, for each x ∈ X, the mapping f (tx) is continuous in t ∈ R, then
there exists a unique orthogonally A-cubic mapping C : X → Y such that

∥∥f (x) –C(x)
∥∥
Y ≤ α

 – α
ϕ(x, ) (.)

for all x ∈ X.

Proof Let (S,d) be the generalized metric space defined in the proof of Theorem ..
Now, we consider the linear mapping J : S → S such that

Jg(x) := g
(
x


)

for all x ∈ X. It follows from (.) that d(f , Jf )≤ α
 . So, we obtain inequality (.). The rest

of the proof is similar to the proofs of Theorems . and .. �

Corollary . Let θ be a positive real number and p be a real number with p > . Let
f : X → Y be a mapping satisfying (.). If, for each x ∈ X, the mapping f (tx) is continuous
in t ∈R, then there exists a unique orthogonally A-cubic mapping C : X → Y such that

∥∥f (x) –C(x)
∥∥
Y ≤ θ

(p – )
‖x‖p

for all x ∈ X.

Proof The proof follows fromTheorem. by taking ϕ(x, y) = θ (‖x‖p+‖y‖p) for all x, y ∈ X
with x⊥ y. Then we can choose α = –p and we get the desired result. �

5 Stability of the orthogonally quartic functional equation
Applying some ideas from [, ], we deal with the stability problem for the orthogonally
quartic functional equation

f (x + y) + f (x – y) = f (x + y) + f (x – y) + f (x) – f (y)

for all x, y ∈ X with x⊥ y.

Definition . A quartic mapping f : X → Y is called an A-quartic mapping if f (ax) =
af (x) for all a ∈ A and x ∈ X.

Theorem . Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ(x, y) ≤ αϕ

(
x

,
y


)

http://www.advancesindifferenceequations.com/content/2012/1/173


Park et al. Advances in Difference Equations 2012, 2012:173 Page 14 of 17
http://www.advancesindifferenceequations.com/content/2012/1/173

for all x, y ∈ X with x⊥ y. Let f : X → Y be a mapping satisfying f () =  and

∥∥af (x + y) + af (x – y) – f (ax + ay) – f (ax – ay) – f (ax) + f (ay)
∥∥
Y

≤ ϕ(x, y) (.)

for all a ∈ A and x, y ∈ X with x ⊥ y. If, for each x ∈ X, the mapping f (tx) is continuous in
t ∈R, then there exists a unique orthogonally A-quartic mapping P : X → Y such that

∥∥f (x) – P(x)
∥∥
Y ≤ 

 – α
ϕ(x, )

for all x ∈ X.

Proof Putting y =  and a = e in (.), we get

∥∥f (x) – f (x)
∥∥
Y ≤ ϕ(x, ) (.)

for all x ∈ X, since x ⊥ . So, we have

∥∥∥∥f (x) – 


f (x)
∥∥∥∥
Y

≤ 


ϕ(x, )

for all x ∈ X.
Let (S,d) be the generalized metric space defined in the proof of Theorem ..
Now, we consider the linear mapping J : S → S such that

Jg(x) :=



g(x)

for all x ∈ X. The rest of the proof is similar to the proofs of Theorems . and .. �

Corollary . Let θ be a positive real number and p be a real number with  < p < . Let
f : X → Y be a mapping satisfying

∥∥af (x + y) + af (x – y) – f (ax + ay) – f (ax – ay) – f (ax) + f (ay)
∥∥
Y

≤ θ
(‖x‖p + ‖y‖p) (.)

for all a ∈ A and x, y ∈ X with x ⊥ y. If, for each x ∈ X, the mapping f (tx) is continuous in
t ∈R, then there exists a unique orthogonally A-quartic mapping P : X → Y such that

∥∥f (x) – P(x)
∥∥
Y ≤ θ

( – p)
‖x‖p

for all x ∈ X.

Proof The proof follows fromTheorem . by taking ϕ(x, y) = θ (‖x‖p+‖y‖p) for all x, y ∈ X
with x⊥ y. Then we can choose α = p– and we get the desired result. �
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Theorem . Let f : X → Y be a mapping satisfying (.) and f () =  for which there
exists a function ϕ : X → [,∞) such that

ϕ(x, y) ≤ α


ϕ(x, y)

for all x, y ∈ X with x ⊥ y. If, for each x ∈ X, the mapping f (tx) is continuous in t ∈ R, then
there exists a unique orthogonally A-quartic mapping P : X → Y such that

∥∥f (x) – P(x)
∥∥
Y ≤ α

 – α
ϕ(x, ) (.)

for all x ∈ X.

Proof Let (S,d) be the generalized metric space defined in the proof of Theorem ..
Now, we consider the linear mapping J : S → S such that

Jg(x) := g
(
x


)

for all x ∈ X. It follows from (.) that d(f , Jf ) ≤ α
 . So, we obtain inequality (.). The rest

of the proof is similar to the proofs of Theorems . and .. �

Corollary . Let θ be a positive real number and p be a real number with p > . Let
f : X → Y be a mapping satisfying (.). If, for each x ∈ X, the mapping f (tx) is continuous
in t ∈R, then there exists a unique orthogonally A-quartic mapping P : X → Y such that

∥∥f (x) – P(x)
∥∥
Y ≤ θ

(p – )
‖x‖p

for all x ∈ X.

Proof The proof follows fromTheorem. by taking ϕ(x, y) = θ (‖x‖p+‖y‖p) for all x, y ∈ X
with x⊥ y. Then we can choose α = –p and we get the desired result. �

6 Conclusions
Using a fixed point method, we have proved the Hyers-Ulam stability of the orthogonally
Jensen additive functional equation, of the orthogonally Jensen quadratic functional equa-
tion, of the orthogonally cubic functional equation and of the orthogonally quartic func-
tional equation in orthogonality modules over a unital Banach algebra.
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