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Abstract. Exploiting Verlinde’s proposal on the entropic understanding of Newton’s law, we
show that Coulomb force could also be understood as an entropically emergent force (rather
than as a fundamental force). We apply Kaluza-Klein idea to Verlinde’s formalism to obtain
Coulomb interaction in the lower dimensions. The kinematics concerning the Kaluza-Klein
momenta separates the interaction due to the momentum flow from the gravitational interaction.
The momentum-charge conversion relation results in the precise form of Coulomb interaction.

1. Introduction
Gravity has been the last fundamental force to be quantized. (See Ref. [1] for a review and
references therein.) People have tried to understand all the known four fundamental forces
on a single theoretical ground. As a result, we came to unify those fundamental forces in the
framework of quantized gauge theory but the gravity remains untouched yet.

On the other hand, AdS/CFT duality [2] reveals a different role of gravity from other
fundamental forces. In this duality, gravity just provides a classical background with a
holographical boundary that is the playground of other quantized fundamental forces. This
suggests that the gravity might not be quantized from the beginning and discriminates itself
from other fundamental forces [3].

Recent idea of E. Verlinde [4] tried to answer the question, “Is the gravity a fundamental
force or a concept emergent from other physics?”. His answer is that it is a derived concept from
thermodynamics, and identified it as an entropic force, a force that tends to increase the entropy.
(For earlier works on the geometry emerging from the thermodynamics, see Refs. [5, 6].) In the
case where thermodynamics is obscure, for example as in the interaction between two particles,
the force is rather described as an adiabatic reaction force [7].

The question raised at this point is whether the entropic force single out the gravity or be
applicable to other forces too. There is no strong reason that the thermodynamic tendency to
increase the entropy favors the gravity only. More specifically, one can ask the possibility of
understanding the Coulomb force as an entropic force too.

There are some earlier works concerning this issue. In Ref. [8], Coulomb force was obtained
on a entropic reason based on the deformed equipartition theorem involving charges. On the
other hand in Ref. [9], Freund mentioned the possibility of getting entropic Coulomb force
by Kaluza-Klein compactification of higher dimensional entropic gravity. This latter paper

7th International Conference on Quantum Theory and Symmetries (QTS7) IOP Publishing
Journal of Physics: Conference Series 343 (2012) 012024 doi:10.1088/1742-6596/343/1/012024

Published under licence by IOP Publishing Ltd 1



also discussed the extension of the same idea to the other fundamental forces through higher
dimensional compactification.

In this contribution, we explains how Coulomb force can be understood as an entropic force.
We apply the original entropic force idea to a 5-dimensional system to get the entropic gravity
between two lineal mass distributions with their own internal momenta. Standard Kaluza-Klein
compactification of the 5-dimensional entropic gravity leads to the entropic Coulomb force in
4-dimensions. This contribution is a short version extracted from a more detailed paper [10]
that elaborated on Freund’s idea [9] about entropic Coulomb force.

We also show that for equal sign of charges, the entropic Coulomb force acts in the opposite
direction to that of the entropic gravity. This is obviously seen when we work in the test-particle
rest frame where it is convenient to compute the proper length of ‘the Rindler acceleration’ the
test-particle feels.

This paper is organized as follows. In the next section, we give a brief introduction on
Verlinde’s entropic gravity. We recapitulate some assumptions of the entropic gravity, which are
relevant in our argument. In Sec. 3, we define the hyper-cylindrical holographic screen enclosing
a lineal mass distribution in 5-dimensions. In Sec. 4, we consider the entropic interaction of
two parallel lineal mass distributions with momenta. In Sec. 5, the entropic Coulomb force is
derived via Kaluza-Klein reduction of the result of Sec. 4. Sec. 6 concludes the paper with some
remarks on future works.

2. Verlinde’s entropic force
In this section, we summarize Verlinde’s recent idea [4] on the entropic force. In the original
paper, several assumptions were made being inspired by familiar properties of known solutions
of the conventional gravity. Here we rearrange and consider some of them relevant in our forth-
coming argument. They are about the holographic thermodynamic screen, the entropic force,
and the entropy change involved in thermalization of a particle, which are in order below.

We first assume a holographic thermodynamic screen due to an unknown source behind the
screen. It is characterized by its temperature T . For a particle on the screen, the temperature
is realized as the acceleration a = 2πckBT/~. (This is reminiscent of the relation between
the Rindler acceleration and the Unruh temperature [11].) Especially if the screen is compact,
all the information enclosed by the screen is holographically projected onto finite number of
degrees of freedom on the screen. The number is determined by the area in the basic unit;
N = Ac3/G~. The energy behind the screen is equally distributed over this N degrees of
freedom via E = NkBT/2.

We next assume the entropic force that tends to increase the entropy of the system behind
the screen. The ‘heat’ generating the entropy increase is provided by the work done by the
entropic force; F4x = T4S.

The last assumption is that the entropy change 4S is proportional to the distance 4x the
screen shifts due to a test particle of mass m got thermalized into the screen. The distance is
measured in the reduced Compton length λ̄ = ~/mc associated with the mass m. Therefore,
4S = 2πkB4x/λ̄ .

Applying the assumptions to a particle of mass m on a holographic thermodynamic screen
of temperature T , one can obtain Newton’s law;

F4x = T4S =

(
~a

2πkBc

)(
2πkBmc4x

~

)
= ma4x. (1)

Especially for a spherical screen containing an energy E = Mc2, one can specify the acceleration
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appearing in the above relation as

Mc2 =
N

2
kBT

=
1

2

(
Ac3

G~

)(
~a
2πc

)
=
r2c2

G
a. (2)

3. Holographic Screen for an Array of Moving Particles
We assume an internal compact direction regarding Kaluza-Klein reduction. A massive particle
in lower dimensions corresponds to an array of particles along the compact direction. We first
consider a static case where mass M0 is distributed evenly along the internal circle of radius R0

forming a massive lineal source with the line density µ0 = M0/(2πR0).
The holographic screen enclosing the array takes a hyper-cylindrical shape, that is S2 × S1.

The 2-sphere, S2, is embedded in the lower dimensions while the circle, S1, denotes the internal
compact direction.

Let us apply Verlinde’s holographic idea on the entropic force to this system of a lineal
source. The energy contained in the cylindrical screen will be E0 = M0c

2. The equipartition
ansatz states that

M0c
2 =

1

2
NkBT0 =

1

2

(
Ac3

G(5)~

)(
~a0
2πc

)
=
r2c2

G(4)
a0, (3)

where the expression for the area A =
(
4πr2

)
(2πR0) of the hyper-cylinder has been used.

The 4-dimensional Newton constant G(4) is related with the 5-dimensional one by the relation
G(5) = 2πR0G

(4).
The entropic force of the source acting on a lineal test line of mass m0 posed along the internal

circle direction at the holographic screen will be

F0 =
G(4)M0m0

r2
. (4)

4. Two Parallel Lineal Mass Distributions with Internal Momenta
Let us apply the prescription discussed in the previous section to a more generic non-static
case. We consider the force, due to a massive charged source-particle, acting on another massive
charged test-particle in 4-dimensions.

According to the Kaluza-Klein proposal, those two massive charged particles correspond to
lineal mass distributions carrying different momenta along the internal circle of a radius R. Let
the source-distribution of rest mass M0 carry momentum γM0v. The test-distribution of rest
mass m0 carries momentum γ1m0v1. Here, γ = 1/

√
1− v2/c2 and γ1 = 1/

√
1− v21/c2 are the

Lorentz factors concerning the rapidities β ≡ v/c and β1 ≡ v1/c respectively.
In order to obtain the entropic force between those two lineal moving arrays of mass, we

need to work in the rest frame of the test array. It is the proper acceleration that the ‘Unruh
temperature’ T corresponds to. Therefore, it is more convenient to work in the frame where the
test distribution is static.

We ‘unboost’ the whole system so that the lineal test distribution of mass become static.
The size of the internal circle will expand to

R0 ≡ γ1R. (5)

In the frame, the source distribution carries energy and momentum (E′/c, p′) as(
E′/c
p′

)
=

(
M0cγ1γ (1− β1β)
M0cγ1γ (β − β1)

)
. (6)
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For notational convenience, let us denote the energy as E′ = γ′M0c
2, where the Lorentz

factor can be recast in terms of the internal momenta of the particles;

γ′ = γ1γ −
√
γ21 − 1

√
γ2 − 1

= γ1γ −
p1
m0c

p

M0c
. (7)

We are ready to apply ‘the equipartition ansatz’ to this system. The total energy γ′M0c
2

contained in a cylindrical screen is encoded onto the surface of the screen as

N ′ =
A′c3

G(5)~
=

4πr2c3

G(4)~
(8)

bits of degrees of freedom, each of which carrying the energy kBT
′/2. The temperature T ′ is

again realized as the proper acceleration felt by an object on the screen surface;

T ′ =
~a′

2πckB
. (9)

Hence we have the relation

γ′M0c
2 =

r2c2

G(4)
a′. (10)

The entropic force acting on the static test distribution of mass m0 touching the screen surface
is

F ′ = γ′
G(4)M0m0

r2
. (11)

Since the direction of this entropic force is normal to the holographic screen, its magnitude
remains the same even when we go to the original frame by reboosting.

5. Coulomb’s Law from the Entropic Force
In lower dimensions, the force (11) concerns the interaction between two massive charged
particles. With the notion of the relation between Kaluza-Klein momenta and electric charges

en =
nlpqp
R

= kn
~
c

√
G(4)

k
=
pn
c

√
G(4)

k
, (12)

the expression for the entropic force becomes

F ′ =

(
γ1γ −

p1
m0c

p

M0c

)
G(4)M0m0

r2

=
G(4)Mm

r2
− G(4)p1p

c2r2
=
G(4)Mm

r2
− ke1e

r2
. (13)

In Eq. (12), lp =
√
G(4)~/c3 is the Planck length and qp =

√
~c/k is the Planck charge in

4-dimensions, and k = 1/4πε0 is the Coulomb constant.
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6. Discussion and Conclusion
We showed that if the gravitational force is not fundamental rather is a concept emergent
entropically, the Coulomb force can be also understood in the same way. We conjoined Kaluza-
Klein idea and the entropic force formalism to get this result. The upshot is that the nontrivial
kinematic operation (Lorentz factor γ′ in (11)) necessary to achieve the momentum flows along
the Kaluza-Klein direction is composed of two parts; the mass correction Lorentz factor and
the momentum interaction part (See Eq. (7)). Kaluza-Klein reduction generates the Coulombic
interaction term in the final expression of the entropic force.

For the equal sign of charges, the entropic Coulomb force acts in the opposite direction to
that of the gravitational force. This is due to the combination of Lorentz transforms

Λ(β′) = Λ−1(β1)Λ(β) (14)

that we introduced to get back to the test-particle rest frame, a convenient frame for computing
the proper ‘Rindler acceleration’ the test-particle feels. In order to give relative momenta to the
source-particle, we first boosted the source-particle with respect to the test-particle using the
transform Λ(β′). With another transform Λ(β1) we gave both particles additional momentum.
Hence Λ(β) = Λ(β1)Λ(β′) relates the source-particle rest frame with that of the observer. The
different signs of the terms in Eq. (7) comes from the inverse factor, Λ−1(β1), in the combination
(14).

Entropic force idea cannot single out the gravitational force from others. The standard
Kaluza-Klein compactification of the entropic gravity results in Coulomb force. Considering
higher dimensional internal space, one might get ‘the entropic Yang-Mills interaction’ in the
same way. This suggests that the entropic force idea might be a new paradigm applying for all
forces rather than be specific only to the gravity.

Lastly we give an outlook on future work regarding the issue dealt with here. The entropic
force becomes obscure unless the thermodynamics is physically realizable as in the near region
of the black hole. Therefore, we need other substitute for the entropic force as we move off the
event horizon. Verlinde discussed this substitute in the name of the adiabatic reaction force [7]
in the name of Born-Oppenheimer adiabatic reaction force. In the scheme gauge field appears
as Berry connection. The adiabatic reaction force corresponding to the entropic Coulomb force
discussed in this paper should be clarified.
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