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1 Introduction and preliminaries
The concept of statistical convergence for sequences of real numbers was introduced by
Fast [] and Steinhaus [] independently, and since then several generalizations and appli-
cations of this notion have been investigated by various authors (see [–]). This notion
was defined in normed spaces by Kolk [].
We recall some basic facts concerning Fréchet spaces.

Definition . [] Let X be a vector space. A paranorm P : X → [,∞) is a function on X
such that
() P() = ;
() P(–x) = P(x);
() P(x + y) ≤ P(x) + P(y) (triangle inequality);
() If {tn} is a sequence of scalars with tn → t and {xn} ⊂ X with P(xn – x)→ , then

P(tnxn – tx) →  (continuity of multiplication).

The pair (X,P) is called a paranormed space if P is a paranorm on X.
The paranorm is called total if, in addition, we have
() P(x) =  implies x = .
A Fréchet space is a total and complete paranormed space.
The stability problem of functional equations originated from the question of Ulam []

concerning the stability of group homomorphisms. Hyers [] gave the first affirmative
partial answer to the question of Ulam for Banach spaces. Hyers’ theorem was general-
ized by Aoki [] for additive mappings and by Th.M. Rassias [] for linear mappings by
considering an unbounded Cauchy difference. A generalization of the Th.M. Rassias the-
orem was obtained by Găvruta [] by replacing the unbounded Cauchy difference by a
general control function in the spirit of Th.M. Rassias’ approach.
In  during the th International Symposium on Functional Equations, Th.M. Ras-

sias [] asked the question whether such a theorem can also be proved for p ≥ . In ,
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following the same approach as in Th.M. Rassias [], Gajda [] gave an affirmative solu-
tion to this question for p > . It was shown by Gajda [], as well as by Th.M. Rassias and
Šemrl [], that one cannot prove a Th.M. Rassias’ type theorem when p =  (cf. the books
of P. Czerwik [], D.H. Hyers, G. Isac and Th.M. Rassias []).
The functional equation

f (x + y) + f (x – y) = f (x) + f (y)

is called a quadratic functional equation. In particular, every solution of the quadratic
functional equation is said to be a quadratic mapping. A Hyers-Ulam stability problem for
the quadratic functional equation was proved by Skof [] for mappings f : X → Y , where
X is a normed space and Y is a Banach space. Cholewa [] noticed that the theorem
of Skof is still true if the relevant domain X is replaced by an Abelian group. Czerwik
[] proved the Hyers-Ulam stability of the quadratic functional equation. The stability
problems of several functional equations have been extensively investigated by a number
of authors and there are many interesting results concerning this problem (see [–]).
In [], Jun and Kim considered the following cubic functional equation:

f (x + y) + f (x – y) = f (x + y) + f (x – y) + f (x). (.)

It is easy to show that the function f (x) = x satisfies the functional equation (.), which
is called a cubic functional equation, and every solution of the cubic functional equation
is said to be a cubic mapping.
In [], Lee et al. considered the following quartic functional equation:

f (x + y) + f (x – y) = f (x + y) + f (x – y) + f (x) – f (y). (.)

It is easy to show that the function f (x) = x satisfies the functional equation (.), which is
called a quartic functional equation, and every solution of the quartic functional equation
is said to be a quartic mapping.
Throughout this paper, assume that (X,P) is a Fréchet space and that (Y ,‖·‖) is a Banach

space.
In this paper, we prove the Hyers-Ulam stability of the following additive-quadratic-

cubic-quartic functional equation

f (x + y) + f (x – y) = f (x + y) + f (x – y) – f (x) + f (y)

+ f (–y) – f (y) – f (–y) (.)

in paranormed spaces by using the fixed point method and direct method.
One can easily show that an odd mapping f : X → Y satisfies (.) if and only if the odd

mapping f : X → Y is an additive-cubic mapping, i.e.,

f (x + y) + f (x – y) = f (x + y) + f (x – y) – f (x).

It was shown in [, Lemma .] that g(x) := f (x)–f (x) and h(x) := f (x)–f (x) are cubic
and additive, respectively, and that f (x) = 

g(x) –

h(x).
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One can easily show that an evenmapping f : X → Y satisfies (.) if and only if the even
mapping f : X → Y is a quadratic-quartic mapping, i.e.,

f (x + y) + f (x – y) = f (x + y) + f (x – y) – f (x) + f (y) – f (y).

It was shown in [, Lemma .] that g(x) := f (x) – f (x) and h(x) := f (x) – f (x) are
quartic and quadratic, respectively, and that f (x) = 

g(x) –

h(x).

2 Hyers-Ulam stability of the functional equation (1.3): an oddmapping case
For a given mapping f , we define

Df (x, y) : = f (x + y) + f (x – y) – f (x + y) – f (x – y) + f (x)

– f (y) – f (–y) + f (y) + f (–y).

Using the fixed point method and direct method, we prove the Hyers-Ulam stability of
the functional equation Df (x, y) =  in paranormed spaces: an odd mapping case.
Let S be a set. A function m : S × S → [,∞] is called a generalized metric on S if m

satisfies
() m(x, y) =  if and only if x = y;
() m(x, y) =m(y,x) for all x, y ∈ S;
() m(x, z) ≤ m(x, y) +m(y, z) for all x, y, z ∈ S.
We recall a fundamental result in the fixed point theory.

Theorem . [, ] Let (S,m) be a complete generalized metric space and let J : S → S
be a strictly contractive mapping with Lipschitz constant α < . Then for each given element
x ∈ S, either

m
(
Jnx, Jn+x

)
= ∞

for all nonnegative integers n or there exists a positive integer n such that
() m(Jnx, Jn+x) < ∞, ∀n≥ n;
() the sequence {Jnx} converges to a fixed point y* of J ;
() y* is the unique fixed point of J in the setW = {y ∈ S |m(Jnx, y) < ∞};
() m(y, y*) ≤ 

–α
m(y, Jy) for all y ∈W .

In , Isac and Th.M. Rassias [] were the first to provide applications of stability
theory of functional equations for the proof of new fixed point theoremswith applications.
By using fixed point methods, the stability problems of several functional equations have
been extensively investigated by a number of authors (see [–]).
Note that P(x) ≤ P(x) for all x ∈ Y .

Theorem . Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ(x, y) ≤ αϕ

(
x

,
y


)
(.)
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for all x, y ∈ X. Let f : X → Y be an odd mapping such that

∥∥Df (x, y)∥∥ ≤ ϕ(x, y) (.)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥∥f (x) – f (x) –A(x)
∥∥ ≤ 

 – α

(
ϕ(x,x) +



ϕ(x,x)

)
(.)

for all x ∈ X.

Proof Letting x = y in (.), we get

∥∥f (y) – f (y) + f (y)
∥∥ ≤ ϕ(y, y) (.)

for all y ∈ X.
Replacing x by y in (.), we get

∥∥f (y) – f (y) + f (y) – f (y)
∥∥ ≤ ϕ(y, y) (.)

for all y ∈ X.
By (.) and (.),

∥∥f (y) – f (y) + f (y)
∥∥

≤ ∥∥(
f (y) – f (y) + f (y)

)∥∥ +
∥∥f (y) – f (y) + f (y) – f (y)

∥∥
≤ 

∥∥f (y) – f (y) + f (y)
∥∥ +

∥∥f (y) – f (y) + f (y) – f (y)
∥∥

≤ ϕ(y, y) + ϕ(y, y) (.)

for all y ∈ X. Replacing y by x and letting g(x) := f (x) – f (x) in (.), we get
∥∥∥∥g(x) – 


g(x)

∥∥∥∥ ≤ ϕ(x,x) +


ϕ(x,x) (.)

for all x ∈ X.
Consider the set

S := {h : X → Y }

and introduce the generalized metric on S:

m(k,h) = inf

{
μ ∈R+ :

∥∥k(x) – h(x)
∥∥ ≤ μ

(
ϕ(x,x) +



ϕ(x,x)

)
,∀x ∈ X

}
,

where, as usual, infφ = +∞. It is easy to show that (S,m) is complete (see [, Lemma .]).
Now we consider the linear mapping J : S → S such that

Jh(x) :=


h(x)

for all x ∈ X.
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Let k,h ∈ S be given such thatm(k,h) = ε. Since

∥∥Jk(x) – Jh(x)
∥∥ =

∥∥∥∥ k(x) –


h(x)

∥∥∥∥ ≤ α

(
ϕ(x,x) +



ϕ(x,x)

)

for all x ∈ X,m(k,h) = ε implies thatm(Jk, Jh) ≤ αε. This means that

m(Jk, Jh) ≤ αm(k,h)

for all k,h ∈ S.
It follows from (.) thatm(g, Jg) ≤ .
By Theorem ., there exists a mapping A : X → Y satisfying the following:
() A is a fixed point of J , i.e.,

A(x) = A(x) (.)

for all x ∈ X. The mapping A is a unique fixed point of J in the set

M =
{
k ∈ S :m(h,k) < ∞}

.

This implies that A is a unique mapping satisfying (.) such that there exists a μ ∈ (,∞)
satisfying

∥∥g(x) –A(x)
∥∥ ≤ μ

(
ϕ(x,x) +



ϕ(x,x)

)

for all x ∈ X;
()m(Jng,A) →  as n→ ∞. This implies the equality

lim
n→∞


n

g
(
nx

)
= A(x)

for all x ∈ X;
()m(g,A) ≤ 

–α
m(g, Jg), which implies the inequality

m(g,A) ≤ 
 – α

.

This implies that the inequality (.) holds true.
It follows from (.) and (.) that

∥∥DA(x, y)∥∥ = lim
n→∞


n

∥∥Dg(nx, ny)∥∥

≤ lim
n→∞


n

(
ϕ
(
n · x, n · y) + ϕ

(
nx, ny

))

≤ lim
n→∞

(
nαn

n
ϕ(x, y) + 

nαn

n
ϕ(x, y)

)
= 

for all x, y ∈ X. SoDA(x, y) =  for all x, y ∈ X. By [, Lemma .], A : X → Y is an additive
mapping, as desired. �
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Corollary . Let r be a positive real number with r < , and let f : X → Y be an odd
mapping such that

∥∥Df (x, y)∥∥ ≤ P(x)r + P(y)r (.)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥∥f (x) – f (x) –A(x)
∥∥ ≤  + r

 – r
P(x)r (.)

for all x ∈ X.

Proof Taking ϕ(x, y) = P(x)r + P(y)r for all x, y ∈ X and choosing α = r– in Theorem .,
we get the desired result. �

Theorem . Let ϕ : X → [,∞) be a function such that

�(x, y) :=
∞∑
j=


j

ϕ
(
jx, jy

)
<∞

for all x, y ∈ X. Let f : X → Y be an oddmapping satisfying (.). Then there exists a unique
additive mapping A : X → Y such that

∥∥f (x) – f (x) –A(x)
∥∥ ≤ �(x,x) +



�(x,x)

for all x ∈ X.

Proof The proof is similar to the proof of [, Theorem .]. �

Remark . Let r < . Letting ϕ(x, y) = P(x)r + P(y)r for all x, y ∈ X in Theorem ., we
obtain the inequality (.). The proof is given in [, Theorem .].

Theorem . Let ϕ : Y  → [,∞) be a function such that there exists an α <  with

ϕ(x, y) ≤ α


ϕ(x, y) (.)

for all x, y ∈ Y . Let f : Y → X be an odd mapping such that

P
(
Df (x, y)

) ≤ ϕ(x, y) (.)

for all x, y ∈ Y . Then there exists a unique additive mapping A : Y → X such that

P
(
f (x) – f (x) –A(x)

) ≤ α

 – α

(
ϕ(x,x) +



ϕ(x,x)

)
(.)

for all x ∈ Y .
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Proof Letting x = y in (.), we get

P
(
f (y) – f (y) + f (y)

) ≤ ϕ(y, y) (.)

for all y ∈ Y .
Replacing x by y in (.), we get

P
(
f (y) – f (y) + f (y) – f (y)

) ≤ ϕ(y, y) (.)

for all y ∈ Y .
By (.) and (.),

P
(
f (y) – f (y) + f (y)

)
≤ P

(

(
f (y) – f (y) + f (y)

))
+ P

(
f (y) – f (y) + f (y) – f (y)

)
≤ P

(
f (y) – f (y) + f (y)

)
+ P

(
f (y) – f (y) + f (y) – f (y)

)
≤ ϕ(y, y) + ϕ(y, y) (.)

for all y ∈ X. Replacing y by x
 and letting g(x) := f (x) – f (x) in (.), we get

P
(
g(x) – g

(
x


))
≤ ϕ

(
x

,
x


)
+ ϕ

(
x,
x


)
≤ α

(
ϕ(x,x) +



ϕ(x,x)

)
(.)

for all x ∈ Y .
Consider the set

S := {h : Y → X}

and introduce the generalized metric on S:

m(k,h) = inf

{
μ ∈R+ : P

(
k(x) – h(x)

) ≤ μ

(
ϕ(x,x) +



ϕ(x,x)

)
,∀x ∈ Y

}
,

where, as usual, infφ = +∞. It is easy to show that (S,m) is complete (see [, Lemma .]).
Now we consider the linear mapping J : S → S such that

Jh(x) := h
(
x


)

for all x ∈ Y .
Let k,h ∈ S be given such thatm(k,h) = ε. Since

P
(
Jk(x) – Jh(x)

)
= P

(
k

(
x


)
– h

(
x


))
≤ α

(
ϕ(x,x) +



ϕ(x,x)

)

for all x ∈ Y ,m(k,h) = ε implies thatm(Jk, Jh) ≤ αε. This means that

m(Jk, Jh) ≤ αm(k,h)

for all k,h ∈ S.

http://www.advancesindifferenceequations.com/content/2012/1/148


Park Advances in Difference Equations 2012, 2012:148 Page 8 of 20
http://www.advancesindifferenceequations.com/content/2012/1/148

It follows from (.) thatm(g, Jg) ≤ α.
By Theorem ., there exists a mapping A : X → Y satisfying the following:
() A is a fixed point of J , i.e.,

A
(
x


)
=


A(x) (.)

for all x ∈ X. The mapping A is a unique fixed point of J in the set

M =
{
k ∈ S :m(h,k) < ∞}

.

This implies thatA is a uniquemapping satisfying (.) such that there exists aμ ∈ (,∞)
satisfying

P
(
g(x) –A(x)

) ≤ μ

(
ϕ(x,x) +



ϕ(x,x)

)

for all x ∈ Y ;
()m(Jng,A) →  as n→ ∞. This implies the equality

lim
n→∞ng

(
x
n

)
= A(x)

for all x ∈ Y ;
()m(g,A) ≤ 

–α
m(g, Jg), which implies the inequality

m(g,A) ≤ α

 – α
.

This implies that the inequality (.) holds true.
It follows from (.) and (.) that

P
(
DA(x, y)

)
= lim

n→∞P
(
n

(
Dg

(
x
n

,
y
n

)))

≤ lim
n→∞nP

(
Dg

(
x
n

,
y
n

))

≤ lim
n→∞n

(
ϕ

(
x
n

,
y
n

)
+ ϕ

(
x
n

,
y
n

))

≤ lim
n→∞

(
nαn

n
ϕ(x, y) + 

nαn

n
ϕ(x, y)

)
= 

for all x, y ∈ Y . SoDA(x, y) =  for all x, y ∈ Y . By [, Lemma .], A : Y → X is an additive
mapping, as desired. �

Corollary . Let r, θ be positive real numbers with r > , and let f : Y → X be an odd
mapping such that

P
(
Df (x, y)

) ≤ θ
(‖x‖r + ‖y‖r) (.)

http://www.advancesindifferenceequations.com/content/2012/1/148
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for all x, y ∈ Y . Then there exists a unique additive mapping A : Y → X such that

P
(
f (x) – f (x) –A(x)

) ≤  + r

r – 
θ‖x‖r (.)

for all x ∈ Y .

Proof Taking ϕ(x, y) = θ (‖x‖r + ‖y‖r) for all x, y ∈ X and choosing α = –r in Theorem .,
we get the desired result. �

Theorem . Let ϕ : Y  → [,∞) be a function such that

�(x, y) :=
∞∑
j=

jϕ
(
x
j
,
y
j

)
<∞

for all x, y ∈ Y . Let f : Y → X be an oddmapping satisfying (.). Then there exists a unique
additive mapping A : Y → X such that

P
(
f (x) – f (x) –A(x)

) ≤ �(x,x) +


�(x,x)

for all x ∈ Y .

Proof The proof is similar to the proof of [, Theorem .]. �

Remark . Let r > . Letting ϕ(x, y) = θ (‖x‖r + ‖y‖r) for all x, y ∈ X in Theorem ., we
obtain the inequality (.). The proof is given in [, Theorem .].

Theorem . Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ(x, y) ≤ αϕ

(
x

,
y


)
(.)

for all x, y ∈ X. Let f : X → Y be an oddmapping satisfying (.). Then there exists a unique
cubic mapping C : X → Y such that

∥∥f (x) – f (x) –C(x)
∥∥ ≤ 

 – α

(


ϕ(x,x) +



ϕ(x,x)

)
(.)

for all x ∈ X.

Proof Replacing y by x and letting g(x) := f (x) – f (x) in (.), we get

∥∥∥∥g(x) – 

g(x)

∥∥∥∥ ≤ 

ϕ(x,x) +



ϕ(x,x) (.)

for all x ∈ X.
Consider the set

S := {h : X → Y }

http://www.advancesindifferenceequations.com/content/2012/1/148
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and introduce the generalized metric on S:

m(k,h) = inf

{
μ ∈R+ :

∥∥k(x) – h(x)
∥∥ ≤ μ

(


ϕ(x,x) +



ϕ(x,x)

)
,∀x ∈ X

}
,

where, as usual, infφ = +∞. It is easy to show that (S,m) is complete (see [, Lemma .]).
Now we consider the linear mapping J : S → S such that

Jh(x) :=


h(x)

for all x ∈ X.
Let k,h ∈ S be given such thatm(k,h) = ε. Since

∥∥Jk(x) – Jh(x)
∥∥ =

∥∥∥∥ k(x) –


h(x)

∥∥∥∥ ≤ α

(


ϕ(x,x) +



ϕ(x,x)

)

for all x ∈ X,m(k,h) = ε implies thatm(Jk, Jh) ≤ αε. This means that

m(Jk, Jh) ≤ αm(k,h)

for all k,h ∈ S.
It follows from (.) thatm(g, Jg) ≤ .
By Theorem ., there exists a mapping C : X → Y satisfying the following:
() C is a fixed point of J , i.e.,

C(x) = C(x) (.)

for all x ∈ X. The mapping C is a unique fixed point of J in the set

M =
{
k ∈ S :m(h,k) < ∞}

.

This implies thatC is a uniquemapping satisfying (.) such that there exists aμ ∈ (,∞)
satisfying

∥∥g(x) –C(x)
∥∥ ≤ μ

(


ϕ(x,x) +



ϕ(x,x)

)

for all x ∈ X;
()m(Jng,C) →  as n→ ∞. This implies the equality

lim
n→∞


n

g
(
nx

)
= C(x)

for all x ∈ X;
()m(g,C) ≤ 

–α
m(g, Jg), which implies the inequality

m(g,C) ≤ 
 – α

.

This implies that the inequality (.) holds true.

http://www.advancesindifferenceequations.com/content/2012/1/148
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It follows from (.) and (.) that

∥∥DC(x, y)∥∥ = lim
n→∞


n

∥∥Dg(nx, ny)∥∥

≤ lim
n→∞


n

(
ϕ
(
n · x, n · y) + ϕ

(
nx, ny

))

≤ lim
n→∞

(
nαn

n
ϕ(x, y) + 

nαn

n
ϕ(x, y)

)
= 

for all x, y ∈ X. So DC(x, y) =  for all x, y ∈ X. By [, Lemma .], C : X → Y is a cubic
mapping, as desired. �

Corollary . Let r be a positive real number with r < , and let f : X → Y be an odd
mapping satisfying (.). Then there exists a unique cubic mapping C : X → Y such that

∥∥f (x) – f (x) –C(x)
∥∥ ≤  + r

 – r
P(x)r (.)

for all x ∈ X.

Proof Taking ϕ(x, y) = P(x)r + P(y)r for all x, y ∈ X and choosing α = r– in Theorem .,
we get the desired result. �

Theorem . Let ϕ : X → [,∞) be a function such that

�(x, y) :=
∞∑
j=


j

ϕ
(
jx, jy

)
< ∞

for all x, y ∈ X. Let f : X → Y be an oddmapping satisfying (.). Then there exists a unique
cubic mapping C : X → Y such that

∥∥f (x) – f (x) –C(x)
∥∥ ≤ 


�(x,x) +



�(x,x)

for all x ∈ X.

Proof The proof is similar to the proof of [, Theorem .]. �

Remark . Let r < . Letting ϕ(x, y) = P(x)r + P(y)r for all x, y ∈ X in Theorem ., we
obtain the inequality (.). The proof is given in [, Theorem .].

Theorem . Let ϕ : Y  → [,∞) be a function such that there exists an α <  with

ϕ(x, y) ≤ α


ϕ(x, y) (.)

for all x, y ∈ Y . Let f : Y → X be an oddmapping satisfying (.). Then there exists a unique
cubic mapping C : Y → X such that

P
(
f (x) – f (x) –C(x)

) ≤ α

 – α

(


ϕ(x,x) +



ϕ(x,x)

)
(.)

for all x ∈ Y .
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Proof Replacing y by x
 and letting g(x) := f (x) – f (x) in (.), we get

P
(
g(x) – g

(
x


))
≤ ϕ

(
x

,
x


)
+ ϕ

(
x,
x


)
≤ α

(


ϕ(x,x) +



ϕ(x,x)

)
(.)

for all x ∈ Y .
Consider the set

S := {h : Y → X}

and introduce the generalized metric on S:

m(k,h) = inf

{
μ ∈R+ : P

(
k(x) – h(x)

) ≤ μ

(


ϕ(x,x) +



ϕ(x,x)

)
,∀x ∈ Y

}
,

where, as usual, infφ = +∞. It is easy to show that (S,m) is complete (see [, Lemma .]).
Now we consider the linear mapping J : S → S such that

Jh(x) := h
(
x


)

for all x ∈ Y .
Let k,h ∈ S be given such thatm(k,h) = ε. Since

P
(
Jk(x) – Jh(x)

)
= P

(
k

(
x


)
– h

(
x


))
≤ α

(


ϕ(x,x) +



ϕ(x,x)

)

for all x ∈ Y ,m(k,h) = ε implies thatm(Jk, Jh) ≤ αε. This means that

m(Jk, Jh) ≤ αm(k,h)

for all k,h ∈ S.
It follows from (.) thatm(g, Jg) ≤ α.
By Theorem ., there exists a mapping C : X → Y satisfying the following:
() C is a fixed point of J , i.e.,

C
(
x


)
=


C(x) (.)

for all x ∈ X. The mapping C is a unique fixed point of J in the set

M =
{
k ∈ S :m(h,k) < ∞}

.

This implies thatC is a uniquemapping satisfying (.) such that there exists aμ ∈ (,∞)
satisfying

P
(
g(x) –C(x)

) ≤ μ

(


ϕ(x,x) +



ϕ(x,x)

)

for all x ∈ Y ;

http://www.advancesindifferenceequations.com/content/2012/1/148
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()m(Jng,C) →  as n→ ∞. This implies the equality

lim
n→∞ng

(
x
n

)
= C(x)

for all x ∈ Y ;
()m(g,C) ≤ 

–α
m(g, Jg), which implies the inequality

m(g,C) ≤ α

 – α
.

This implies that the inequality (.) holds true.
It follows from (.) and (.) that

P
(
DC(x, y)

)
= lim

n→∞P
(
n

(
Dg

(
x
n

,
y
n

)))

≤ lim
n→∞nP

(
Dg

(
x
n

,
y
n

))

≤ lim
n→∞n

(
ϕ

(
x
n

,
y
n

)
+ ϕ

(
x
n

,
y
n

))

≤ lim
n→∞

(
nαn

n
ϕ(x, y) + 

nαn

n
ϕ(x, y)

)
= 

for all x, y ∈ Y . So DC(x, y) =  for all x, y ∈ Y . By [, Lemma .], C : Y → X is a cubic
mapping, as desired. �

Corollary . Let r, θ be positive real numbers with r > , and let f : Y → X be an odd
mapping satisfying (.). Then there exists a unique cubic mapping C : Y → X such that

P
(
f (x) – f (x) –C(x)

) ≤  + r

r – 
θ‖x‖r (.)

for all x ∈ Y .

Proof Taking ϕ(x, y) = θ (‖x‖r+‖y‖r) for all x, y ∈ X and choosing α = –r in Theorem.,
we get the desired result. �

Theorem . Let ϕ : Y  → [,∞) be a function such that

�(x, y) :=
∞∑
j=

jϕ
(
x
j
,
y
j

)
< ∞

for all x, y ∈ Y . Let f : Y → X be an oddmapping satisfying (.). Then there exists a unique
additive mapping C : Y → X such that

P
(
f (x) – f (x) –C(x)

) ≤ 

�(x,x) +



�(x,x)

for all x ∈ Y .
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Proof The proof is similar to the proof of [, Theorem .]. �

Remark . Let r > . Letting ϕ(x, y) = θ (‖x‖r + ‖y‖r) for all x, y ∈ X in Theorem ., we
obtain the inequality (.). The proof is given in [, Theorem .].

3 Hyers-Ulam stability of the functional equation (1.3): an evenmapping case
Using the fixed point method and direct method, we prove the Hyers-Ulam stability of the
functional equation Df (x, y) =  in paranormed spaces: an even mapping case.
Note that P(x) ≤ P(x) for all x ∈ Y .

Theorem . Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ(x, y) ≤ αϕ

(
x

,
y


)

for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f () =  and (.). Then there
exists a unique quadratic mapping Q : X → Y such that

∥∥f (x) – f (x) –Q(x)
∥∥ ≤ 

 – α

(
ϕ(x,x) +




ϕ(x,x)
)

for all x ∈ X.

Proof Letting x = y in (.), we get

∥∥f (y) – f (y) + f (y)
∥∥ ≤ ϕ(y, y) (.)

for all y ∈ X.
Replacing x by y in (.), we get

∥∥f (y) – f (y) + f (y) + f (y)
∥∥ ≤ ϕ(y, y) (.)

for all y ∈ X.
By (.) and (.),

∥∥f (y) – f (y) + f (y)
∥∥ (.)

≤ ∥∥(
f (y) – f (y) + f (y)

)∥∥ +
∥∥f (y) – f (y) + f (y) + f (y)

∥∥
≤ 

∥∥f (y) – f (y) + f (y)
∥∥ +

∥∥f (y) – f (y) + f (y) + f (y)
∥∥

≤ ϕ(y, y) + ϕ(y, y)

for all y ∈ X. Replacing y by x and g(x) := f (x) – f (x) in (.), we get

∥∥∥∥g(x) – 

g(x)

∥∥∥∥ ≤ ϕ(x,x) +



ϕ(x,x)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem .. �
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Corollary . Let r be a positive real number with r < , and let f : X → Y be an even
mapping satisfying f () =  and (.). Then there exists a unique quadratic mapping Q :
X → Y such that

∥∥f (x) – f (x) –Q(x)
∥∥ ≤  + r

 – r
P(x)r (.)

for all x ∈ X.

Proof Taking ϕ(x, y) = P(x)r + P(y)r for all x, y ∈ X and choosing α = r– in Theorem .,
we get the desired result. �

Theorem . Let ϕ : X → [,∞) be a function such that

�(x, y) :=
∞∑
j=


j

ϕ
(
jx, jy

)
< ∞

for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f () =  and (.). Then there
exists a unique quadratic mapping Q : X → Y such that

∥∥f (x) – f (x) –Q(x)
∥∥ ≤ �(x,x) +




�(x,x)

for all x ∈ X.

Proof The proof is similar to the proof of [, Theorem .]. �

Remark . Let r < . Letting ϕ(x, y) = P(x)r + P(y)r for all x, y ∈ X in Theorem ., we
obtain the inequality (.). The proof is given in [, Theorem .].

Theorem . Let ϕ : Y  → [,∞) be a function such that there exists an α <  with

ϕ(x, y) ≤ α


ϕ(x, y)

for all x, y ∈ Y . Let f : Y → X be an even mapping satisfying f () =  and (.). Then there
exists a unique quadratic mapping Q : Y → X such that

P
(
f (x) – f (x) –Q(x)

) ≤ α

 – α

(
ϕ(x,x) +




ϕ(x,x)
)

for all x ∈ Y .

Proof Letting x = y in (.), we get

P
(
f (y) – f (y) + f (y)

) ≤ ϕ(y, y) (.)

for all y ∈ Y .
Replacing x by y in (.), we get

P
(
f (y) – f (y) + f (y) + f (y)

) ≤ ϕ(y, y) (.)

for all y ∈ Y .
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By (.) and (.),

P
(
f (y) – f (y) + f (y)

)
≤ P

(

(
f (y) – f (y) + f (y)

))
+ P

(
f (y) – f (y) + f (y) + f (y)

)
≤ P

(
f (y) – f (y) + f (y)

)
+ P

(
f (y) – f (y) + f (y) + f (y)

)
≤ ϕ(y, y) + ϕ(y, y) (.)

for all y ∈ Y . Replacing y by x
 and g(x) := f (x) – f (x) in (.), we get

P
(
g(x) – g

(
x


))
≤ ϕ

(
x

,
x


)
+ ϕ

(
x,
x


)
≤ α

(
ϕ(x,x) +




ϕ(x,x)
)

for all x ∈ Y .
The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let r, θ be positive real numbers with r > , and let f : Y → X be an even
mapping satisfying f () =  and (.). Then there exists a unique quadratic mapping Q :
Y → X such that

P
(
f (x) – f (x) –Q(x)

) ≤  + r

r – 
θ‖x‖r (.)

for all x ∈ Y .

Proof Taking ϕ(x, y) = θ (‖x‖r +‖y‖r) for all x, y ∈ X and choosing α = –r in Theorem .,
we get the desired result. �

Theorem . Let ϕ : Y  → [,∞) be a function such that

�(x, y) :=
∞∑
j=

jϕ
(
x
j
,
y
j

)
< ∞

for all x, y ∈ Y . Let f : Y → X be an even mapping satisfying f () =  and (.). Then there
exists a unique quadratic mapping Q : Y → X such that

P
(
f (x) – f (x) –Q(x)

) ≤ �(x,x) +



�(x,x)

for all x ∈ Y .

Proof The proof is similar to the proof of [, Theorem .]. �

Remark . Let r > . Letting ϕ(x, y) = θ (‖x‖r + ‖y‖r) for all x, y ∈ X in Theorem ., we
obtain the inequality (.). The proof is given in [, Theorem .].

Theorem . Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ(x, y) ≤ αϕ

(
x

,
y


)
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for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f () =  and (.). Then there
exists a unique quartic mapping Q : X → Y such that

∥∥f (x) – f (x) –Q(x)
∥∥ ≤ 

 – α

(



ϕ(x,x) +



ϕ(x,x)
)

for all x ∈ X.

Proof Replacing y by x and letting g(x) := f (x) – f (x) in (.), we get

∥∥∥∥g(x) – 


g(x)
∥∥∥∥ ≤ 


ϕ(x,x) +




ϕ(x,x)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let r be a positive real number with r < , and let f : X → Y be an even
mapping satisfying f () =  and (.). Then there exists a unique quartic mapping Q :
X → Y such that

∥∥f (x) – f (x) –Q(x)
∥∥ ≤  + r

 – r
P(x)r (.)

for all x ∈ X.

Proof Taking ϕ(x, y) = P(x)r + P(y)r for all x, y ∈ X and choosing α = r– in Theorem .,
we get the desired result. �

Theorem . Let ϕ : X → [,∞) be a function such that

�(x, y) :=
∞∑
j=


j

ϕ
(
jx, jy

)
< ∞

for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f () =  and (.). Then there
exists a unique quartic mapping Q : X → Y such that

∥∥f (x) – f (x) –Q(x)
∥∥ ≤ 


�(x,x) +




�(x,x)

for all x ∈ X.

Proof The proof is similar to the proof of [, Theorem .]. �

Remark . Let r < . Letting ϕ(x, y) = P(x)r + P(y)r for all x, y ∈ X in Theorem ., we
obtain the inequality (.). The proof is given in [, Theorem .].

Theorem . Let ϕ : Y  → [,∞) be a function such that there exists an α <  with

ϕ(x, y) ≤ α


ϕ(x, y)
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for all x, y ∈ Y . Let f : Y → X be an even mapping satisfying f () =  and (.). Then there
exists a unique quartic mapping Q : Y → X such that

P
(
f (x) – f (x) –Q(x)

) ≤ α

 – α

(



ϕ(x,x) +



ϕ(x,x)
)

for all x ∈ Y .

Proof Replacing y by x
 and letting g(x) := f (x) – f (x) in (.), we get

P
(
g(x) – g

(
x


))
≤ ϕ

(
x

,
x


)
+ ϕ

(
x,
x


)
≤ α

(



ϕ(x,x) +



ϕ(x,x)
)

for all x ∈ Y .
The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let r, θ be positive real numbers with r > , and let f : Y → X be an even
mapping satisfying f () =  and (.). Then there exists a unique quartic mapping Q :
Y → X such that

P
(
f (x) – f (x) –Q(x)

) ≤  + r

r – 
θ‖x‖r (.)

for all x ∈ Y .

Proof Taking ϕ(x, y) = θ (‖x‖r+‖y‖r) for all x, y ∈ X and choosing α = –r in Theorem.,
we get the desired result. �

Theorem . Let ϕ : Y  → [,∞) be a function such that

�(x, y) :=
∞∑
j=

jϕ
(
x
j
,
y
j

)
< ∞

for all x, y ∈ Y . Let f : Y → X be an even mapping satisfying f () =  and (.). Then there
exists a unique quartic mapping Q : Y → X such that

P
(
f (x) – f (x) –Q(x)

) ≤ 


�(x,x) +



�(x,x)

for all x ∈ Y .

Proof The proof is similar to the proof of [, Theorem .]. �

Remark . Let r > . Letting ϕ(x, y) = θ (‖x‖r + ‖y‖r) for all x, y ∈ X in Theorem ., we
obtain the inequality (.). The proof is given in [, Theorem .].

We can summarize the corollaries as follows.
Let fo(x) := f (x)–f (–x)

 and fe(x) := f (x)+f (–x)
 . Then fo is odd and fe is even. fo, fe satisfy the

functional equation (.). Let go(x) := fo(x)–fo(x) and ho(x) := fo(x)–fo(x). Then fo(x) =
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
go(x)–


ho(x). Let ge(x) := fe(x)–fe(x) and he(x) := fe(x)–fe(x). Then fe(x) = 

ge(x)–

he(x). Thus

f (x) =


go(x) –



ho(x) +




ge(x) –



he(x).

Theorem . Let r be a positive real number with r < . Let f : X → Y be a mapping
satisfying f () =  and (.). Then there exist an additive mapping A : X → Y , a quadratic
mapping Q : X → Y , a cubic mapping C : X → Y and a quartic mapping Q : X → Y such
that

∥∥f (x) – A(x) – Q(x) – C(x) – Q(x)
∥∥

≤
(
(r + )
 – r

+
(r + )
 – r

+
(r + )
 – r

+
(r + )
 – r

)
P(x)r

for all x ∈ X.

Theorem . Let r, θ be positive real numbers with r > . Let f : Y → X be a mapping
satisfying f () =  and (.). Then there exist an additive mapping A : Y → X, a quadratic
mapping Q : Y → X, a cubic mapping C : Y → X and a quartic mapping Q : Y → X such
that

P
(
f (x) – A(x) – Q(x) – C(x) – Q(x)

)

≤
(
(r + )
r – 

+
(r + )
r – 

+
(r + )
r – 

+
(r + )
r – 

)
θ‖x‖r

for all x ∈ Y .

4 Conclusions
Using the fixed pointmethod and directmethod, we have proved theHyers-Ulam stability
of an additive-quadratic-cubic-quartic functional equation in paranormed spaces.
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