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Abstract

Using fixed point method, we establish the Hyers-Ulam stability of m-Lie
homomorphisms and Jordan m-Lie homomorphisms in m-Lie algebras associated to
the following generalized Jensen functional equation

éuf (xi) = ;m [éf (mei+ i xj) +f (é Mxi)i|

j1, i
for a fixed positive integer m with m > 2.
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1. Introduction
Let n be a natural number greater or equal to 3. The notion of an n-Lie algebra was
introduced by V.T. Filippov in 1985 [1]. The Lie product is taken between # elements
of the algebra instead of two. This new bracket is #-linear, anti-symmetric and satisfies
a generalization of the Jacobi identity. For n = 3, this product is a special case of the
Nambu bracket, well-known in physics, which was introduced by Nambu [2] in 1973,
as a generalization of the Poisson bracket in Hamiltonian mechanics.

An n-Lie algebra is a natural generalization of a Lie algebra. Namely:

A vector space V together with a multi-linear, antisymmetric n-ary operation [ ]: A"V — V
is called an n-Lie algebra, n > 3, if the n-ary bracket is a derivation with respect to itself, i.e.,

n
[(lxr -0 Xalo Xners oo 0 Xona] = 2010, <o XicaXi Xpers -0, Xone1l oo %] (1.1)
i=1
where x1, x5, - - -, x9,.1 € V. The equation (1.1) is called the generalized Jacobi iden-

tity. The meaning of this identity is similar to that of the usual Jacobi identity for a Lie
algebra (which is a 2-Lie algebra).

In [1] and several subsequent papers [3-5], a structure theory of finite-dimensional
n-Lie algebras over a field | of characteristic 0 was developed.
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n-ary algebras have been considered in physics in the context of Nambu mechanics
[2,6] and, recently (for n = 3), in the search for the effective action of coincident
M2-branes in M-theory initiated by the Bagger-Lambert-Gustavsson (BLG) model [7,8]
(further references on the physical applications of n-ary algebras are given in [9]).

From now on, we only consider n-Lie algebras over the field of complex numbers.
An n-Lie algebra A is a normed n-Lie algebra if there exists a norm || || on A such
that ||[x1, %2, - - -, 2| < [|%a]]]|%2]] - - - ||%2]] for all x1, x5, - - -, x, € A. A normed
n-Lie algebra A is called a Banach #n-Lie algebra if (4, || ||) is a Banach space.

Let (A, [ ]a) and (B, [ ]3) be two Banach #n-Lie algebras. A C -linear mapping H: (4,
[1a) > (B, [ 1p) is called an n-Lie homomorphism if

H([x1x2 -+~ xn]a) = [H(x1)H(x2) - - - H(xn) B

for all x1, x5, - - -, x, € A. A C -linear mapping H: (A, [ ]4) = (B, [ ]p) is called a Jor-
dan n-Lie homomorphism if

H([xx---x]a) = [H(x)H(x) - - - H(x)]s

forall x e A.

The study of stability problems had been formulated by Ulam [10] during a talk in
1940: Under what condition does there exist a homomorphism near an approximate
homomorphism? In the following year, Hyers [11] was answered affirmatively the ques-
tion of Ulam for Banach spaces, which states that if ¢ > 0 and f X — Y is a mapping
with X a normed space and Y a Banach spaces such that

[fGc+y) =) = f)] < e (1.2)
for all x, y € X, then there exists a unique additive map 7: X — Y such that
If() = T@)] = &

for all x € X. A generalized version of the theorem of Hyers for approximately linear
mappings was presented by Rassias [12] in 1978 by considering the case when inequal-
ity (1.2) is unbounded.

In 2003, Cadariu and Radu applied the fixed point method to the investigation of the
Jensen functional equation [13] (see also [14-16]). They could present a short and a
simple proof (different of the “direct method “, initiated by Hyers in 1941) for the
Hyers-Ulam stability of Jensen functional equation [13] and for quadratic functional
equation [14].

Park and Rassias [17] proved the stability of homomorphisms in C*-algebras and Lie C*-
algebras and also of derivations on C*-algebras and Lie C*-algebras for the Jensen-type

functional equation

uf (37) +uf(x;y) () =0

forall peTl:={LeC : |A|=1}.

In this paper, by using fixed point method, we establish the Hyers-Ulam stability of
n-Lie homomorphisms and Jordan #-Lie homomorphisms in #-Lie Banach algebras
associated to the following generalized Jensen-type functional equation
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éuf(xi) - 2171 [%f (mei + i uxj) +f(§13 uxi)] =0

i=1 j=1, i

for all

. 2
weTh :={e“9: 0<0< n}u{l},

Ny

where m > 2.
Throughout this paper, assume that (4, [ ]4) and (B, [ ]s) are two m-Lie Banach

algebras.

2. Main results
Before proceeding to the main results, we recall a fundamental result in fixed point
theory.

Theorem 2.1. [18]Let (), d) be a complete generalized metric space and T: Q — Q
be a strictly contractive function with Lipschitz constant L. Then for each given x € Q,

either
d(T"x, T™'x) = oo for all m > 0,

or other exists a natural number mg such that

od (T "%, T""'%) <oo for all m > my;
« the sequence {T "'x} is convergent to a fixed point y* of T;
o y* is the unique fixed point of T in A = {y € Q: d(T "™ x, y) <oo};

«d(y, ) < 1iLd()/, Ty)for all y e A.

Theorem 2.2. Let V and W be real vector spaces. A mapping f. V — W satisfies the

following functional equation

m 1 m m m
B g B (e £,2) 1 ()]

if and only f f is additive.

Proof. 1t is easy to prove the theorem. O

We start our work with the main theorem of the our paper.

Theorem 2.3. Let ny € N be a fixed positive integer. Let f A — B be a mapping for
which there exists a function @: A" — [0, o) such that

m

uZuf(xi)—;n ;f pmi+ Y g +f(2“xi> || 2.1)

i=1 j=1, i i=1

< @(x1, X2, -+, Xm),

If([xrx2 - - xnla) = [F(x)f (x2) -+ f(xm) s | < @(x1, %2, -+ Xm) (2.2)
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1
for all pely and all x,, - - -, x,, € A. If there exists an L <1 such that
ho
o(x1, X2, -+, xy) < mLg (xl,xz,--- ,x’") (2.3)
m m m
for all xq, - - -, x,,, € A, then there exists a unique m-Lie homomorphism H: A — B
such that
¢(x10101"' IO)
—H < 2.4
@ - He < 2 .4
for all x € A.
Proof. Let Q be the set of all functions from A into B and let
d(g, h) :=inffC e R* : ||g(x) — h(x)l|p < Co(x, O, ---, 0), Vx € A}.
It is easy to show that (€, d) is a generalized complete metric space [19].
Now we define the mapping J: Q — Q by
J()x) = ()
T m
for all x € A.
Note that for all g, h € Q,
d(g h) <C=g(x) —h(x) I =Ce¢(x, 0, ---, 0)
1 1 Cyo(mx,0,---,0)
= H mg(mx) — mh(mx) "
= ! (mx) ! h(mx) || < LCy(x, O 0)
mg m = (ﬂ 7 7 ’
= d(J(g), J(h)) =LC
for all x € A. Hence we see that
d(J(g), J(h)) < Ld(g, h)
for all g, h e Q. It follows from (2.3) that
k k . k
lim P01 o ) _ Jim L(xr, - x0) = 0 (2.5)
k— 00 m k—o00
forall xy, - -+, %,,€ A Puttingy = 1, »y =xand x; =0 (j = 2, - - -, ) in (2.1), we
obtain
f(mx) ¢(x,0,---,0)
— <
|70y | < o0
for all x € A. Therefore,
1
aif, J(f)) < m < 00. (2.6)

By Theorem 2.1, / has a unique fixed point in the set X;: = {h € Q: d(f, i) <eo}. Let
H be the fixed point of . H is the unique mapping with
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H(mx) = mH(x)
such that there exists C € (0, o) satisfying
I f(¥) = H) Il < Colx, 0, -+, 0)

for all x € A. On the other hand, we have limy_,.. d(J k(f), H) = 0 and so

1
fim f(m*x) = H(x) (2.7)

for all x € A. By Theorem 2.1, we have

1
d(f, H) < ) _Ld(f, J(f))- (2.8)
It follows from (2.6) and (2.8) that

1
d(f, H .
( )Sm—mL

This implies the inequality (2.4). By (2.2), we have

| H([x1x2 - - - xm]a) — [H(x1)H(x2)H(x3) - - - H(xm) 5 |l
H([mFxymbxs - mFxy,],) B ([H(mFx1 ) H(m*x, ) H(mFx3) - - - H(mkx,)]5)

= lim
k=00 mmk mmk
k k 3
. mtxy, mxy, -+, mx
< lim QO( 1/ 2/ ’ m) -0
m— 00 mmk
for all x;, - - -, x,, € A. Hence

H([x1x2 - xm]a) = [H(x1)H(x2)H(x3) - - - H(xm) |5

for all x;, - - -, x,,, € A.
On the other hand, it follows from (2.1), (2.5) and (2.7) that

j=1, i

B

1 m 1 m m m
. k k+1 k k
- im o S5 = o, {Zf(’"*wz,m of (Lt
i=1 i=1 j=1, i# i=1
k k k
mxy, mxy, -+ -, mx
< lim gﬂ( 1 2k m):O
m—00 m
for all x;, - - -, x,, € A. Then

iH(xi) = 2;1 |:§:H (mxi + i#&) +H <§:x,>}
i=1 i=1 j=1, i i=1

for all xy, - - -, x,, € A. So by Theorem 2.1, H is additive. Letting x; = x for all i = 1,
2, -+, nin (2.1), we obtain

I aef(x) — f(ux) | < @(x, x, -+, X)
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for all x € A. It follows that

k) — k
I H(ux) = pH(x) || = lim Il f(um®x) — puf (m*x) ||

mk
Rye pakse . ik
< lim @ (m*x, m*x, ,mx)=0

k— 00 mk

1
for all #€ T4 and all x € A. One can show that the mapping H: A —> B is C
ho
-linear.

Hence H: A — B is an m-Lie homomorphism satisfying (2.4), as desired. U
Corollary 2.4. Let 0 and p be nonnegative real numbers such that p <1. Suppose that
a mapping f: A — B satisfies

Yy uf(x) - ;m [Zf (umxf+ > uxj) +f (Z Mxi):|
i=1 i=1 i=1

j=Li

<6y (=", (2.9)
i=1

I F (%122 -+ xaa) = [Fx0)f(x2) -+ f )]s | <0 (I xill?) (2.10)

i=1

1
for all * € U and all X1, - -+, %, € A. Then there exists a unique m-Lie homo-
ho
morphism H: A — B such that

o 1l x|”

—H < 2.11

FORE T @11)
forall x e A.

Proof. Putting ¢(x1, X2, -+, Xm) :=6 Z,m_l( [lxi[|P) for all x1, - - -, x, € A and let-

ting L = m”" in Theorem 2.3, we obtain (2.11). O

Similarly, we have the following and we will omit the proof.

Theorem 2.5. Let f A — B be a mapping for which there exists a function ¢: A™ —
[0, ) satisfying (2.1) and (2.2). If there exists an L <1 such that

X1 X X, L
(P< ’ /2] m)f (p(xll xZI"'lxm)
m. m m m
for all xq, - - -, x,,, € A, then there exists a unique m-Lie homomorphism H: A — B
such that

Ly(x,0,0,---,0)
m — mL

If(x) = Hx) I <

for all x € A.

Corollary 2.6. Let 6 and p be nonnegative real numbers such that p > 1. Suppose
that a mapping f A — B satisfies (2.9) and (2.10). Then there exists a unique m-Lie
homomorphism H: A — B such that

mé || x|

I f(x) —H(x) || < - (2.12)

1 _ ;2

Page 6 of 9
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forall x e A.
Proof. Putting ¢(x1, x2, -+, Xim) = 0221( [lx:[|P) for all x1, - - -, x, € A and let-

ting L = m'” in Theorem 2.5, we obtain (2.12). O
Theorem 2.7. Let ny € N be a fixed positive integer. Let f A — B be a mapping for
which there exists a function ¢: A" — [0, o) such that

Yy uf(x) - Zf pmx; + Zux] +f Zuxl H
i=1 (2.13)

=1
=< (p(xlr X2, vy xm)/
If (- - x]a) = [FEf(2) - F )]s T < 9 % -+, %) (2.14)
1
for all * € T and all X1, 0, X, € A If there exists an L <1 such that
o
XX X
(p(xlerr"'rxm)SmL(p< lr 2!"'! m)
m m m
for all xy, - - -, x,,, € A, then there exists a unique Jordan m-Lie homomorphism H: A
— B such that
gp(xlol... ,O)
x)—H(x) || < 2.15
17— HE < 2.15)
forallx e A.
Proof. By the same reasoning as in the proof of Theorem 2.3, we can define the map-
ping

Ho = Jim )

for all x € A. Moreover, we can show that H is C -linear. By (2.14), we get that

I H([xx- - - x]a) = [HE)H(x) - - - H(x)]5 |l

: 1 K : 1 k k k

= ;CILII; (M -mix] ) — mmk([H(m x)H(m"x) - - - H(m"x)]
: 1 ky ok k

sljir?ommkw(mx, mex, ..., m“x) =0

for all x € A. So
H([ox - - -x]a) = [H(x)H(x) - - - H(x) s

for all x € A. Hence H: A — B is a Jordan m-Lie homomorphism satisfying (2.15). O
Corollary 2.8. Let 0 and p be nonnegative real numbers such that p <1. Suppose that
a mapping f: A — B satisfies

uéuf(xf) - [Zf (/mm + Z ux]) +f (Z uxi)}

j=Lli# i=1

<6 (Ixl"), (2.16)
i=1

If (- - x]a) = [FE)f (%) - ()]s 1T < nO (1] x117) (2.17)

Page 7 of 9
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1
for all mel land all x, - - -, x,, € A. Then there exists a unique Jordan m-Lie
ho
homomorphism H: A — B such that

6 Il x||?
m — mP

If(x) = H(x) I <

for all x e A.

Proof. The proof follows from Theorem 2.7 by putting ¢(x1, x2, -+, xp) =6 ZZI( I1xi] 1)
for all x, - - -, x,, € A and letting L = m”. O

Similarly, we have the following and we will omit the proof.

Theorem 2.9. Let f A — B be a mapping for which there exists a function ¢: A™ —
[0, ) satisfying (2.13) and (2.14). If there exists an L <1 such that

X1 X2 X L
(P< ’ ;T )S (p(xlerV"'rxm)
m m m m

forall xy, -, x,,€ A, then there exists a unique Jordan m-Lie homomorphism H: A — B

such that
Lo(x,0,0,--,0)
—H
@) - e =00
for all x € A.

Corollary 2.10. Let 6 and p be nonnegative real numbers such that p > 1. Suppose
that a mapping f A — B satisfies (2.16) and (2.17). Then there exists a unique Jordan
m-Lie homomorphism H: A — B such that

6 | x|
, (2.18)

I f(x) = Hx)lls = m

—m

forall x e A.

Proof. Putting ¢(x1, x2, -+, Xp) =0 Zml( ||xi]|”) for all xy, - - -, x, € A and let-
i=

ting L = m'”? in Theorem 2.9, we obtain (2.18).
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