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Abstract: Spatial-temporal data requires flexible regression models which can model the dependence
of responses on space- and time-dependent covariates. In this paper, we describe a semiparametric
space-time model from a Bayesian perspective. Nonlinear time dependence of covariates and the
interactions among the covariates are constructed by local linear and piecewise linear models, allowing
for more flexible orientation and position of the covariate plane by using time-varying basis functions.
Space-varying covariate linkage coefficients are also incorporated to allow for the variation of space
structures across the geographical location. The formulation accommodates uncertainty in the number
and locations of the piecewise basis functions to characterize the global effects, spatially structured
and unstructured random effects in relation to covariates. The proposed approach relies on variable
selection-type mixture priors for uncertainty in the number and locations of basis functions and in the
space-varying linkage coefficients. A simulation example is presented to evaluate the performance of
the proposed approach with the competing models. A real data example is used for illustration.
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1 Introduction

There is an increasing attention in the analysis of spatially and temporally refer-
enced data in both methodological and applied research. Such data are of substantial
interest in a variety of disciplines such as epidemiology, ecology, political sciences
and economics. For example, one might be interested in geographical patterns and
trends of a certain disease in a particular region over time. We start with describing
a general space-time model.
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Suppose that the dependent variable yit is observed in the ith spatial unit (e.g.,
region or individual) and the tth time point with i = 1, . . . , n and t = 1, . . . , T. A
general space-time model can be expressed as

yit ∼ f (yit|·), (1.1)

where f (yit|·) denotes a conditional distribution of yit given observed covariates,
latent variables and measurement errors, with mean μi t, μi t = E(yit), which is typ-
ically related to a linear predictor ηi t through a suitable link function g(·), where
ηi t = g(μi t). The response variable could be observed as a continuous (e.g., disease
rate), categorical (e.g., indicates of disease or health status) and count (e.g., disease
or death number) outcome. The predictor ηi t is usually expressed as

ηi t = x′
i tβ + ui + vi + δt, (1.2)

where xi t = (1, xit2, . . . , xitp)′ denotes a p×1 vector of covariates associated with unit
i and time t, β = (β1, . . . , βp)′ denotes a p × 1 vector of population parameters, ui
and vi denote random effects measuring spatial similarity and excess heterogeneity,
respectively, and δt denotes a structured temporal random component. Convention-
ally, the fixed effects β can be modelled to follow a multivariate normal prior. The
parameters ui and vi are assumed to be independent. The parameter vi captures the
heterogeneity among the units which is chosen to follow an exchangeable normally
distributed prior, while ui captures the clustering property of spatial data which is
assumed to follow a conditional autoregressive (CAR) distribution (a special case of
the general class of Markov random field) (Besag, 1974), ui |u−i ∼ N(ui , (τmi )−1),
where u−i = (u1, . . . , ui−1, ui+1, . . . , un)′, ui = m−1

i

∑
j∈∂i

u j with ∂i denoting the
neighbour set of unit i , mi denotes the number of neighbours of unit i and τ denotes
the precision parameter. The constraint

∑n
i=1 ui = 0 is defined for the purpose of iden-

tifiability of the overall intercept. The temporal parameter δt is assumed to follow
AR(1) prior.

When responses are count data, model (1) becomes a typical spatio-temporal
model based on which some hierarchical models were developed (Waller et al., 1997;
Knorr-Held and Besag, 1998; Lagazio et al., 2003; among others). More complex
issues occur when the space-time interaction effect, θi t, is included in the predictor (2).
Knorr-Held (2000) incorporated a space-time interaction for inseparable space-time
variation in disease risk where four types of space-time interaction were described.
Richardson et al. (2006) proposed a joint spatio-temporal modelling of two diseases
with shared space-time interaction. Lagazio et al. (2001) focussed on the birth cohort
model to assess latent effects associated with temporal trends. Ugarte et al. (2009)
evaluated the performance of various spatio-temporal Bayesian models. Hossain and
Lawson (2010) also evaluated spatial-temporal (ST) small area models but with an
emphasis on cluster recovery/detection. When the effect of covariates on the response
is the main focus, some space-time models with space-dependent coefficients (e.g.,
Assunção, 2003; Gamerman et al., 2003) or time-dependent coefficients (Dreassi
et al., 2005) were developed. In practice, the space-time dependent effect of a specific
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space-time covariate on responses is also of substantial interest (e.g., effects of poverty
rates on low birth weight may vary across different regions and time points). Although
some work has been done (Gelfand et al., 2005; Paez et al., 2008), there is still lack of
development for such models. Typically, one may consider a space-time model based
on linear combinations of covariates such as ηi t = x′

i tβ i t + ui + vi + δt. This expression
can be treated as a general case including the model with a space-time interaction
term, the model with space-dependent covariates (Assunção, 2003) and the model
with time-dependent covariates (Dreassi et al., 2005). However, linear models prove
too rigid when large quantities of data are considered and there exists nonlinearity
(Hastie and Tibshirani, 1990).

Outside the context of the space-time data analysis, there exists a fairly rich
literature of nonlinear regression modelling in both the frequentist and Bayesian
framework. For example, Friedman (1991) proposed multivariate adaptive regression
splines by using flexible tensor product splines. Holmes and Mallick (2001, 2003)
described a Bayesian approach of piecewise linear model with covariate surface
constructed by basis functions. Bigelow and Dunson (2007) extended the method
to allow the spline coefficients to be subject specific. Pintore et al. (2006) derived
a spatially adaptive smoothing splines based on a reproducing kernel Hilbert space
representation. Numerous references can be found in Denison et al. (2002) and
Ruppert et al. (2003), and therein.

Within the context of spatial and temporal modelling, Schmid and Held (2004)
investigated space-time trends by incorporating intercept terms of covariates of inter-
est with additional spatial component into the model. Banerjee and Johnson (2006)
proposed to model single and multi resolution spatially varying growth curves as
Gaussian processes that capture associations at single and multiple resolutions. Kneib
and Fahrmeir (2006) described a general class of structured additive regression mod-
els for categorical responses, allowing for a semiparametric predictor. Zhao et al.
(2006) developed general design generalized linear mixed models in which random
effects with spatial correlation structure are included. Among the methods developed,
however, none of them simultaneously considers space- and time-specific effects of
space-time covariates on responses.

In this paper, we focus on developing a general space-time model with main
interest in the effect of space- and time-dependent covariates on the response. We
extend the generalized multivariate regression splines (Holmes and Mallick, 2001)
to flexibly accommodate the space- and time-specific covariates, allowing for flexible
orientation and position of the covariate plane by using time-varying basis functions.
Space-varying covariate linkage coefficients are incorporated for variation of space
structures across geographical locations. Such multivariate regression models allow
for effects of covariates on responses not only across space but also over time (i.e.,
interactions) in a flexible manner. We develop an approach which relies on variable
selection-type mixture priors for uncertainty in the number and locations of the
piecewise linear basis functions and in the space-varying linkage coefficients.

The remainder of the paper is organized as follows. Section 2 describes the space-
time latent structure model with multivariate linear splines for a covariate linkage.
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Prior specification and posterior implementation are described. Section 3 discusses
the model evaluation and comparison. Section 4 evaluates the performance of the
approach based on a simulated example. Section 5 illustrates the approach via a real
spatial-temporal data. Finally, Section 6 summarizes and discusses the results.

2 Space-time models with latent structure

2.1 The model and prior specification

We consider to model the unknown linear predictor as

ηi t =
K∑

k=1

βik(x′
i tutk)+, (2.1)

where β i = (βi1, . . . , βi K )′ denotes a K × 1 vector of candidate space-specific linkage
parameters for the underlying latent effects, utk denotes a p×1 vector of time-varying
basis parameters and (xi tutk)+ denotes a basis function which is an inner product of
xi t and utk truncated below by 0. To allow each model to include an intercept term,
we define (xi tut1)+ to be one for all i and t. When β i are typically subject-specific
coefficients, this formula is a generalization of the formulae by Holmes and Mallick
(2001) and Bigelow and Dunson (2007). In model (3), the linkage coefficients β i
have spatially structured effects on covariates. To avoid identifiability problem, we
constrain

∑n
i=1 βik = Ck, where Ck is some constant (Assunção et al., 2002). One

may typically decompose βik as αk + ξik, where αk denotes the global effect and
ξik denotes the spatially structured effect with

∑n
i=1 ξik = 0 to identify the overall

effect due to the location invariance of the CAR prior. An attractive property of
the structure of equation (2.1) is that the basis functions are time dependent which
provide flexible orientation and position of the covariate plane and important trends
in the impact of covariates over time. It is clear that each of the (K −1) non-intercept
basis functions contains linear effect for at least one covariate. When a basis contains
multiple covariate effects, the proposed model allows for the effects of interactions
(i.e., dependence) of space-time covariates on the response. The proposed model
can be thought of as a more general spatio-temporal model. For example, if the
observations are only spatially dependent, then basis functions are time irrelevant. In
this case, the model reduces to the space-varying regression model (Assunção, 2003;
Gamerman et al., 2003) with time-dependent covariates, i.e., ηi t = x′

i tθ i .
The proposed approach allows for a flexible number of unknown basis functions

and the linkage coefficients. Since the number of basis functions related to covariates
is unknown a priori, one may consider the reversible jump MCMC (Markov chain
Monte Carlo) (Green, 1995) for such models (e.g., Holmes and Mallick, 2001;
Bigelow and Dunson, 2007). However, it involves complicated marginal likelihood
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calculation or approximation. To avoid this complexity, we adopt variable selection-
type mixture priors for uncertainty of the number and locations of piecewise basis
functions. To allow the kth basis to be effectively excluded from the model, we choose
a mixture prior including a point mass at zero and a CAR distribution for the linkage
coefficient βik given the indicator γk:

βik|γk ∼ γkδ0(βik) + (1 − γk)N(β∂i ,k, (τkmi )
−1), (2.2)

where γk is an indicator variable which is 1 for exclusion or 0 for inclusion of the
kth basis function, δ0(·) denotes a point mass at zero, β∂i ,k = m−1

i

∑
j∈∂i

β jk with ∂i

denoting the neighbour set of unit i , mi denotes the number of neighbours of unit i
and τk denotes the precision parameter. We refer to prior (4) as a zero-inflated CAR
prior, ZI-CAR(γk, τk). The prior probability of the kth basis out of the K candidate
bases related to covariates being excluded is p1,k0 = Pr(H1,k0 : βik = 0). The prior for
γk is then chosen as a Bernoulli distribution, Bern(p1,k0). The prior for τk is chosen
as Gamma(aτ , bτ ), where Gamma(a, b) is a gamma distribution with mean a/b and
variance a/b2.

To reflect time-dependent measurements in each region, we use multivariate
dynamic normal priors for utk,−1 which can be written as

utk,−1 ∼ Np−1(ρkut−1,k,−1, ν), t = 1, . . . , T,

where ρk denotes the variation of the temporal autocorrelation in the risk, u0k,−1
denotes the starting vector of utk,−1 and ν denotes a diagonal covariance matrix,
diag(ν2, . . . , νp). Due to lack of unique solutions of βik and utk to the same model
for each k, following Holmes and Mallick (2001), we normalize each component
of utk,−1 = utk/utk,1 = (utk,2, . . . , utk,p)′, i.e., ||utk,−1|| = 1 for t = 1, . . . , T and
k = 1, . . . , K, so that utk/utk,1 can be used for orientation of the plane in (p − 1)-
dimension covariate space and utk,1 for the position of the plane. To flexibly select
the components from p − 1 covariates at each time point, we first choose u0k,−1 to
be zero. We then choose a variable selection-type mixture prior with a point mass at
zero for variance νl , for l = 2, . . . , p,

νl ∼ κlδ0(νl) + (1 − κl)IG(νl ; aν, bν), (2.3)

where κl is an indicator variable which is 1 for exclusion or 0 for inclusion of the
lth covariate and IG(·) denotes an inverse gamma distribution. We refer to prior (5)
as ZI-IG(κl, aν, bν). The prior for κl is chosen as Bern(p2,l0), where p2,l0 denotes the
probability of the lth covariate being excluded. The first element of utk can be defined
as utk1 = −x′

i ′t,−1utk,−1, where xi ′t,−1 is randomly selected with i ′ ∈ {1, . . . , n}. With
probability of p2,l0, all utkl are zeroes, for t = 1, . . . , T and k = 1, . . . , K, indicating
that the lth covariate is excluded from the model. The mixture prior allows for the
locations of the splines to vary over time by effectively excluding the elements from
each basis function. The overall prior probability of excluding all covariates (except
intercept) from the model at time t is

∏p
l=2 p2,l0.
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To allow for flexibility of the prior probability, p1,k0, we consider choosing a
hyper-prior beta distribution for the prior exclusion probability, p1,k0 ∼ Beta(c1, d1).
Given the assumption that all prior probabilities are equal (say, p0), the full condi-
tional for p1,k0 can be easily calculated (see details in Appendix). Similarly, the prior
of p2,l0 is chosen as a beta distribution, Beta(c2, d2), allowing for more flexibility in
adapting the desired model. For the choice of ci and di (i = 1, 2), following the sug-
gestion by Geisser (1984), we choose ci = di = 1 which yields the uniform hyperprior.
Scott and Berger (2006) discuss the choice of priors for the prior probability. They
conclude that the objective prior (i.e., the uniform prior) for the prior probability
can easily be implemented computationally while incorporation of subjective prior
information can be beneficial when available. In our case, we have no subjective
information about the prior probability of inclusion of the covariates, resulting in
choosing a uniform prior. For more details, please refer to Geisser (1984), Scott and
Berger (2006, 2008) and Cui and George (2008), among others.

2.2 Posterior computation

The joint posterior distribution for the parameters is

π (β, u, τ , ν, γ , κ|y, x) ∝
n∏

i=1

T∏
t=1

f

{ K∑
k=1

βik(x′
i tutk)+

}
π(β|γ )π(γ )π(u|ν, κ)π(ν|κ)π(τ ),

where β = (β1, . . . , βn)′, u = (u1, . . . , uT)′ and f (·) can be normal linear, Poisson and
logistic regression models for the continuous, count and binary outcomes, respec-
tively, described as

f (yit|ηi t) =

√
τ

2π
exp

{
− τ

2

(
yit − ηi t

)2
}

(normal linear with ηi t = μi t)

=
1

yit!
exp {yitηi t − exp

(
ηi t

)
} (Poisson with ηi t = log μi t)

=
exp(yitηi t)
1 + exp(ηi t)

(
logistic with ηi t = log

μi t

1 − μi t

)
.

We choose priors for the parameters as described in Section 2.1. The posterior com-
putation relies on a stochastic search variable selection Gibbs sampling algorithm
(George and McCulloch, 1993), in which we iteratively sample from the full con-
ditional distributions of each of the parameters. For each element of β i and ν, the
posterior has a mixture structure with a point mass at zero and a conjugate (for
normal linear) or non-conjugate (for Poisson and logistic) distribution. To sample
from the non-conjugate distribution, we use adaptive rejection Metropolis sampling
(Gilks et al., 1995). Under the linear normal case, reparameterization allows the
model to have conditionally linear structure for each parameter which facilitates the
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use of conjugate priors. For the purpose of generality, we instead provide a general
full conditional posterior distribution for sampling.

The posterior computation relies on the Gibbs sampler and Metropolis-Hastings
algorithms. After initializing values for the parameters, the proposed MCMC algo-
rithm proceeds which is detailed in Appendix. Samples from the joint posterior dis-
tribution of the parameters are generated by repeating these steps for a large number
of iterations after apparent convergence. Obviously, for identity link, the parameters
can be sampled from the conjugate full conditional distributions.

As to guidance of how to specify the initial number for truncated planes for a
particular analysis, from the simulation experiments that we conducted, we found
that a large initial number of truncated planes, K, may provide sufficient space for
change of dimension. However, after a minimum necessary number reaches, any
further increase only marginally affects the fit while the computation time increases
dramatically. Too low values of K, however, result in an inflexible modelling of the
unknown linear predictor. Thus, we recommend to start with at least 10 number of
truncated planes for small sample sizes and for large sample sizes of n > 20, referring
to the heuristic rule of thumb given by Ruppert (2002) in the context of penalized
splines of K = min(40, n/4).

3 Model comparison

The deviance information criterion (DIC)(Spiegelhalter et al., 2002) is widely used as
a model comparison tool. DIC is shown to be an approximation to a penalized loss
function based on the deviance with a penalty derived from a cross-validation argu-
ment. However, the implicit approximation is valid only when the effective number of
parameters is much smaller than the number of independent observations (Plummer,
2008). Plummer (2008) pointed out that in disease mapping, this assumption does
not hold, resulting in that DIC under-penalizes the complex models. Plummer (2008)
proposed penalized loss functions instead of pD, the effective number of parame-
ter, to assess model adequacy. However, as Plummer (2008) noticed, this method
requires MCMC runs with each observation left out in turn. Such calculation is not
feasible in general, especially for large datasets. In this paper, we consider the com-
parison method based on the conditional predictive ordinate (CPO) (Gelfand et al.,
1992; Geisser, 1993; Dey et al., 1997; Sinha and Dey, 1997). The CPO for the ith
observation at time t is defined as the cross-validated marginal posterior predictive
density

CPOi t = f (yit|y(i t))

=
∫

f (yit|θ) f (θ |y(i t), x(i t))dθ

=

( ∫
1

f (yit|θ , xi )
f (θ |y, x)dθ

)−1

,
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where y(i t) denotes the vector of observations with the ith observation at time t
deleted and θ is the vector of model parameters. The cross-validation likelihood can
be estimated by

LCV =
n∏

i=1

T∏
t=1

CPOi t.

Since the quantity of the cross-validation likelihood is typically close to zero, the
negative cross-validatory predictive log-likelihood (Spiegelhalter et al., 1996; Draper
and Krnjajić, 2006) can be used

NLLKCV = −
n∑

i=1

T∑
t=1

log CPOi t.

Since a closed form of CPOi t is usually unavailable, a Monte Carlo estimate of
CPOi t can be obtained straightforwardly through MCMC samples {θ (s)}N

s=1 from the
posterior distribution f (θ |y, x)

̂CPOi t =

(
1
N

N∑
s=1

1

f (yit|θ (s), xi )

)−1

,

where N is the number of iterations after a burn-in period. The estimate of the neg-
ative cross-validatory predictive log-likelihood can be calculated accordingly. Since
a large CPO indicates agreement between the observation and the model, a model
with a smaller NLLKCV for all observations implies a better fit.

4 A simulated example

The motivation of this simulation was to evaluate the performance of the proposed
approach, including the accuracy of the estimates, the sensitivity to different choices
of hyperparameters and comparison of the proposed model with other space-time
models. Without loss of generality and for illustration purpose, we created the data
based on Belgium map available from GeoBUGS in WinBUGS (Lunn et al., 2000)
containing 43 districts. We considered the case of count responses. The data were
generated for each of n = 43 districts over an observation period of T = 10 based
on the model yit ∼ Poisson(Eit exp(ηi t)), where the log-relative risk ηi t = x′

i tα +
x̃′

i tξ i + vi + δt, where xi t = x̃i t = (1, xit2, xit3, xit4, xit5)′. Eit is an expected number
of events obtained by Rnit, where nit is the population count in district i at time
t and R =

∑
i t yit/

∑
i t nit. This model is similar to the one by Assunção (2003),

where space-dependent covariates are included. The fixed effect α was chosen as
(1, 1, 1, 0, 0)′, implying that the last two covariates are irrelevant. We generated ξ i
from a multivariate CAR, MVCAR(τ ), where τ−1 is a 3 × 3 covariance matrix with
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components along the row as {0.5, 0.2, 0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 0.8}, vi ∼ N(0, 1)
and δt ∼ N(δt−1, 2) for t = 2, . . . , T with δ1 ∼ N(0, 2). We generated xi tl ∼ U(0, 1)
for l = 2, . . . , 5. For practical reason, the expected count Eit was sampled from
U(1, 5).

We specified the priors for the parameters of the proposed model as follows. We
used Gamma(0.05, 0.05) as the prior for τk. The prior for the spatially structured
random effects βik was chosen as the prior in (4) with N(β∂ik

, (τkmik)−1). For the
time-varying bases utk,−1, the prior was chosen as N(ut−1,k,−1, ν), where νl ∼ZI-
IG(κl, 0.05, 0.05) for l = 2, . . . , 5. The starting vector of utk,−1, u0k,−1, was chosen
as 0 and ρk as 1. For a flexible hyperprior beta distribution of p1,k0 and p2,l0, we
chose c = d = 1 which yields the uniform hyperprior. Following Holmes and Mallick
(2001), we chose the initial number of truncated planes as K = 30. We also tried
several larger initial numbers of truncated planes which yielded essentially identical
results.

We implemented the analysis using the Gibbs sampling algorithm described in
Section 2. We generated 50 000 iterations after a burn-in of 10 000 iterations. Con-
vergence was assessed by using a variety of diagnostics described by Cowles and
Carlin (1995) and implemented using CODA (Plummer et al., 2006) in R. The diag-
nostic tests showed rapid convergence and efficient mixing. The parameters were
estimated by thinning the chain by factor of 5 to obtain a sample of size 10 000.
Sensitivity test of the results to the prior specification was assessed by repeating the
analysis with different hyperparameters, which showed very similar results.

We compared the proposed model (Model 5) with the four competing spatio-
temporal models. The log-relative risks of these models are listed as follows:

Model 1: ηi t = x′
i tα + ξi + δt,

Model 2: ηi t = x′
i tα + ξi + vi + δt,

Model 3: ηi t = x′
i tα + ξi + vi + δt + bit and

Model 4: ηi t = x′
i tα + x′

i tξ i + vi + δt

In the first three models, we followed conventional settings by specifying the prior
of α as Np(0, 
α) with 
α ∼ IWishart(p, 
−1

0 ) and 
0 = {0.1, 0.005, 0.005, 0.005,

0.1, 0.005, 0.005, 0.005, 0.1}. The prior of ξi was chosen as N(ξ i , (τ1mi )−1) with ξ i =
m−1

i

∑
j∈∂i

ξ j and τ1 ∼ Gamma(0.005, 0.005). The prior of vi was taken as N(0, τ−1
2 )

with τ2 ∼ Gamma(0.005, 0.005). The prior of δt was chosen as N(δt−1, τ−1
3 ) with

δ0 ∼ N(0, τ−1
3 ) and τ3 ∼ Gamma(0.005, 0.005). We chose the prior of bit to be

N(0, τ−1
4 ) with τ4 ∼ Gamma(0.005, 0.005). For Model 4, the prior of ξ i was chosen

as N(ξ ∂i
, (
ξ mi )−1) with ξ ∂i

= m−1
i

∑
j∈∂i

ξ j and 
ξ ∼ Wishart(p, 
0). We imple-
mented Models 1–4 using WinBUGS (Lunn et al., 2000). Although Model 5 can
also be implemented by WinBUGS, it is computationally intensive. A C program
was instead written to carry out the proposed algorithm.
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Table 1 Model comparison based on the negative cross-validatory
log-likelihood for the simulated example and the application to the
low birth weight data in South Carolina

Model NLLKCV, sim NLLKCV,app

Model 1 1160.967 1820.849
Model 2 1161.409 1802.395
Model 3 767.532 1746.393
Model 4 637.534 1763.222
Model 5 634.297 1738.383

The second column in Table 1 presents the comparison of the estimated negative
cross-validatory predictive log-likelihoods for the five models. We can see that Model
1 and Model 2 are basically the same. This is due to the fact that the unstructured
random effects vary moderately across regions which is consistent with the setting.
It is evident that Models 3–5 appear much better than the first two models with
Model 5 being the best. Since Model 4 is the model where the data are generated, its
performance is very close to Model 5.

In Figure 1, the upper plot represents true and pointwise estimated relative risks
with 95% credible intervals from the proposed approach (Model 5) across all districts
at time 5. The lower plot shows true and estimated relative risks for district 20 over
time based on the five models along with 95% credible intervals from Model 5. It is
clear that the proposed model provides closer estimates than the others.

Figure 2 shows posterior densities of variance parameters ν4 and ν5 and boxplots
of the posterior means for the time-varying basis components u4 and u5 at each
time point in the simulated example. We can see that the two variances ν4 and
ν5 corresponding to the time-varying coefficients, utk4 and utk5, are close to zero,
implying that xit4 and xit5 are not involved. This is consistent with the simulation
design.

Sensitivity of the results to the prior specification was assessed by repeating the
analysis with different hyperparameters. Figure 3 shows the histograms of the pos-
terior number of truncated planes and the probabilities of inclusion of covariates
in the basis functions. We noticed that the average number of components varies
insubstantially with various choices of the hyperparameters. It is evident that the last
two covariates are basically excluded from the model, which is consistent with the
design of the covariates.

5 Application

As an illustration, we applied the approach to the data of county-specific low birth
weights (i.e., birth weight is less than 2500 gram) across 46 counties in the state of
South Carolina during the period 1997–2007. A number of county-level low birth
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Figure 1 Results from the simulated example. Top panel: true and estimated relative risks with 95% pointwise
credible intervals from the proposed approach (Model 5) across all districts at time 5. Bottom panel: true and
estimated relative risks with 95% pointwise credible intervals from the proposed approach across time points
for district 20, along with posterior estimates from Models 1–4

weights were obtained from South Carolina Department of Health and Environmen-
tal Control. The population density, the proportion of African American population,
the household income and the poverty rate were acquired from the US census. The
unemployment rates were attained from the US Bureau of Labor Statistics.
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Figure 2 Left panel: posterior densities of the parameters ν4 and ν5 in the simulated example. Right panel:
boxplots of the posterior means for the time-varying basis components v4 and v5 at each time point in the
simulation. The horizontal line denotes the true value

In the data, yit denotes the number of low birth weights in county i during year t
and xi t = (1, xit1, xit2, xit3, xit4, xit5)′ with xit1 indicating the county-level population
density, xit2 the proportion of black people, xit3 the median household income, xit4 the
poverty rate and xit5 the unemployment rate in county i for year t, for i = 1, . . . , 46
and t = 1, . . . , 11. The population density is defined as population divided by the
total land area in square miles. The expected low birth weight counts for county i in
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Figure 3 (a) Histogram of the posterior number of truncated planes and (b) the probabilities of inclusion of
covariates in the basis functions for the simulated data

year t, Eit, is calculated by nit R, where nit is the total number of births for county i
in year t and R is the overall statewide low birth weight rate which can be calculated
by the total low birth weight counts divided by the total number of births over the
entire counties and time periods.

We completed the specification of the proposed model by choosing prior
Gamma(0.05, 0.05) for τk and ZI-IG(0.05, 0.05) for νl . The prior probability of
a point mass at zero for the variance components of β i and utk,−1 is chosen to follow
Beta(1, 1). Since five covariates were initially included in the model, the initial num-
ber of truncated planes was chosen as 30. We collected 10 000 samples by thinning
50 000 samples by factor of 5 after a burn-in of 10 000 iterations.

Figure 4 displays spatial maps of the posterior means and the standard deviations
of relative risk in years 1997, 2002 and 2007. Figure 5 shows the posterior means
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Figure 4 Spatial maps of (a) posterior mean and (b) posterior standard deviation (STD) of relative risks in years
1997, 2002 and 2007 for the low birth weight data in South Carolina. Left panel: posterior means of relative risk.
Right panel: posterior STD of relative risk
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Figure 5 Posterior means and 95% pointwise credible intervals of relative risks of low birth weight for the four
counties along with the corresponding poverty rates in SC through 11-year time period. Left panel: solid lines
denote posterior means of relative risks and dashed lines denote 95% pointwise credible intervals. Right panel:
poverty rate over time

and the 95% pointwise credible intervals for relative risk of low birth weight in four
representative counties (randomly selected) along with their corresponding poverty
rates over years 1997–2007. We can see that the estimated relative risk of low birth
weight in County Dorchester with decreasing poverty rates slightly decreases over
the 11-year time period. Counties Abbeville and Greenwood with increasing poverty
rates basically have ascending trends over time. County Sumter roughly has a ‘V’
shape of poverty rate over time and the estimated relative risks, and interestingly
the estimated relative risk has a similar curve. We also investigated the sensitivity
of the number of truncated planes for β i to various choices of the hyperparameters,

Statistical Modelling 2012; 12(2): 145–164



April 5, 2012 17:1 02-SMJ-12-2

160 Bo Cai et al.

which varies slightly. The posterior mean of the number of truncated planes is 12.4
with 95% credible interval (9.6, 16.5). We note that proportion of black people, the
median household income, the poverty rate and the unemployment rate are included
in the model with posterior probability of inclusion over 97% for each covariate while
the population density has over 98% posterior probability of exclusion, implying that
the population density can be excluded from the model at 5% significant level.

The third column in Table 1 shows the estimated negative cross-validatory predic-
tive log-likelihoods for the proposed model along with the four competing models.
We can see that the estimated NLLKCV,app values for Model 1 and 2 are close while
the other three models have much lower NLLKCV,app values. The proposed model
(Model 5) has the smallest NLLKCV,app value, evincing that it is the best among all
the models. The priors of the parameters and the settings for the hyperparameters
used were similar to those in the models of the simulated example.

6 Discussion

We proposed a Bayesian regression model with multivariate linear splines for the
analysis of space-time data. The proposed approach extends generalized multivariate
regression splines (Holmes and Mallick, 2001) to flexibly accommodate the space-
and time-specific covariates, allowing for flexible orientation and position of the
covariate plane by incorporating time-varying basis functions.

One of the major advantages of a semiparametric modelling specification is the
ability to flexibly model variation within a localized areas of a study region. In
the proposed model, we allow geographically localized definition of the dependence
of covariates and provide a flexible method of incorporation of variates via zero-
inflation mixture priors. Although in the examples the covariate profiles show some
impact on the overall county rates, it is evident that the estimated negative cross-
validatory predictive log-likelihoods supports the proposed model over conventional
space-time random effect models. This suggests that even with the degree of para-
meterization, there is an overall benefit in the use of such semiparametric models,
especially when covariates are to be flexibly accommodated. Computational inten-
sity is noticed in the proposed approach, though it is reasonably efficient when it
is coded in C language. Future work will focus on developing space-time models
with nonparametric modelling and clustering on spatial effects coefficients, and on
developing a more efficient sampling method.

Acknowledgements

The authors would also like to thank the editor, the associate editor and the referees
for valuable comments which greatly improved the presentation of the paper. This
work was supported by NIH/NHLBI 1R21HL088654-01A2.

Statistical Modelling 2012; 12(2): 145–164



April 5, 2012 17:1 02-SMJ-12-2

Bayesian latent structure models with space-time dependent covariates 161

Appendix

Full conditional distributions in Section 2.2.

Step 1: Update βik, for k = 1, . . . , K, from its full conditional posterior distribution,
n∏

i=1

T∏
t=1

f

{ K∑
k=1

βik(x′
i tutk)+

}
exp

{
− τk

2

n∑
i=1

∑
i∼ j

(βik − β jk)
2

}
,

with the conditional posterior probability

1 − p̂1,k = Pr (γk = 0|β, γ−k) =
1

1 + Ck
,

where Ck = p1,k0/(1 − p1,k0) × L(βk = 0, β−k, u, τ , ν, γ )/L(βk = βk, β−k,

u, τ , ν, γ ) with L(βk, β−k, u, τ , ν, γ ) =
∏n

i=1

∏T
t=1 f{

∑K
k=1 βik(x′

i tutk)+}
and βk = (β1k, . . . , βnk)

′. Otherwise, βik is assigned to be zero. Simultane-
ously, γk (k = 1, . . . , K) can be sampled from its full conditional posterior
distribution, Bern( p̂1,k).

Step 2: Update p1,k0 from its full conditional distribution,

p1,k0|γ ∼ Beta(c1 + nγ , d1 + K − nγ ),

where γ corresponds to a model from the model space M containing 2K

models, and nγ denotes the number of excluded predictors in the model, i.e.,∑K
k=1 γk.

Step 3: Update τk, for k = 1, . . . , K, from its full conditional posterior distribution,

Gamma

(
aτ +

n
2
, bτ +

1
2

n∑
i=1

∑
i∼ j

(βik − β jk)2

)
.

Step 4: Update νl , for l = 2, . . . , p, from its full conditional distribution with a point
mass at zero

κlδ0(νl) + (1 − κl)IG

{
aν +

KT
2

, bν +
1
2

T∑
t=1

K∑
k=1

(utkl − ρkut−1,kl)
2

}
,

where κl ∼ Bern( p̂2,l) with p̂2,l = (p2,l0L(β, ul = 0, τ , ν, γ ))/(p2,l0L(β, ul =
0, τ , ν, γ ) + (1 − p2,l0)L(β, ul = ul, u−l, τ , ν, γ )) and ul = {utkl}t,k.

Step 5: Update utk from its full conditional distribution, for t = 1, . . . , T and k =
1, . . . , K,

n∏
i=1

T∏
t=1

f

{ K∑
k=1

βik(x′
i tutk)+

}
exp

{
− 1

2
(utk − ρkut−1,k)

′ν−1(utk − ρkut−1,k)

}
,
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For each t and k, we standardize the components of utk,−1 and utk1 = xi t,−1
utk,−1.

Step 6: Update p2,l0 from its full conditional distribution,

p2,l0|κ ∼ Beta(c2 + nκ , d2 + p − 1 − nκ ),

where nκ denotes the number of excluded predictors in the model, i.e.,
∑p

l=2 κl .
Step 7: When link function is identity, update τ from its full conditional distribution

Gamma

{
cτ +

nT
2

, dτ +
1
2

n∑
i=1

T∑
t=1

(yit − ηi t)
2

}
,

where π(τ ) ∼ Gamma(cτ , dτ ).
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