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a b s t r a c t

Using the fixed point method, we prove the generalized Ulam–Hyers stability of random
homomorphisms in random normed algebras associated with the Cauchy functional
equation.
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1. Introduction

Fuzzy set theory is a powerful tool set for modeling uncertainty and vagueness in various problems arising in the field of
science and engineering. It has also very useful applications in various fields, e.g., population dynamics [1], chaos control [2],
computer programming [3], etc. Recently, the fuzzy topology has proved to be a very useful tool for dealing with situations
where the use of classical theories breaks down.

In the sequel, we adopt the usual terminology, notation and conventions of the theory of random normed spaces, as in
[4–8]. Throughout this work,∆+ is the space of distribution functions, that is, the space of all mappings F : R∪{−∞,∞} →

[0, 1] such that F is left-continuous and non-decreasing on R, F(0) = 0 and F(+∞) = 1. D+ is a subset of ∆+ consisting
of all functions F ∈ ∆+ for which l−F(+∞) = 1, where l−f (x) denotes the left limit of the function f at the point x, that is,
l−f (x) = limt→x− f (t). The space∆+ is partially ordered by the usual pointwise ordering of functions, i.e., F ≤ G if and only
if F(t) ≤ G(t) for all t in R. The maximal element for∆+ in this order is the distribution function ε0 given by

ε0(t) =


0, if t ≤ 0,
1, if t > 0.

Definition 1.1 ([7]). Amapping T : [0, 1]×[0, 1] → [0, 1] is a continuous triangular norm (for short, a continuous t-norm)
if T satisfies the following conditions:
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(a) T is commutative and associative;
(b) T is continuous;
(c) T (a, 1) = a for all a ∈ [0, 1];
(d) T (a, b) ≤ T (c, d)whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are TP(a, b) = ab, TM(a, b) = min(a, b) and TL(a, b) = max(a + b − 1, 0) (the
Lukasiewicz t-norm). Recall (see [9,10]) that if T is a t-norm and {xn} is a given sequence of numbers in [0, 1], then T n

i=1xi is
defined recurrently by T 1

i=1xi = x1 and T n
i=1xi = T (T n−1

i=1 xi, xn) for n ≥ 2. T∞

i=nxi is defined as T∞

i=1xn+i−1. It is known [10] that
for the Lukasiewicz t-norm the following implication holds:

lim
n→∞

(TL)∞i=1xn+i−1 = 1 ⇐⇒

∞−
n=1

(1 − xn) < ∞.

Definition 1.2 ([8]). A random normed space (for short, RN-space) is a triple (X, µ, TM), where X is a vector space and µ is a
mapping from X into D+ such that the following conditions hold:

(RN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;
(RN2) µαx(t) = µx


t

|α|


for all x ∈ X, α ≠ 0;

(RN3) µx+y(t + s) ≥ TM(µx(t), µy(s)) for all x, y ∈ X and all t, s > 0.

Every normed space (X, ‖ · ‖) defines a random normed space (X, µ, TM), where

µx(t) =
t

t + ‖x‖

for all t > 0. This space is called the induced random normed space.

Definition 1.3. Let (X, µ, T ) be an RN-space.

(1) A sequence {xn} in X is said to be convergent to x in X if, for every ϵ > 0 and λ > 0, there exists a positive integer N such
that µxn−x(ϵ) > 1 − λwhenever n ≥ N .

(2) A sequence {xn} in X is called a Cauchy sequence if, for every ϵ > 0 and λ > 0, there exists a positive integer N such that
µxn−xm(ϵ) > 1 − λwhenever n ≥ m ≥ N .

(3) An RN-space (X, µ, T ) is said to be complete if and only if every Cauchy sequence in X is convergent to a point in X .

Theorem 1.4 ([7]). If (X, µ, T ) is an RN-space and {xn} is a sequence such that xn → x, then limn→∞ µxn(t) = µx(t) almost
everywhere.

Definition 1.5. A random normed algebra is a random normed space with algebraic structure such that (RN4)µxy(ts) ≥

µx(t)µy(s) for all x, y ∈ X and all t, s > 0.

Example 1.6. Every normed algebra (X, ‖.‖) defines a random normed algebra (X, µ, TM), where

µx(t) =
t

t + ‖x‖

for all t > 0. This space is called the induced random normed algebra.

Definition 1.7. Let (X, µ, TM) and (Y , µ, TM) be random normed algebras. An R-linear mapping f : X → Y is called a
random homomorphism if f (xy) = f (x)f (y) for all x, y ∈ X .

Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y)+ d(y, z) for all x, y, z ∈ X .

We recall a fundamental result in fixed point theory.

Theorem 1.8 ([11,12]). Let (X, d) be a complete generalized metric space and let J : X → X be a strictly contractive mapping
with Lipschitz constant L < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;
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(2) the sequence {Jnx} converges to a fixed point y∗ of J;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤

1
1−Ld(y, Jy) for all y ∈ Y .

The stability problem of functional equations originated from a question of Ulam [13] concerning the stability of group
homomorphisms.Hyers [14] gave a first affirmative partial answer to the question ofUlam for Banach spaces. Hyers’ theorem
was generalized by Aoki [15] for additive mappings and by Rassias [16] for linear mappings by considering an unbounded
Cauchy difference. The paper of Rassias [16] has had a lot of influence in the development of what we call generalized
Ulam–Hyers stability of functional equations. A generalization of the Rassias theorem was obtained by Găvruta [17] by
replacing the unbounded Cauchy difference by a general control function in the spirit of the approach of Rassias.

On the other hand, in 1982–1998, Rassias generalized the Ulam–Hyers stability result by presenting a weaker condition
controlled by a product of different powers of norms.

Theorem 1.9 ([18–24]). Assume that there exist constantsΘ ≥ 0 and p1, p2 ∈ R such that p = p1 + p2 ≠ 1, and f : E → E ′

is a mapping from a normed space E into a Banach space E ′ such that the inequality

‖f (x + y)− f (x)− f (y)‖ ≤ ϵ‖x‖p1‖y‖p2

for all x, y ∈ E. Then there exists a unique additive mapping T : E → E ′ such that

‖f (x)− L(x)‖ ≤
Θ

2 − 2p
‖x‖p

for all x ∈ E.

The control function ‖x‖p
·‖y‖q

+‖x‖p+q
+‖y‖p+q was introduced by Rassias [25] andwas used in several papers (see [26–

31]). The stability problems of several functional equations have been extensively investigated by a number of authors and
there are many interesting results concerning this problem (see [32–41]).

In 1996, Isac and Rassias [42]were the first to provide applications of stability theory of functional equations for the proof
of new fixed point theorems with applications. By using fixed point methods, the stability problems of several functional
equations have been extensively investigated by a number of authors (see [5,43,44]).

The generalized Ulam–Hyers stability of different functional equations in random normed and fuzzy normed spaces has
been studied recently in [6,45].

Using the fixed point method, we prove the generalized Ulam–Hyers stability of random homomorphisms in random
normed algebras, associated with the Cauchy functional equation f (x + y) = f (x)+ f (y).

Throughout this work, assume that (X, µ, TM) is a random normed algebra and that (Y , µ, TM) is a complete random
normed algebra.

2. Generalized Ulam–Hyers stability of random homomorphisms in random normed algebras

Using the fixed point method, we prove the generalized Ulam–Hyers stability of random homomorphisms associated
with the Cauchy functional equation.

Theorem 2.1. Let ϕ : X2
→ [0,∞) be a function such that there exists a constant 0 < L < 1

2 with

ϕ(x, y) ≤
L
2
ϕ (2x, 2y)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying

µf (rx+ry)−rf (x)−rf (y) (t) ≥
t

t + ϕ(x, y)
, (2.1)

µf (xy)−f (x)f (y) (t) ≥
t

t + ϕ(x, y)
(2.2)

for all r ∈ R, all x, y ∈ X and all t > 0. Then

H(x) := lim
n→∞

2nf
 x
2n


exists for each x ∈ X and defines a random homomorphism H : X → Y such that

µf (x)−H(x) (t) ≥
(2 − 2L)t

(2 − 2L)t + Lϕ(x, x)
(2.3)

for all x ∈ X and all t > 0.
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Proof. Letting y = x and r = 1 in (2.1), we get

µf (2x)−2f (x) (t) ≥
t

t + ϕ(x, x)

for all x ∈ X and all t > 0. So

µf (x)−2f ( x
2 )
(t) ≥

t
t + ϕ

 x
2 ,

x
2

 ≥
2t

2t + Lϕ (x, x)
(2.4)

for all x ∈ X and all t > 0.
Consider the set

S := {g : X → Y }

and introduce a generalized metric on S:

d(g, h) = inf

ν ∈ R+ : µg(x)−h(x)(νt) ≥

t
t + ϕ(x, x)

, ∀x ∈ X,∀t > 0

,

where, as usual, infφ = +∞. It is easy to show that (S, d) is complete (see the proof of [6, Lemma 2.1]).
Now we consider the linear mapping J : S → S such that

Jg(x) := 2g
 x
2


for all x ∈ X .

Let g, h ∈ S be given such that d(g, h) = ε. Then

µg(x)−h(x)(εt) ≥
t

t + ϕ(x, x)

for all x ∈ X and all t > 0. Hence

µJg(x)−Jh(x)(Lεt) = µ2g( x
2 )−2h( x

2 )
(Lεt) = µg( x

2 )−h( x
2 )


L
2
εt


≥

Lt
2

Lt
2 + ϕ

 x
2 ,

x
2

 ≥

Lt
2

Lt
2 +

L
2ϕ(x, x)

=
t

t + ϕ(x, x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (2.4) that

µf (x)−2f ( x
2 )


L
2
t


≥
t

t + ϕ(x, x)

for all x ∈ X and all t > 0. So d(f , Jf ) ≤
L
2 .

By Theorem 1.8, there exists a mapping H : X → Y satisfying the following:

(1) H is a fixed point of J , i.e.,

H
 x
2


=

1
2
H(x) (2.5)

for all x ∈ X . The mapping H is a unique fixed point of J in the set

M = {g ∈ S : d(f , g) < ∞}.

This implies that H is a unique mapping satisfying (2.5) such that there exists a ν ∈ (0,∞) satisfying

µf (x)−H(x)(νt) ≥
t

t + ϕ(x, x)
for all x ∈ X and all t > 0.

(2) d(Jnf ,H) → 0 as n → ∞. This implies the equality

lim
n→∞

2nf
 x
2n


= H(x)

for all x ∈ X .
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(3) d(f ,H) ≤
1

1−Ld(f , Jf ), which implies the inequality

d(f ,H) ≤
L

2 − 2L
.

This implies that the inequality (2.3) holds.
Let r = 1 in (2.1). By (2.1),

µ
2nf


x
2n +

y
2n


−2nf


x
2n


−2nf


y
2n

 
2nt


≥

t
t + ϕ

 x
2n ,

y
2n


for all x, y ∈ X , all t > 0 and all n ∈ N. So

µ
2nf


x
2n +

y
2n


−2nf


x
2n


−2nf


y
2n

 (t) ≥

t
2n

t
2n +

Ln
2n ϕ (x, y)

for all x, y ∈ X , all t > 0 and all n ∈ N. Since limn→∞

t
2n

t
2n +

Ln
2n ϕ(x,y)

= 1 for all x, y ∈ X and all t > 0,

µH(x+y)−H(x)−H(y) (t) = 1

for all x, y ∈ X and all t > 0. Thus the mapping H : X → Y is Cauchy additive.
Let y = 0 in (2.1). By (2.1),

µ
2nf


rx
2n


−2nrf


x
2n

 
2nt


≥

t
t + ϕ

 x
2n , 0


for all r ∈ R, all x ∈ X , all t > 0 and all n ∈ N. So

µ
2nf


rx
2n


−2nrf


x
2n

 (t) ≥

t
2n

t
2n +

Ln
2n ϕ (x, 0)

for all r ∈ R, all x ∈ X , all t > 0 and all n ∈ N. Since limn→∞

t
2n

t
2n +

Ln
2n ϕ(x,0)

= 1 for all x ∈ X and all t > 0,

µH(rx)−rH(x) (t) = 1

for all r ∈ R, all x ∈ X and all t > 0. Thus the additive mapping H : X → Y is R-linear.
By (2.2),

µ
4nf


x
2n ·

y
2n


−2nf


x
2n


·2nf


y
2n

 
4nt


≥

t
t + ϕ

 x
2n ,

y
2n


for all x, y ∈ X , all t > 0 and all n ∈ N. So

µ
4nf


x
2n ·

y
2n


−2nf


x
2n


·2nf


y
2n

 (t) ≥

t
4n

t
4n +

Ln
2n ϕ (x, y)

for all x, y ∈ X , all t > 0 and all n ∈ N. Since limn→∞

t
4n

t
4n +

Ln
2n ϕ(x,y)

= 1 for all x, y ∈ X and all t > 0,

µH(xy)−H(x)H(y) (t) = 1

for all x, y ∈ X and all t > 0. Thus the mapping H : X → Y is multiplicative.
Therefore, there exists a unique random homomorphism H : X → Y satisfying (2.3). �

Similarly, we can obtain the following. We will omit the proof.

Theorem 2.2. Let ϕ : X2
→ [0,∞) be a function such that there exists a constant 0 < L < 1 with

ϕ(x, y) ≤ 2Lϕ
 x
2
,
y
2


for all x, y ∈ X. Let f : X → Y be a mapping satisfying (2.1) and (2.2). Then

H(x) := lim
n→∞

1
2n

f

2nx


exists for each x ∈ X and defines a random homomorphism H : X → Y such that

µf (x)−H(x) (t) ≥
(2 − 2L)t

(2 − 2L)t + ϕ(x, x)
for all x ∈ X and all t > 0.
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