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RECONSTRUCTION THEOREM FOR STATIONARY

MONOTONE QUANTUM MARKOV PROCESSES∗

Jaeseong Heo†, Viacheslav P. Belavkin, and Un Cig Ji‡

Abstract. Based on the Hilbert C∗-module structure we study the re-
construction theorem for stationary monotone quantum Markov processes
from quantum dynamical semigroups. We prove that the quantum sto-

chastic monotone process constructed from a covariant quantum dynam-
ical semigroup is again covariant in the strong sense.

1. Introduction

A quantum dynamical semigroup as a quantum analogue of a classical sta-
tionary Markov evolution provides a mathematical framework for the study of
dissipative dynamics in quantum open system. The mathematical structure
of quantum dynamical semigroups and their generators have been studied by
many authors [7, 9, 15] and the references therein.

The notion of a weak quantum Markov process in terms of stochastic repre-
sentation for a quantum dynamical semigroup by a classical stochastic process
of counting type in continuous time T = R+ was first introduced by Davies
in [8]. Since then, as a generalization of the Kolmogorov construction for the
classical case to the quantum case, the reconstruction theorem for a quantum
stochastic process in the weak sense and its classical stochastic representation
have been studied by several authors. The reconstructions of quantum Markov
processes in strong sense were studied in discrete time T = Z+ by Lindblad
in [16], and Belavkin [2, 3] generalized that for a quantum non-stationary and
non-Markov process indexed by an arbitrary causally-ordered space-time T to
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include also the classical stochastic representation of Davies type. Indepen-
dently, Accardi-Frigerio-Lewis in [1] considered the reconstruction of a non-
Markov quantum stochastic process in strong sense which does not require any
order in T but requires not only casually ordered but also noncausal correla-
tion kernels forming an infinite set for a finite T . On the other hand, Lindblad,
Belavkin and later Parthasarathy [17] studied the monotone reconstruction
theorem for a weak quantum stochastic process using only causal correlation
kernels which form a finite set for a finite T . Given the kernels by a quantum
dynamical semigroup, this monotone reconstruction is a dynamical versions of
Stinespring’s theorem respectively in discrete and continuous time T .

The main purpose of this paper is to study the Belavkin reconstruction the-
orem [2] for monotone covariant quantum stochastic Markov processes from
the point of view of the Hilbert C∗-module structure. Such process is given
in weak sense by a positive semi-definite function constructed from a quantum
dynamical semigroup, and we prove that the strong monotone covariant quan-
tum stochastic process reconstructed from a covariant positive semi-definite
function given by a covariant quantum dynamical semigroup is again covariant
in strong sense as in [3].

This paper is organized as follows: In Section 2, we recall some basic notions
for Hilbert C∗-modules. In Section 3, we study a covariant representation,
constructed from a completely positive map, of a C∗-dynamical system on a
symmetry semigroup and the reconstruction theorem for a Hilbert C∗-module
valued stationary stochastic process, see Theorem 3.1. In Section 4, we study
the reconstruction theorem for monotone quantum stochastic processes from
quantum dynamical semigroups, see Theorem 4.1, which is a C∗-generalization
of Parthasarathy’s construction in [17] and for the stationary semigroup case
of the constructions given by Belavkin [2, 3]. In Section 5, we prove that the
monotone quantum stochastic process constructed from a covariant quantum
dynamical semigroup is strongly covariant with respect to a certain unitary
representation of the given symmetry semigroup.

2. Hilbert C∗-modules

Let A be a C∗-algebra. A right A-module X is called a pre-Hilbert A-
module if there is an A-valued inner product ⟨x | z⟩X ≡ ⟨x | z⟩ as a mapping
⟨· | ·⟩ : X × X → A which is linear in the second variable and satisfies the
following properties:

(i) |x|2 := ⟨x | x⟩ ≥ 0, and |x|2 = 0 only if x = 0,
(ii) ⟨x | z⟩ = ⟨z | x⟩∗ for any x, z ∈ X,
(iii) ⟨x | za⟩ = ⟨x | z⟩a for any a ∈ A.

If, in addition, X is complete with respect to the norm ∥x∥ = ∥⟨x | x⟩∥1/2, then
X is called a (right) Hilbert A-module. Obviously, X = A is the right Hilbert A-
module with respect to ⟨a | b⟩ = a∗b such that the left multiplication operator
Lab = ab on A has the adjoint L†

a = La∗ . Note that in general the vectors
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x ∈ X are in one-to-one correspondence with the linear operators Lx : A → X
of the left multiplications Lxa = xa given by the right action a : x 7→ xa of a on
X due to the existence of an approximate identity in A. This correspondence
is explicit: x1 = x = Lx1 in the case of the unital C∗-algebra A ∋ 1, so we
might not even distinguish x and Lx.

Let X and Y be Hilbert A-modules. We denote by LA(X,Y) the space of
adjointable operators mapping X into Y such that for each L ∈ LA(X,Y) there
is an adjoint operator L† ∈ LA(Y,X) in the sense that

⟨Lx | y⟩Y = ⟨x | L†y⟩X, (x ∈ X, y ∈ Y),

and by BA(X,Y) the space of all linear bounded operators L : X → Y satisfying
the right A-modular property

(2.1) L(xa) = (Lx)a, (x ∈ X, a ∈ A).

It follows from the uniform boundedness theorem that each operator L ∈
LA(X,Y) is bounded, so that L ∈ BA(X,Y). We write LA(X) for LA(X,X)
which becomes a C∗-algebra with the operator norm. A representation of a
C∗-algebra B on a Hilbert A-module X is a ∗-homomorphism π from B into
LA(X). Note that the elements x ∈ X are adjointable, x†z = ⟨x | z⟩, as
the linear operators Lx ∈ LA(A,X), as well as x† := L†

x ∈ LA(X,A) with
x†† = x ≡ Lx. But the linear operator of the right multiplication Rax = xa
on X is not adjointable, it is not even A-modular, Ra /∈ BA(X) unless ⟨· | ·⟩
has the range in a commutative ideal of A, in which case R†

a = Ra∗ . For more
details on Hilbert C∗-modules, we refer to [14].

3. C∗-dynamical systems and stochastic processes

Let A be a unital C∗-algebra and let (us) := {us ∈ U(A) : s ∈ S} be a
representation of a symmetry semigroup S in the unitary group U(A). Let θ
be an action of S on a (unital) C∗-algebra B by a semigroup of endomorphisms
s 7→ θs ∈ End(B) such that for each s ∈ S the map θs : B → B is an injective
endomorphism (shift) on B, and θs ◦ θr = θs·r. The triple (B, S, θ) is called a
C∗-dynamical system.

A linear map ϕ : B → A is called (θ, u)-covariant if

ϕ(θs(b)) = usϕ(b)u
∗
s for all b ∈ B, s ∈ S.

A covariant representation of (B, S, θ) is a triple (π, V,X), where π is a (unital)
∗-homomorphism of B on a Hilbert A-module X and V is an isometric A-
modular map V : S → BA(X) of S such that VrVs = Vr·s for all r, s ∈ S,
|Vsx|2 = |x|2 for all x ∈ X and

(3.1) π(θs(b))Vs = Vsπ(b), (b ∈ B, s ∈ S).

If isometries Vs ∈ BA(X) are all surjective, they are obviously adjointable,
Vs ∈ LA(X) as being unitary: V †

s = V −1
s .



66 JAESEONG HEO, VIACHESLAV P. BELAVKIN, AND UN CIG JI

Theorem 3.1. Let (B, S, θ) be a C∗-dynamical system with the unit element
1B and let u be a representation of a semigroup S into the unitary group U(A)
of a unital C∗-algebra A with the unit element 1A. If ϕ : B → A is a unital
(θ, u)-covariant completely positive linear map, then

(i) there exists a covariant representation (π, V,X) of (B, S, θ) with a unit
vector e ∈ X generating X by π(B)eA such that ϕ(b) = ⟨e | π(b)e⟩,

(ii) for any ϕ-stationary process {bt : t ∈ S} ⊂ B, i.e.,

ϕ(b∗r·tbs·t) = ϕ(b∗rbs) (r, s, t ∈ S),

the X-valued process {xt ≡ π(bt)eut : t ∈ S} is u-stationary, that is,

(3.2) Cr·t,s·t(x) = u∗
tCr,s(x)ut for all r, s, t ∈ S,

in particular, {Vte : t ∈ S} is u-stationary, where

Cr,s(x) = ⟨xr | xs⟩.

Proof. (i) By similar arguments to the Paschke’s construction [18, 11], there
exist a Hilbert A-module X and a ∗-representation π : B → LA(X). In fact, X
is the completion of the quotient space B ⊗alg A/N by the pre-inner product
⟨· | ·⟩ defined by ⟨∑

i

bi ⊗ ai

∣∣∣∣∣∣
∑
j

b′j ⊗ a′j

⟩
=

∑
i,j

a∗iϕ(b
∗
i b

′
j)a

′
j

on the algebraic tensor product B ⊗alg A, where N = {z ∈ B ⊗alg A : ⟨z | z⟩ =
0}. For each b ∈ B, the map

π(b) :
∑
i

bi ⊗ ai 7−→
∑
i

bbi ⊗ ai

can be extended to X by continuity, which gives the ∗-representation π. In this
construction, the unit vector e = 1B ⊗ 1A ∈ X is a generating vector of X, i.e.,
π(B)eA = {π(b)ea | a ∈ A, b ∈ B} spans X, and we have ϕ(b) = ⟨e | π(b)e⟩
for any b ∈ B. On the other hand, for any a ∈ A, b ∈ B and s ∈ S, by the
(θ, u)-covariance of ϕ we have∣∣∣∣∣∑

i

π(θs(bi))eusai

∣∣∣∣∣
2

=

∣∣∣∣∣∑
i

π(bi)eai

∣∣∣∣∣
2

and so the operator

Vs : π(b)ea 7→ π(θs(b))eusa

can be extended to X by linearity and continuity. Moreover, Vs satisfies the
A-modular property. By the definition of Vs, we have VrVs = Vr·s on π(B)eA,
which also holds on X. Furthermore, it satisfies the covariance condition (3.1)
on π(B)eA which also holds by continuity on the whole space X. Therefore,
the triple (π, V,X) is a covariant representation of (B, S, θ).
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(ii) The proof of the stationary condition (3.2) is straightforward from the
definition of the covariance function Cr,s(x) and the ϕ-stationarity of {bt : t ∈
S}. □

Remark 3.2. In (i) of Theorem 3.1, a covariant representation (π, V,X) of
(B, S, θ) is said to be minimal if there exists a unit vector e ∈ X such that
π(B)eA spans a dense subspace of X. A minimal covariant representation is
unique up to unitary equivalence. That is, if there exists another minimal co-
variant representation (π′, V ′,X′) of (B, S, θ) with a generating vector e′ ∈ X′,
then the map U : X → X′ given by

U(π(b)ea) = π′(b)e′a, (b ∈ B, a ∈ A)

gives the unitary equivalence of the covariance representations. In this case,
UV U† coincides with the isometric representation V ′ of S on X′.

In (ii) of Theorem 3.1, for each b ∈ B such that

ϕ(θr·t(b)
∗θs·t(b)) = ϕ(θr(b)

∗θs(b)), (r, s, t ∈ S)

the X-valued process {xt ≡ Vtπ(b)e = π(θt(b))eut : t ∈ S} is u-stationary. □

4. Quantum dynamical semigroups and Markov C∗-processes

Let T = [0,∞) be an additive semigroup. A quantum dynamical conservative
semigroup over a unital C∗-algebra A is a one-parameter family ϕ = {ϕt : t ∈
T} of unital completely positive (UCP) linear maps ϕt : A → A satisfying the
dynamical condition:

(4.1) ϕs ◦ ϕt = ϕs+t, (s, t ∈ T )

and is conservative in the sense that ϕt(1A) = 1A for all t ∈ T .
In [17], Parthasarathy proved that, if ϕ is a dynamical semigroup of normal

UCP maps on a von Neumann algebra M on a Hilbert space H0, then there
exist a family of normal unital representations (πt,Ht) of M with π0 = idM
and a family F of Hilbert space co-isometries Fs(t) : Ht → Hs (s < t) satisfying
the backward dynamical condition

(4.2) Fr(s)Fs(t) = Fr(t), (t > s > r ∈ T )

such that

(4.3) Fr(t)πt(a)Fr(t)
† = πr(ϕt−r(a)) for all a ∈ M, t > r ∈ T .

This may be considered as a dynamical type Stinespring theorem for a semi-
group of normal completely positive maps. One of our main interests in this
paper is to give the Hilbert C∗-module version (Theorem 4.1). For the study
of the non-stationary case, we refer to [2, 3] by Belavkin.

Let {Xt : t ∈ T} be a family of Hilbert A-modules. A family {Fr(t) : r < t ∈
T} of operators Fr(t) : Xt → Xr (r < t) is called a hemigroup if the backward
dynamical condition (4.2) holds and Fr(r) = I for all r ∈ T .
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In [4], Bhat and Parthasarathy proved to show the existence of weak Markov
flows dilating a given completely positive semigroup {Tt : t ≥ 0} in both
the conservative case, Tt(1) = 1 and the nonconservative case, Tt(1) ≤ 1.
Bhat and Skeide [5] extended a completely positive semigroup on a unital
C∗-subalgebra of B(H) to an E0-semigroup which is a strongly continuous
semigroup of unital ∗-endomorphisms on B(H) by using of continuous families
of Hilbert C∗-modules. In [5, Theorem 6.9] they showed the existence of the
correlation kernel of a completely positive semigroup, which is similar to our
kernel given in the following theorem. However, we construct a hemigroup of
co-isometries and a increasing family of Hilbert C∗-modules which is different
from the one in [5]. Moreover, we will use the proof of Theorem 4.1 to prove
Theorem 5.1 which is the covariant version of the following theorem, so that
we will give a proof of the following theorem for the reader’s convenience.

Theorem 4.1. Let {ϕt : t ∈ T} be a quantum dynamical conservative semi-
group over a unital C∗-algebra A with the unit element 1. Then there exist

(i) an increasing family X = {Xt : t ∈ T} of Hilbert A-modules,
(ii) a family π = {πt : t ∈ T} of ∗-representations πt of A on Xt with

π0 = idA,
(iii) a hemigroup F = {Fr(t) : r < t ∈ T} of co-isometries Fr(t) : Xt → Xr

such that

(4.4)
∣∣∣πt(a)F

†
t (tn)πtn(an) · · ·F

†
t2(t1)πt1(a1)et1

∣∣∣2 = κτ
∅(a

∗,a)

for all a = (a1, . . . , an, a) ∈ An+1 and the state vector-martingale et = F †
t (0)1,

where κτ
0(a

∗,a) is defined as in (4.6). In particular, the process π satisfies the
strong Markov property

(4.5) Fr(t)πt(Bt)Fr(t)
† ⊆ πr(Br) for all t > r ∈ T .

Proof. The proof is similar to those of the reconstruction theorems by Belavkin
[3] and Parthasarathy [17]. By similar arguments used in the proof of Theorem
3.1, we obtain a family of the KS-GNS triples (X◦

t , π
◦
t , e

◦
t ) from the completely

positive linear map ϕt which we now may denote as (Xτ
t , π

τ
t , e

τ
t ) with τ = {t}.

For each finite chain τ = {t1, . . . , tn, t} ⊂ T with 0 < t1 < · · · < tn < t, we
define a multilinear map κτ

0 : An+1 ×An+1 → A indexed by τ as follows:

(4.6) κτ
0(a

∗,b) = ϕt1(a
∗
1ϕt2−t1(· · · a∗nϕt−tn(a

∗b)bn · · · )b1).

Here a∗ = (a∗1, . . . , a
∗
n, a

∗) ∈ An+1 for any (n + 1)-tuple a = (a1, . . . , an, a) ∈
An+1. Then each kernel κτ

0 is positive semi-definite due to the complete posi-
tivity of ϕ and satisfies the projectivity (consistency) condition

(4.7) κτ ′

0 (a∗τ ,bτ ) = κτ
0(a

∗,b), (τ ⊂ τ ′, a,b ∈ A|τ |)

where aτ ∈ A|τ ′| is a ∈ A|τ | injected into A|τ ′| by adding the identities ak =
1 ∈ A to a for all tk ∈ τ ′ which are not in τ , due to the unitality of ϕ. The
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kernel κτ
0 satisfies the last moment adjointability property:

(4.8) κτ
0

(
a∗, b|τ | · b

)
= κτ

0

(
a∗ · b|τ |,b

)
, (a ∈ A|τ |, b ∈ A)

where a∗ · b|τ | = (a∗1, . . . , a
∗
n, a

∗b) =
(
b∗|τ | · a

)∗
for τ = {t1, . . . , tn, t}.

Let F be the set of all functions f : T → A with finite support, i.e.,
supp(f) := {t ∈ T | f(t) ̸= 1} is a finite chain τ(f) ⊂ T . Let Ft be the subset of
F consisting of f having the support τ(f) ⊂ [0, t] with max τ(f) ≤ t. Let τ be
a finite nonempty chain τ = {t1, . . . , tn, t} and let a ∈ A|τ | be a (n + 1)-tuple
(a1, . . . an, a) defining the function f ∈ Ft with the support supp(f) ⊂ τ by
f(ti) = ai, f(t) = a and f(0) = 1. Any other function f ∈ Ft has f(0) = c ̸= 1
and is defined by a0 = (c,a). We set

(4.9) Ct(f ;h) = c∗κτ
0(a

∗,b)d ≡ κτ
[0(a

∗
0,b0), t = max τ

for any f, h ∈ Ft with h(ti) = bi ∈ A including h(0) = d ∈ A and h(t) = b ∈ Bt

and notice that due to the projectivity condition (4.7), the equation (4.9) does
not depend on τ ≤ t and therefore on t as soon as τ ⊇ (τ(f)∪τ(h))\{0} contains
the joint support of f, h ∈ Ft without 0. The kernel C(f ;h) = κτ

0(f
∗, h)

extending by polarization the positive values κ(f∗, f) ≥ 0 is also positive semi-
definite on Ft.

Take the inductive union F =
∪
Ft and its A-linear span FA as a right

A-module of formal A-combinations g =
∑

i∈I fiai with ga =
∑

i∈I fiaia. We
may regard g as the A-valued function of F to A with finite support

supp(g) = {f ∈ F | g(f) ̸= 0} = {fi | i ∈ I}

such that g(fi) = ai. Define an A-valued semi-definite sesquilinear form

⟨g | g⟩ =
∑
i,k

a∗iCt(fi; fk)ak ≡
∑

f,h∈supp(g)

g(f)∗Ct(f ;h)g(h)

for any g ∈ FtA having the support in Ft. Due to the projectivity of C,
this does not depend on t as soon as supp(g) ⊆ Ft. Take the quotient Dt =
FtA/ kerCt where kerCt = {g ∈ FtA | ⟨g | g⟩ = 0} and complete it. The
completion Xt is the right Hilbert A-module with xt(h) ∈ Xt, h ∈ Ft, defined
as the equivalence class of the indicator δh such that

(4.10) ⟨xt(f) | xt(h)⟩ = Ct(f ;h) = ⟨δf | δh⟩ for all f, h ∈ Ft.

Therefore, Ct becomes the reproducing kernel of Xt. Now, due to Fr ⊆ Ft for
all r < t and the projectivity (4.7) of C we have isometric embeddings FrA ⊆
FtA for the semi-Hilbert A-modules and thus the isometries F †

t (r) : Dr ↪→ Dt

on their quotients, which is extended by continuity to Hilbert A-modules Xt.
Moreover, we have that

xt(f) = F †
t (s)xs(f) for any f ∈ Fs
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since for each function f ∈ Fs ⊆ Ft, δf as a function on Ft coincides with δf as a
function on Fs. It is obvious from the construction that F = {Fr(t) : r < t ∈ T}
is a hemigroup of co-isometries Fr(t) : Xt → Xr (r < t).

We note that the left multiplication operator λt(a) : h 7→ at · h, given on
h ∈ Ft by the function at = aδt for a ∈ A with the single point support
τ(at) = {t} as

λt(a) : b = (b1, . . . , bn, b) 7→ at · b = (b1, . . . , bn, ab)

on b = h(t), is adjointable on Dt. Therefore, there exists a ∗-representation
πt : A → LA(Xt) extending the left multiplication πt(a)xt(h) = xt(at · h) such
that πt(a)

† = πt(a
∗) due to

⟨xt(f) | πt(a)xt(h)⟩ = ⟨πt(a
∗)xt(f) | xt(h)⟩.

This representation is obviously unital, πt(1) = It, due to 1t ·b = b as 1t = δt.
Since Ft ⊆ Ft′ for any t′ > t, by (4.9) and (4.10), the backward hemigroup

F = {Fs(t) : s < t ∈ T} of co-isometries Fs(t) : Xt → Xs with et = F †
t (0)1

defines the reconstruction (4.4) as the kernel

κτ
0(a

∗,a) = ⟨xt(f) | xt(f)⟩ ≡ |xt(f)|2, ∀ f : τ(f) ⊆ τ

with f(0) = 1, f(ti) = ai for i = 1, . . . , n and f(tt) = a, where

xt(f) = πt(a)F
†
t (tn)πtn(bn)F

†
tn(tn−1) · · ·πt1(b1)F

†
t1(0)1.

The Markovianity (4.3) simply follows from the recurrent relation for

xt(f) = πt(a)F
†
t (tn)xtn(fn) ≡ xt(at · fn),

where τ(fn) ⊆ τ\{t} such that fn(t) = 1 for t = max τ . We have that

⟨xt(f) | xt(h)⟩ =
⟨
F †
t (tn)xtn(fn) | πt(a

∗b)F †
t (tn)xtn(hn)

⟩
= ⟨xtn(fn) | πtn(ϕt−tn(a

∗b))xtn(hn)⟩

for all fn ∈ Ftn , where the latter identity giving the strong Markovianity is
due to

κτ
0(a

∗
n · a∗t , bt · bn) = κτn

0 (a∗n, [ϕt−tn(a
∗b)]tnbn)

for τn = τ\{t} with max τn = tn. □

A time indexed family π = {πt : t ∈ T} of unital ∗-morphisms πt from A
into LA(Xt) with the increasing identity It = πt(1) on Xt is called a monotone
quantum stochastic process in the strong sense of Belavkin [2, 3]. Hence, the
family π = {πt : t ∈ T}, obtained in Theorem 4.1, of ∗-representations πt of A
on Xt is a monotone quantum stochastic process.

Remark 4.2. The result of Theorem 4.1 can be extended to the case of an arbi-
trary totally ordered set T with a minimal element ∅ = minT and considered
as a dynamical Hilbert C∗-module representation of the Stinespring’s one.



STATIONARY MONOTONE QUANTUM MARKOV PROCESSES 71

5. Covariant quantum dynamical semigroups

Let T = [0,∞) and S be a symmetry semigroup. Let A be a unital C∗-
algebra with the unit element 1 and let (us) := {us ∈ U(A) : s ∈ S} be a
representation of S in the unitary group U(A). Let (A, S, θ) be a C∗-dynamical
system. A quantum dynamical semigroup {ϕt : t ≥ 0} on A is (θ, u)-covariant
if ϕt is (θ, u)-covariant for any t ≥ 0, that is,

(5.1) ϕt(θs(a)) = usϕt(a)u
∗
s for all a ∈ A, s ∈ S, t ∈ T .

We shall assume that for any s ∈ S, θs : A → A is unitarily implemented as

(5.2) θs(a) = usau
∗
s, (a ∈ A).

A covariant dynamical representation of (A, S, θ) is a triple (π, V,X), where
π = (πt) is a stochastic process given by unital ∗-representations πt : A →
LA(Xt) on the increasing Hilbert A-module system X = (Xt) with π0 = idA
on X0 = A, the hemigroup F of the co-isometries Fr(t) : Xt → Xr, t > r ∈ T ,

F †
t (0)1 = et and V = {V(·)(t) : t ∈ T} is a family of semigroups {Vs(t) : s ∈ S}

indexed by t ∈ T :

(5.3) Vr(t)Vs(t) = Vr·s(t), (r, s ∈ S)

of an isometric representation V (t) : S → BA(Xt) with an initial unitary
Vs(0) = us, satisfying the cocycle and consistency conditions

(5.4) πt(θs(a))Vs(t) = Vs(t)πt(a), (a ∈ A, s ∈ S, t ∈ T ),

(5.5) Ft0(t)Vs(t) = Vs(t0)Ft0(t), (s ∈ S, t > t0 ∈ T ).

Now, we are going to study a Hilbert C∗-module version for the stationary
case of the covariant reconstruction theorem for the monotone Markov process
indexed by a totally ordered set T as formulated for the Hilbert space case and
the general set T [2].

Theorem 5.1. Let (A, S, θ) be a C∗-dynamical system. If ϕ = {ϕt : t ∈ T} is
a (θ, u)-covariant dynamical semigroup over the unital C∗-algebra A with unit
1, then there exist

(i) an increasing Hilbert A-module system X = (Xt),
(ii) a stochastic process π = (πt) given by unital ∗-representations πt : A →

LA(Xt),
(iii) a hemigroup F = {Fr(t) : r < t ∈ T} of co-isometries Fr(t) : Xt → Xr,
(iv) a family V = {V(·)(t) : t ∈ T} of semigroups {Vs(t) : s ∈ S} of unitaries

Vs(t) ∈ LA(Xt) satisfying (5.3)

such that the cocycle and consistency conditions (5.4) and (5.5) hold.

Proof. In Theorem 4.1, the family X = (Xt) of Hilbert A-modules, a quantum
stochastic process π = (πt) and a hemigroup F = {Fr(t) : r < t ∈ T} are
already constructed.
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Using the notations in Theorem 4.1, for each s ∈ S, we define the action Θs

onto the set F of finitely supported A-valued functions f ∈ F by Θs(f)(r) =
θs(f(r)) for any r ∈ T . If τ = supp(h) is a chain {t1, . . . , tn, t}, the support of
Θs(h) is also the chain τ = {t1, . . . , tn, t}. This determines a linear operator

(5.6) FtA ∋ g −→
∑
i

Θs(fi)θs(ai)us ∈ FtA

on each space FtA of all finite A-combinations g =
∑

i fiai of fi ∈ Ft. On the
other hand, it follows from (5.1), (5.2) and (4.6) that

(5.7) κτ
0(a

∗
s,bs) = usκ

τ
0(a

∗,b)u∗
s, (a,b ∈ A|τ |)

where as = (a1s, . . . , ans, as) with ais = θs(ai), bs = (b1s, . . . , bns, bs) with
bis = θs(bi) and τ = {t1, . . . , tn, t}. Therefore, due to (5.7) the operator given
as in (5.6) gives an isometry

Vs(t)h =
∑
i

Θs(fi)θs(ai)us +Nt, ∀ h = g +Nt ∈ Dt

on the pre-Hilbert A-module Dt in Theorem 4.1, since

⟨Vs(t)h | Vs(t)h⟩ =
∑
i,k

a∗i u
∗
sθs(κ

τ
0(b

∗
i ,bk))usak = ⟨h | h⟩, ∀ h ∈ Dt

due to the covariance (5.7) of the kernels (4.6) constructed from the covariant
dynamical semigroup ϕ. Therefore, Vs(t) can be extended, by continuity, to
Xt as an isometry into Xt for every s ∈ S and each fixed t ∈ T . Moreover,
these isometries have the A-modular property since they commute with right
multiplications Ra by a ∈ A on Xt as

RaVs(t)h =
∑
i

Θs(fi)θs(ai)usa+Nt = Vs(t)Rah

for all h ∈ Dt and a ∈ A. Thus, we have that Vs(t) ∈ BA(Xt). Consider an
action υ of S on A by a semigroup of endomorphisms s 7→ υs ∈ End(A) such
that for each s ∈ S, υs(a) = u∗

saus for any a ∈ A, and an operator Ws(t)
defined on Dt by

Ws(t)h =
∑
i

Υs(fi)υs(ai)u
∗
s +Nt, (h =

∑
i

fiai +Nt ∈ Dt),

where Υs (s ∈ S) is the action onto the set F of finitely supported A-valued
functions defined by Υs(f)(r) = υs(f(r)) for f ∈ F and r ∈ T . Then, by similar
arguments used for Vs(t), we can easily see that Ws(t) is an isometry on Dt

and its extension to Xt is the adjoint of Vs(t). Therefore, Vs(t) ∈ LA(Xt) is
unitary. The semigroup condition (5.3) for V is obvious by the definition of V .
Also, we can see that the cocycle conditions (5.4) and (5.5) by the arguments
similar to [3]. □
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Remark 5.2. In [10], Goswami and Sinha constructed Evans-Hudson dilations of
a uniformly continuous quantum dynamical semigroup on a von Neumann alge-
bra and they extended to unital separable C∗-algebras. Chakraborty, Goswami
and Sinha [6] obtained covariant dilations for uniformly continuous semigroups.
That is, they proved that every uniformly continuous quantum-dynamical semi-
group on a separable C∗-algebra or a von Neumann algebra which is covariant
under a compact group action admits a covariant Evans-Hudson dilation in
some Fock space, which is the Hilbert space analogue of Theorem 5.1. To
get covariant dilations for uniformly continuous semigroups, they used Hilbert
module techniques, which are quite close to our techniques. However, they
did not consider a Hilbert module framework for Bhat-Parthasarathy-Belavkin
type dilation and the stationarity of a quantum stochastic process which are
proved in this section. For a general setting, we did not restrict to compact
groups.

For each fixed t ∈ T and a ∈ A, we consider the quantum stochastic process
{πt(θs(a)) : s ∈ S} and its correlation function

C(t)
r,s(a) = ⟨πt(θs(a))et | πt(θs(a))et⟩.

Then we get the following theorem for the stationarity of the quantum stochas-
tic process π given as in Theorem 5.1.

Theorem 5.3. The quantum stochastic process {πt(θs(a)) : s ∈ S} is u-
stationary in the sense that

(5.8) C
(t)
v·r,v·s(a) = uvC

(t)
r,s(a)u

∗
v, ∀ r, s, v ∈ S.

Proof. For any r, s, v ∈ S, we obtain that

C
(t)
v·r,v·s(a) = ⟨π(θv·r(a))et | π(θv·s(a))et⟩

= uvC
(t)
r,s(a)u

∗
v,

which implies the equation (5.8). □
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