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a b s t r a c t

Low birth weight (LBW) defined as infant weight at birth of less than 2500 g is a useful
health outcome for exploring spatio-temporal variation and the role of covariates. LBW
is a key measure of population health used by local, national and international health orga-
nizations. Yet its spatio-temporal patterns and their dependence structures are poorly
understood. In this study we examine the use of flexible latent structure models for the
analysis of spatio-temporal variation in LBW. Beyond the explanatory capabilities of
well-known predictors, we observe spatio-temporal effects, which are not directly obser-
vable using conventional modeling approaches. Our analysis shows that for county-level
counts of LBW in Georgia and South Carolina the proportion of black population is a posi-
tive risk factor while high-income is a negative risk factor. Two dominant residual tempo-
ral components are also estimated. Finally our proposed method provides a better
goodness-of-fit to these data than the conventional space–time models.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Descriptive epidemiology is built on the three-cornered
stool of person, place and time. Increasingly sophisticated
approaches and technologies have been devised in recent
years to support risk factor epidemiology, spatial analysis
of diseases and health conditions, and time series analysis.
Rarely are the three domains of covariates, space and time
analyzed within a framework allowing for their simulta-
neous consideration. Most research examining spatial pat-
terns of disease incidence, for example, examine spatial
distributions for a specific time interval, or compare multi-
ple maps over time rather than modeling the temporal
component directly.
. All rights reserved.
In this paper we develop and apply an approach to
space–time latent component modeling using the outcome
of low birth weight (LBW) among resident live births mea-
sured at the county level across two US states annually
over a decade. Low birth weight, defined as infant birth
weight less than 2500 g or 5 lb 8 oz, is one of the principal
measures of birth outcomes used at the local, national and
international levels (Healthy People 2020, objective MICH-
8.1). Birth weight is universally available in the US for a
long period of time and the methods of data collection
should be standardized across the time and geographical
areas in the US. Thus, LBW is a useful health outcome for
exploring spatio-temporal variation and the roles of covar-
iates in explaining the spatio-temporal patterns.

Low birth weight is associated with maternal factors
and behaviors during pregnancy, socio-cultural factors, as
well as demographic characteristics (Adams et al., 2009;
Committee to Study the Prevention of Low Birthweight,
1985; Goldenberg and Culhane, 2007). A partial list of

http://dx.doi.org/10.1016/j.sste.2011.07.011
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demographic, reproductive and behavioral factors associ-
ated with LBW includes maternal race/ethnicity, age,
education, parity, plurality, inadequate prenatal care,
marital status, previous preterm birth, smoking, and
pre-pregnancy body mass index (Fang et al., 1999; Pearl
et al., 2001). More recently, attention has focused on covar-
iates of LBW at the ecological level and in multi-level
analyses (Baker and Hellerstedt, 2006; Grady, 2006;
Metcalfe et al., 2011; Young et al., 2010). In their recent
meta-analysis, Metcalfe et al. (2011) found a modest but
statistically significant association between neighborhood
income and LBW (pooled Odds Ratio 1.11; 95% CI 1.02–
1.20). Other aspects subjected to closer scrutiny have
included the role of residential segregation (Baker and
Hellerstedt, 2006; Grady, 2006), and race/ethnicity (Fang
et al., 1999; Pearl et al., 2001). Low birth weight has also
varied over time in the US, rising from approximately
7.0% in 1950 to a peak in the mid-1960s and a nadir in
the early-1980s. Since 1985 the incidence of LBW has grad-
ually risen (Brosco et al., 2010). Given its temporal and
spatial variation as well as socio-demographic covariates
that also provide a spatial context, LBW is an ideal health
indicator for the purpose of our methodological evaluation.
Fig. 1. Standardized incidence maps for county-level low birth
In this report, we present a latent spatial structure ap-
proach to modeling county-level variation in low birth
weight across the states of Georgia and South Carolina dur-
ing calendar years 1997–2006 inclusive.

2. Data description

2.1. Low birth weight in the Southern US

We obtained county-level low birth weight data set in
Georgia and South Carolina for the years 1997–2006 from
the state health information systems (Georgia Division of
Public Health and South Carolina Department of Health
and Environmental Control). There are 205 counties (159
counties for Georgia and 46 counties for South Carolina)
and 10 years of data.

Fig. 1 presents the spatial–temporal variation of stan-
dardized incidence ratios for low birth weight births,
where the standardized incidence ratio is defined as the
number of LBW births divided by the number of expected
cases calculated by using the internal standardization
method (Banerjee et al., 2004) based on the statewide
crude population-based rate. In Fig. 1, we can see that
weight in Georgia and South Carolina for individual year.
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the standardized incidence ratios in south–west areas and
north–east areas are higher than other areas over years,
while the standardized incidence ratios in north–west
areas are lower than other areas.

Fig. 2 shows that two arbitrarily chosen spatial groups
have different temporal patterns for log standardized inci-
dence ratio. Overall, east areas of South Carolina (A areas)
have higher values of log standardized incidence ratio
(SIR) than the Atlanta suburbs (B areas) over years.

2.2. Predictors

Based on prior research and also considering the avail-
ability of county-level data, we consider county-level pop-
ulation density, the proportion of black people, median
household income, and unemployment rate as socio-eco-
nomic predictors of low birth weight. Population density
is defined as population divided by total land area (square
miles). The county proportion of black people is the black
or African American population divided by total popula-
tion. Population and income data sets are obtained from
the US census. Unemployment rate data set is obtained
from the US Bureau of Labor Statistics. For example, in
the Atlanta suburbs, population density and income are
high while the proportion of black people is low.

In addition, we considered aggregate data based on
birth certificates for the other known socio-demographic
and behavioral risk factors for LBW. They are the propor-
tion of mothers with less than 20 years old, and the pro-
portion of mothers over 35 years old, the proportion of
mothers with less than 12th grade education, the propor-
tion of mothers smoking during pregnancy, the proportion
of mothers with ‘‘Inadequate’’ value from the Kotelchuck
Index (= the proportion of mothers with IKI value), and
the proportion of mothers with less than five prenatal care
visits. Here, the Kotelchuck Index is a measure of adequacy
of prenatal care utilization based on the number of prena-
tal visits, the month prenatal care began, and the gesta-
tional age of infant at birth (Kotelchuck, 1994). There are
four categories: Adequate Plus, Adequate, Intermediate,
and Inadequate. For example, if woman begins prenatal
care after the 4th month or receives less than 50% of rec-
Fig. 2. Map to show the selected areas (Left) and temporal plots of log standard
(Right). The dashed line shows the average of log standardized incidence over t
ommended visits, then she has ‘‘Inadequate’’ value from
the Kotelchuck Index. Preliminary analysis showed that
the proportions of mothers with less than 20 years old
and over 35 years old are highly correlated with income
(Pearson’s correlation coefficient (r) = �0.71, p-va-
lue < 0.001 for young mothers; r = 0.7, p-value < 0.001 for
old mothers) and are correlated with each other
(r = �0.59, p-value < 0.001). Also, the proportion of moth-
ers with IKI value has a positive correlation with the pro-
portion of mothers with less than five prenatal care visits
(r = 0.78, p-value < 0.001).
3. Model approach

In this paper we consider the analysis of LBW counts at
county level within the counties of Georgia and South Car-
olina for the years 1997–2006. The county level counts of
LBW consist of 205 units and so have a considerable spatial
variation. The temporal period represents a considerable
time span which could be considered to yield evidence
for spatial–temporal latent structure within the LBW risk.
We consider two basic models for this risk in these data.
First, we consider a conventional space–time random ef-
fect model with separate space–time (ST) components
and a ST interaction term (Knorr-Held, 2000). This allows
for a parsimonious model representation of space–time
variation (Lawson, 2009), and is commonly applied to de-
scribe ST variation of disease risk. We call this the SREST
model (Standard Random Effect Space–Time model). Let
Yij denote the number of low-birth weight babies for
county i (i = 1,. . .,I) at time point j (j = 1,. . .,J) and Eij denote
the expected count. The count is assumed to follow a stan-
dard Poisson distribution as Yij � Pois(Eij#ij), where #ij is
the relative risk.

In the SREST model, the log relative risk can be specified
as

logð#ijÞ ¼ xT
ijbþ ui þ v i þ gj þ cj þ �ij ð1Þ

where Xij = (1, Xij1,. . ., Xijp)T is the vector of intercept and p
predictors and b = (b0,b1, . . ., bp)T is the corresponding
coefficient vector. The parameters ui and vi are the
ized incidence ratio (SIR) of low birth weights for the period 1997–2006
he selected areas.
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uncorrelated spatial random effect and the correlated spa-
tial random effect, respectively. Similarly, the parameters
gj and cj are the uncorrelated temporal random effect
and the correlated temporal effect, respectively. The
parameter �ij is the space–time interaction term.

The prior distribution of the correlated spatial compo-
nent vi is assigned to be a conditional autoregressive
(CAR) distribution (Besag et al., 1991),

v ijv j–i � N
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j�di

v j

ni
;
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ni
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where r2
v is the overall variance parameter, di is the set of

labels of the neighbors of county i, and ni is the number of
neighbors (adjacent counties) of county i. The correlated
temporal component cj is assigned to be a random walk
Gaussian distribution, cj � N(cj�1,r2

c). The prior distribu-
tions of the other random components ui, gj, and �ij are
specified as N(0;r2

u), N(0;r2
g), and N(0;r2

�), and all the stan-
dard deviance parameters in the model are assumed to
have a uniform distribution, Uniform(0,5). The coefficient
vector b has an independent non-informative Gaussian
prior distribution with large variance.

In contrast to this model we also examine the latent
structure model of Lawson et al. (2010) which allows there
to be a disaggregation of temporal profiles in risk for LBW.
The approach is based on the idea that regions have a set of
underlying risks that they can support and these risks are
temporally varying. The number of these latent risk pro-
files is usually unknown in advance and must be estimated
in the analysis. This model is called the STLS model (Space–
Time Latent Structure model) and is given by

logð#ijÞ ¼ XT
ijbþ

XL

l¼1

wlwilvlj þ �ij ð3Þ

where L is the number of components, vlj is the temporal
component that explains the underlying temporal pattern
in relative risk, wil is the corresponding weight that de-
pends on space, and wl is the entry parameter that con-
trols the selection of the temporal components. The
temporal component vlj can be assumed to have various
temporal dependency structures, and in this paper we as-
sume a random walk Gaussian distribution,
vlj � N(vlj�1,r2

v). The weight parameter wil describes the
proportion of lth temporal component contribution for
ith county, and it has two conditions: wil P 0 andPL

l¼1wil ¼ 1. Thus, the weight wil is modeled as
wil ¼ w�il=

PL
l¼1w�il, where w�il P 0 is the unnormalized

weight and is assumed to have a log-normal distribution
with the space-dependent mean fil and the variance
r2

w;w
�
il � LNðfil;r2

wÞ. The mean parameter fil has a CAR
distribution to take into account the spatial dependency
structure of the weights. The number of temporal compo-
nents (L) is assumed to be a large value apriori in order to
find the true temporal components. The entry parameter
is used to allow components to enter or be removed from
the model during updating. The entry parameter has a
value 0 or 1 so the lth temporal component is included
in the model if wl = 1 and is not included if wl = 0. We
assume that the entry parameter has a Bernoulli prior
distribution, wl � Bern(0.5), where 0.5 is a non-informa-
tive value. Using entry parameters in the model, it is not
necessary to find the number of components in advance
and this model can allow for the estimation of the number
of components included in the model.

To identify the spatial clusters each of which has a
homogeneous temporal trend in relative risk, we consider
a post hoc method using the estimated weight values.
We define the spatial cluster indicator Zi(=1,. . .,L) as

Zi ¼ argmaxlfW ilg ð4Þ

The indicator Zi means the index of the temporal com-
ponent with the largest weight in county i, which becomes
the primary temporal pattern of the county in relative risk.
Using the indicator Zi, we can allocate a fixed component to
a given region.

Since a component identifiability problem can arise in
Bayesian STLS modeling due to the invariance of the likeli-
hood with respect to the permutation of the component la-
bels (Stephens, 2000), we make the assumption in the
model that the latent components have time-dependent
structures while the corresponding weights have only
space-dependent structures. Also, in the STLS model, it is
possible for components to switch labels during Markov
Chain Monte Carlo (MCMC) simulation if multiple chains
are used. A single chain run can avoid this problem. Thus,
in this paper, we use a single chain and obtain the con-
verged estimates of the parameters from the posterior
sampling from the joint models via two packages R
(http://www.r-project.org) and WinBUGS (http://www.
mrc-bsu.cam.ac.uk/bugs). We use the posterior mean
values for estimates of all the parameters except the cluster
indicator Zi and use the posterior mode values for the
estimation of Zi as Zi is the nominal value.
4. Application

4.1. Model choice

We fit a range of models in our analysis. First, we
consider a simple Poisson linear regression model,
logð#ijÞ ¼ xT

ijbþ �ij; �ij � Nð0;r2
e Þ, which does not include

space and time random effects. The second model is the
SREST model and the third model is the STLS model with
10(=L) entry parameters. The reason that 10 entry param-
eters in the STLS model are considered is to make a balance
between computing time and model complexity. Also we
use a small area data set (205 counties) so L = 10 is large
enough to find the true number of components. For each
of the models, we include one of two different predictor
sets. The first set has 10 predictors: population density,
the proportion of black people, income, unemployment
rate, the proportion of mothers with less than 12th grade
education, smoking during pregnancy, IKI value, less than
5 prenatal care visits, less than 20 years old, and over
35 years old. The second set has 7 predictors, which ex-
cludes the proportion of mothers with less than 5 prenatal
care visits, less than 20 years old, and over 35 years old.
These are excluded because they are highly correlated with
the other predictors.

http://www.r-project.org
http://www.mrc-bsu.cam.ac.uk/bugs
http://www.mrc-bsu.cam.ac.uk/bugs
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For model selection, the deviance information criterion
(DIC) proposed by Spiegelhalter et al. (2002) is considered.
The DIC is defined as DIC ¼ �DðhÞ þ pD, where �DðhÞ is the pos-
terior mean of the deviance, D(h), and represents the model
fit, and pD ¼ �DðhÞ � DðĥÞ is the difference in the posterior
mean of the deviance and the deviance of the posterior
means and represents the effective number of parameters.
Recently, Celeux et al. (2006) proposed an alternative DIC,
DIC3, which uses a posterior estimate of likelihood, p̂ðyjhÞ
and is defined as DIC3 ¼ �DðhÞ þ ½�DðhÞ þ 2logp̂ðyjhÞ�. This
DIC3 provides stable and reliable evaluation and performs
well for finite mixture models so we use this measure in this
study. Lower values of DIC3 indicate a better fitting model.
For the evaluation of prediction performance, we consider
Table 2
Parameter estimates from the posterior distribution in the best-fitted
model (Space–Time Latent Structure model with 7 predictors). Posterior
mean, SD and 95% credible interval are shown.

Predictors Mean SD 2.5% 97.5%

Population density �0.006 0.008 �0.020 0.013
Proportion of black people 0.140 0.009 0.123 0.159
Household median income �0.042 0.009 �0.058 �0.025
Unemployment rate 0.002 0.004 �0.007 0.010
Proportion of mothers with

<12 grade education level
0.003 0.007 �0.011 0.016

Proportion of mothers
smoking during
pregnancy

0.010 0.007 �0.003 0.024

Proportion of mothers with
IKI value

�0.007 0.006 �0.019 0.004

Fig. 3. Temporal plots of the selected components. The solid lines show the p

Table 1
Model comparison statistics for the candidate models (DIC3, MSPE, and
MPL).

Model The number of
predictors

L̂ DIC3 MSPE MPL

Poisson linear
regression
model

10 predictors 13793 171 �7118
7 predictors 13775 171 �7101

SREST model 10 predictors 13627 172 �6850
7 predictors 13620 171 �6854

STLS model 10 predictors 1 13776 170 �7043
7 predictors 2 13603 170 �6850
the Marginal Predictive likelihood (MPL) using the Condi-
tional Predictive Ordinate (CPO) (Dey et al., 1997),
MPL = Ri,jlog (CPOij), where CPOij is the marginal posterior
predictive function of Yij given the data excluding Yij. We
also consider the mean square prediction error (MSPE) gi-
ven by MSPE = Ri,j(Yij � Ŷij)2/IJ, where Ŷij is a value of Yij from
the posterior predictive distribution. Larger values of MPL
and lower values of MSPE indicate a better model in terms
of prediction performance.

In Table 1, we summarize the DIC3, MSPE, and MPL
measures for the models considered. We also report the
estimated number of the latent components included in
the STLS model when 10 entry parameters are used. Mod-
els having 10 predictors have large DIC3 values. Particu-
larly, Poisson linear regression models with no space and
time random effects have large DIC3 and small MPL values.
So, it suggests that space and time random effects should
be considered in this application. The SREST models with
different predictors provide similar DIC3, MPL, and MSPE
values. On the other hand, the STLS models estimate differ-
ent true latent components depending on the number of
predictors: 1 component for the 10 predictors and 2 com-
ponents for the 7 predictors. Thus, they have marginally
different DIC3 and PML values. Here, the STLS model having
7 predictors has the smallest DIC3 and MSPE values and the
largest MPL values and therefore this STLS model is the
best fit. In the following section, all the results of parame-
ter estimates and interpretation are based on the STLS
model with 7 predictors.

4.2. Parameter estimates and interpretation

The posterior means and 95% credible intervals for the
coefficients in the STLS model with 7 predictors are pre-
sented in Table 2. The proportion of black people is a signif-
icant positive risk factor of LBW and the household median
income is a significant negative risk factor. A higher pro-
portion of black people and lower income are associated
with increased risk of LBW. The other predictors are not
significant in this model because the latent components
in the STLS model capture the locally temporal patterns
in risk.

Fig. 3 presents the temporal plots for the selected com-
ponents in the STLS model. Component 1 has an increasing
osterior mean and the dotted lines show the 95% confidence intervals.
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pattern while Component 2 has a quite stable pattern over
time. Overall, Component 1 has larger relative risks than
Component 2 over time and has smaller credible intervals.
In this case, the maps of the weights corresponding to the
components are given in the left two maps in Fig. 4. Using
the allocation method in Eq. (4), the spatial clusters can be
identified and the map of the cluster indicator is presented
in the right map in Fig. 4. Overall, many counties (north-
east areas) in SC, south-west areas, and the downtown of
Atlanta are assigned to Component 1 and the south–east
areas and the Atlanta suburbs are assigned to Component
2. Thus, north–east and south–west areas and the Atlanta
downtown have an increasing pattern in relative risk over
time while the south-eastern areas and the Atlanta sub-
urbs have a stable pattern in risk and smaller relative risk
than the other areas, which also takes into account the data
well (see Fig. 1).

By contrast, the STLS model with 10 predictors (not
shown) estimates 1 component that has an increasing pat-
tern in risk. All the predictors except population density
were significant. Lower income, the proportion of mothers
with low education level, and IKI values are associated
with the increased risk of LBW while lower levels of the
other predictors are associated with the decreased risk of
LBW. Since the risk effects of the predictors on LBW can
vary over states, we also fit the STLS model with 7 predic-
tors and different coefficient vectors depending on the
states. This model estimates 3 latent components: an in-
creased pattern over time and two stable patterns (levels
of the one component are considerably larger than levels
of another component over time). The proportion of black
people has a positive association with risk in Georgia (esti-
mate = 0.166; 95% intervals 0.137–0.193) and South Caro-
lina (estimate = 0.098; 95% intervals 0.055–0.145). In
addition, in Georgia, income has a negative effect (esti-
mate = �0.034; 95% intervals �0.053 to �0.015) and the
proportion of smoking mothers has a positive effect (esti-
mate = 0.015; 95% intervals 0.001–0.030). Thus, in Georgia,
high proportions of black people and smoking mothers and
lower income are associated with the increased risk of
LBW, while in South Carolina, high proportion of black peo-
ple is only associated with the increased risk of LBW. These
different STLS models provide marginally different esti-
mated parameters, but the model comparison measures
(DIC3, PML, and MSPE) suggest that the STLS model with
only 7 predictors is the best-fit model.
Fig. 4. Maps of the estimated weights corresponding to the selected 2 componen
values.
5. Discussion

It is important to note some implications of this study.
First, given the inclusion of conventional LBW predictors
(population density, black population proportion, median
income etc.), the latent structure model (STLS) still pro-
vides a well-defined multi-component risk. This suggests
that there is significant unexplained spatio-temporal vari-
ation in the LBW risk beyond that explained by predictors.
Also, these temporal patterns in risk conditional on the
predictors vary locally. We found that there are two tem-
poral components: increasing pattern over time and stable
pattern over time. This suggests that future studies should
continue to examine the correlates of spatio-temporal pat-
terns even though conventional LBW predictors are
considered.

Second, we did not consider here the inclusion of pre-
dictors in the latent structure itself, but rather regarded
the latent structure as residual effects. This helps to show
that there is residual structure in the LBW risk. The exten-
sion of these models to include predictors within the com-
ponents or component weights would be a logical next
step and should be a focus in the future development of
the methods.

Some additional considerations are the level of resolu-
tion of the data (county level) and more general data qual-
ity issues. The demographic and behavioral factors
considered here were aggregated from individual level
data based on birth certificates, which were directly down-
loaded from public websites. Although these factors are
conventional predictors of LBW such as smoking at indi-
vidual level, they are significant predictors of LBW at
county level and these individual level characteristics
should be treated as covariates at the individual level.
Thus, our choice of county level LBW data would lead to
biased results (ecological inference) and so we cannot di-
rectly attribute the risk of LBW to a given predictor state
at the individual level. To improve this interpretation it
would be useful to examine complete birth records for
Georgia and South Carolina, and we intend to examine a
joint model for county level counts and individual births
in the future.

In brief, flexible latent structure models are useful to
examine space and time variation in health outcomes.
Findings can be used to guide the policy-makers and pro-
gram planners on where the program efforts should be
ts (Left and middle) and map of the allocation using the estimated weights
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strengthened to lower LBW incidence and to reverse the
increasing trend of LBW.
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