
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 139, Number 11, November 2011, Pages 4143–4152
S 0002-9939(2011)10832-3
Article electronically published on March 16, 2011

STICK NUMBERS OF 2-BRIDGE KNOTS AND LINKS

YOUNGSIK HUH, SUNGJONG NO, AND SEUNGSANG OH

(Communicated by Daniel Ruberman)

Abstract. Negami found an upper bound on the stick number s(K) of a
nontrivial knot K in terms of the minimal crossing number c(K) of the knot,
which is s(K) ≤ 2c(K). Furthermore, McCabe proved that s(K) ≤ c(K) + 3
for a 2-bridge knot or link, except in the cases of the unlink and the Hopf link.
In this paper we construct any 2-bridge knot or link K of at least six crossings
by using only c(K) + 2 straight sticks. This gives a new upper bound on stick
numbers of 2-bridge knots and links in terms of crossing numbers.

1. Introduction

A simple closed curve embedded into the Euclidean 3-space is called a knot . A
knot K can be embedded many different ways in space. A stick knot is a knot which
consists of finite line segments, called sticks . One natural question concerning stick
knots may be the stick number s(K) of a knotK, which is defined to be the minimal
number of sticks necessary to construct this stick knot. Several upper and lower
bounds on the stick number for various classes of knots and links were found. The
most general result is Negami’s inequality [N] :

5 +
√
25 + 8(c(K)− 2)

2
≤ s(K) ≤ 2c(K)

for any nontrivial knot or linkK other than the Hopf link, where c(K) is the minimal

crossing number ofK. Calvo [Ca] improved the lower bound to
7+

√
8c(K)+1

2 ≤ s(K).
Recently Huh and Oh [HO] utilized the arc index a(K) to determine a more precise
upper bound, showing that s(K) ≤ 3

2 (c(K) + 1) for any nontrivial knot K (in

particular, s(K) ≤ 3
2 c(K) for a nonalternating prime knot). They mainly use the

fact that a(K) ≤ c(K) + 2 for any nontrivial knot K in [BP] and convert each arc
presentation of K into a stick knot by using 3

2 (c(K)− 1) sticks.
The precise stick numbers for specific knots with a small crossing number are

known due to work by Randell [R] and Meissen [Me]. Adams et al. [ABGW] found
precise stick numbers for an infinite class of knots, namely the (n, n−1) torus knots
and all their compositions. In independent work, Jin [J] determined stick numbers
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for a broader class of knots, showing that the stick number for any (p, q) torus knot
with p < q < 2p is 2q by using the superbridge index.

There is another way to obtain an upper bound for the stick number for particular
classes of knots and links. McCabe [Mc] proved that s(K) ≤ c(K) + 3 for any 2-
bridge knot or link K other than the unlink and the Hopf link by realizing the
stick knot visually with c(K)+ 3 sticks. This upper bound is sharp for small knots
and links of at most five crossings. In [FLS] Furstenberg et al. reduced McCabe’s
upper bound by 1 for a few classes of 2-bridge knots or links, and proposed as an
open question whether or not s(K) ≤ c(K)+2 for all 2-bridge knots and links with
crossing number at least 6. Meissen [Me] showed that this inequality holds for all
knots and links with crossing number 7. In this paper we give the answer.

Theorem 1.1. s(K) ≤ c(K)+ 2 for all 2-bridge knots and links K with c(K) ≥ 6.

2. Conway notation and integral tangles

We describe the standard projection of a 2-bridge knot or link in terms of the
Conway notation, which will be useful for the stick construction. Conway [Co]
introduced the concept of tangles, portions of a knot contained in a topological
sphere which intersect the knot exactly four times. An integral tangle is made
from two strands that wrap around each other and is identified by the number of
half-twists (i.e. crossings) within it as in Figure 1(a). More precisely the integer
inside the circle is positive if it indicates the number of right-handed half-twists
and negative if left-handed. These integral tangles are connected together as in
Figure 1(b) to form a 2-bridge knot or link which is represented by a Conway nota-
tion (a1, a2, · · · , am). Note that if all ai are positive integers, then the positive and
negative signs of integers in the figure appear alternately, so it gives a nonnugatory
alternating projection of a 2-bridge knot or link.

Figure 1. Conway notation (a1, a2, · · · , am)
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As summarized in [Mc, Section 2], these are well-known facts that any 2-bridge
knot or link can be represented by Conway notation (a1, a2, · · · , am) with positive
integers ai and odd number m due to work by Burde and Zieschang [BZ], and this
nonnugatory alternating projection displays the minimal number of crossings due
to Kauffman [K], Murasugi [Mu], and Thistlethwaite [T].

To simplify the cases of the main proof we may assume that am ≥ 2, for when
a1 ≥ 2 and am = 1, we use the Conway notation (am, am−1, · · · , a1) instead of the
original one, both of which indicate the same knot or link. When a1 = am = 1, we
can use its mirror image (a2+1, a3, · · · , am−2, am−1+1), which eventually has the
same crossing number and stick number as the original one.

In the rest of this section, we illustrate how to construct integral ±n-tangles with
n ≥ 2 by using n+1 sticks. Now observe the n-tangle which consists of right-handed
n half-twists as in Figure 2(a). In this construction, this tangle with n even has
one vertical stick, called a core stick , and the remaining n sticks wrapping around
the core stick. The tangle with n odd has two sticks which are almost parallel and
very close to each other at one of their endpoints so that they look like two slightly
perturbed broken pieces of the core stick, and n− 1 sticks wrapping around these
two sticks as in the figure. Both tangles have right-handed n half-twists respectively,
and so n crossings. The right figure shows the drawing of the tangle with n even
in the viewpoint from the top. The −n-tangle is simply the mirror image of the
positive one. We use symbols with circles and numbers as drawn in Figure 2(b) to
indicate these tangles.

Figure 2. n-tangles
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3. Proof of Theorem 1.1

Let K be any 2-bridge knot or link with c(K) ≥ 6. Recall that K has a Conway
notation (a1, a2, · · · , am), where m is odd and all ai are positive integers with
am ≥ 2. Here c(K) = a1 + a2 + · · ·+ am.

First we construct K of a Conway notation (p) when p ≥ 6 by using p+2 sticks.
K can be obtained from the −p-tangle by closing off the four ends in the standard
way. As drawn in Figure 3, we utilize the −(p− 4)-tangle consisting of p− 3 sticks
and add the remaining 5 sticks to make 4 more left-handed half-twists as needed.
Figure 4 shows a specific realization of the link (6), which is the union of two
unknotted circles both of which consist of four sticks. The coordinates of the ver-
tices are {(0, 0, 0), (2,−4, 0), (6, 2, 0), (8,−3, 1)} and {(2,−2, 2), (8,−1, 0), (8, 1, 1.7),
(2, 1,−3)}. Following the tangle construction in the previous section we can replace
the −2-tangle by the −(p− 4)-tangle. Hence this specific example verifies that our
scheme is also realizable for any case p > 6.

Figure 3. (p) case

Figure 4. Visualization of (6) case
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Now we construct K of a Conway notation (p, q, r) for positive integers p, q, r
with r ≥ 2 by using p + q + r + 2 sticks. Assume that p ≥ 2 and q ≥ 3 for the
general case. As in the first link in Figure 5, we rotate the −p-tangle part around a
horizontal line for untwisting one half-twist of the q-tangle. Since all three integers
p, q − 1, and r are at least 2, we can construct these −p-tangle, (q − 1)-tangle and
−r-tangle by using p+ q+ r+2 sticks in total as described in the last paragraph of
Section 2. Now connect them together to build a knot or link (p, q, r) as drawn in
the figure so that two pairs of sticks are joined into two sticks and two new sticks
are added for closing off. Thus the total number of sticks is unchanged as desired.

Figure 5. (p, q, r) case

An easy calculation tells us that there are five more nongeneral cases as follows:
(p, 2, r) with p ≥ 2 and r ≥ 2, (p, 1, r) with p ≥ 2 and r ≥ 3, (1, q, r) with q ≥ 3
and r ≥ 2, (1, 2, r) with r ≥ 3, and (1, 1, r) with r ≥ 4. Note that the case (p, 1, r)
with p ≥ 3 and r ≥ 2 has the same result as (p, 1, r) with p ≥ 2 and r ≥ 3. Similar
constructions to the general case can be applied for these five cases. The results of
all the cases are drawn in Figure 5. One can see that each has exactly p+ q+ r+2
sticks. To guarantee that all these six cases can be realized in 3-space as intended,
we provide the vertex-coordinates of the simplest case of each, such as (2, 3, 2),
(1, 3, 2), (2, 2, 2), (1, 2, 3), (2, 1, 3) and (1, 1, 4) in Table 1. Note that each of the
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Table 1

(p, q, r) coordinates of vertices

(2, 3, 2) {(0,0,0),(0,10,0),(5,10,0),(-2,5,1),(5,0,-4)}, {(3,11,-1),(7,2,5),(1,2,-2),(7,11,5)}

(1, 3, 2) {(0,0,7),(3,-5,-8),(4,-4,2),(1,3,-1.3),(5,0,0),(1,-3,0),(4,4,0),(3,5,-10)}

(2, 2, 2) {(0,0,0),(4,0,0),(0,-5,0),(4,-5,-1)}, {(2,-4,-2),(6,-4,3),(2,1,-1),(6,1,5)}

(1, 2, 3) {(0,0,0),(6,-5,0),(6,0,0),(0,-5,1)}, {(1.5,-5,3),(7,-2.5,-1),(5.5,-1.5,1),(1,-1.5,-2.5)}

(2, 1, 3) {(0,0,0),(0,-10,0),(9,-5,-1),(-2,-5,6),(4,-4,-15),(4,-6.5,35),(9,-8,-130),(10,-7,0)}

(1, 1, 4) {(1,2.5,2.1),(7,2,-5),(7,-5,5),(3,-5,0),(3,4,0),(1,-4,0),(8,-2,1),(0,0,-1)}

cases (2, 3, 2), (2, 2, 2) and (1, 2, 3) consists of two circles, so they need two sets of
vertices indicating two circles respectively.

Figure 6. General case
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Finally we construct K of a Conway notation (a1, a2, · · · , am) for the cases of
m ≥ 5 by using a1 + a2 + · · · + am + 2 sticks, that is, c(K) + 2 sticks. First we
consider the general cases that all ai are greater than 1. See Figure 6. We construct
all ±ai-tangles individually by using a1 + a2 + · · · + am +m sticks in total. Now
connect them together to build the knot or link as drawn in the figure. In this
scheme, all ai-tangles with i even share just one core stick, and each pair of ±ai-
tangle and ±ai+1-tangle for i = 1, · · · ,m− 1 share exactly one stick. On the other
hand we have to add some extra sticks to connect each pair of ±a2i+1-tangle and
±a2i+3-tangle for i = 1, · · · , m−5

2 , and two more sticks to connect the left-most core
stick to −a1-tangle and −am-tangle. Thus the total number of sticks is

a1 + a2 + · · ·+ am +m− ((
m− 1

2
− 1) + (m− 1)) + (

m− 5

2
+ 2),

that is, a1 + a2 + · · ·+ am + 2.
Now we illustrate how to build up a stick presentation of a special case where

all the ai’s are 2 in three stages as in Figure 7. Note that one can easily apply
this construction to general cases where some of the ai’s are greater than 2. At the
first stage of this construction, Figure 7(a) shows how to build the main frame of
this stick presentation. Starting from the origin point w1 = (0, 0, 0) in R

3, take a
long vertical stick along the y-axis, and more sticks wrapping around this vertical
stick from top to bottom so that these nonvertical sticks rotate clockwise in the
viewpoint from the top. Let w2 be the terminal point of this part. The intermediate
point w′ in the figure is placed on the xy-plane so that its x-coordinate is positive.
In Figure 7(b) we see how a connected series of sticks runs back and forth between
the sticks constructed already. The two endpoints of this connected series of sticks
are denoted by v1 and v2. Finally as in Figure 7(c) we connect v1 and v2 by two
sticks which share one endpoint v. Obviously the vertex v must lie far below the
xy-plane. Also we connect w1 and w2 by two sticks sharing one endpoint w which
lies farther below than the vertex v with respect to the z-coordinate.

Now we handle the cases when the ai’s are 1. We distinguish six cases. The
first three cases are illustrated in Figure 8, and the other cases are in Figure 9.
First consider the case ai = 1 for some i among the odd integers 3, 5, · · · ,m − 2.
Replace the subgraph of the main graph between two horizontal lines by the graph
indicating ai = 1 drawn on the top right in Figure 8. Next consider the case ai = 1
for some i among the even integers 4, 6, · · · ,m − 3. Replace the related subgraph
by the graph drawn on the right middle. In this case the main frame will be bent
slightly. For the case am−1 = 1, replace the related subgraph by the graph on
the right bottom. Note that the stick e does not pass the other sticks because the
vertex v lies far below the xy-plane. Now consider the next three cases where both
or either a1 or a2 is 1. Figure 9(a) illustrates how to realize our scheme for the case
a1 = a2 = 1. At the top of the main graph we remove the dotted line segments and
connect the two pairs of endpoints properly. Note again that the stick e does not
pass the other sticks. The last two cases when only a1 = 1 and only a2 = 1 can be
constructed following the procedure in Figure 9(b) and Figure 9(c) respectively.

By counting the number of sticks in each case, we see that this stick presentation
yields the inequality of the main theorem.
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Figure 7. Realization of the general case
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Figure 8. Some ai’s are 1

Figure 9. a1 or a2 is 1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4152 Y. HUH, S. NO, AND S. OH

References

[ABGW] Colin C. Adams, Bevin M. Brennan, Deborah L. Greilsheimer and Alexander K. Woo,
Stick numbers and composition of knots and links, J. Knot Theory Ramif. 6 (1997)
149–161. MR1452436 (98h:57010)

[BP] Y. Bae and C. Park, An upper bound of arc index of links, Math. Proc. Camb. Phil.
Soc. 129 (2000) 491–500. MR1780500 (2002f:57009)

[BZ] G. Burde and H. Zieschang, Knots, Walter de Gruyter & Co., Berlin (1985). MR808776
(87b:57004)

[Ca] J. Calvo, Characterizing polygons in R
3, in Physical Knots, Contemporary Mathematics,

304, Amer. Math. Soc. (2002) 37–53. MR1953010 (2003m:57006)
[Co] J. Conway, An enumeration of knots and links, and some of their algebraic properties,

in Computational Problems in Abstract Algebra, Pergamon Press, New York (1970)
329–358. MR0258014 (41:2661)

[FLS] E. Furstenberg, J. Li and J. Schneider, Stick knots, Chaos, Solitons & Fractals 9 (1998)
561–568. MR1628742 (99g:57007)

[HO] Y. Huh and S. Oh, An upper bound on stick numbers of knots, to appear in J. Knot

Theory Ramif.
[J] G. T. Jin, Polygon indices and superbridge indices of torus knots and links, J. Knot

Theory Ramif. 6 (1997) 281–289. MR1452441 (98h:57018)
[K] L. Kauffman, State models and the Jones polynomial, Topology 26 (1987) 395–407.

MR899057 (88f:57006)
[Mc] C. L. McCabe, An upper bound on edge numbers of 2-bridge knots and links, J. Knot

Theory Ramif. 7 (1998) 797–805. MR1643867 (99h:57015)
[Me] M. Meissen, homepage at http://www.bethelks.edu/meissen.
[Mu] K. Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26

(1987) 187–194. MR895570 (88m:57010)
[N] S. Negami, Ramsey theorems for knots, links, and spatial graphs, Trans. Amer. Math.

Soc. 324 (1991) 527–541. MR1069741 (92h:57014)
[R] R. Randell, An elementary invariant of knots, J. Knot Theory Ramif. 3 (1994) 279–286.

MR1291860 (95e:57019)
[T] M. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26

(1987) 297–309. MR899051 (88h:57007)

Department of Mathematics, School of Natural Sciences, Hanyang University, Seoul

133-791, Republic of Korea

E-mail address: yshuh@hanyang.ac.kr

Department of Mathematics, Korea University, 1, Anam-dong, Sungbuk-ku, Seoul

136-701, Republic of Korea

E-mail address: blueface@korea.ac.kr

Department of Mathematics, Korea University, 1, Anam-dong, Sungbuk-ku, Seoul

136-701, Republic of Korea

E-mail address: seungsang@korea.ac.kr

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1452436
http://www.ams.org/mathscinet-getitem?mr=1452436
http://www.ams.org/mathscinet-getitem?mr=1780500
http://www.ams.org/mathscinet-getitem?mr=1780500
http://www.ams.org/mathscinet-getitem?mr=808776
http://www.ams.org/mathscinet-getitem?mr=808776
http://www.ams.org/mathscinet-getitem?mr=1953010
http://www.ams.org/mathscinet-getitem?mr=1953010
http://www.ams.org/mathscinet-getitem?mr=0258014
http://www.ams.org/mathscinet-getitem?mr=0258014
http://www.ams.org/mathscinet-getitem?mr=1628742
http://www.ams.org/mathscinet-getitem?mr=1628742
http://www.ams.org/mathscinet-getitem?mr=1452441
http://www.ams.org/mathscinet-getitem?mr=1452441
http://www.ams.org/mathscinet-getitem?mr=899057
http://www.ams.org/mathscinet-getitem?mr=899057
http://www.ams.org/mathscinet-getitem?mr=1643867
http://www.ams.org/mathscinet-getitem?mr=1643867
http://www.ams.org/mathscinet-getitem?mr=895570
http://www.ams.org/mathscinet-getitem?mr=895570
http://www.ams.org/mathscinet-getitem?mr=1069741
http://www.ams.org/mathscinet-getitem?mr=1069741
http://www.ams.org/mathscinet-getitem?mr=1291860
http://www.ams.org/mathscinet-getitem?mr=1291860
http://www.ams.org/mathscinet-getitem?mr=899051
http://www.ams.org/mathscinet-getitem?mr=899051

	1. Introduction
	2. Conway notation and integral tangles
	3. Proof of Theorem 1.1
	References

