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In this paper, we prove the Hyers–Ulam stability of some set-valued functional equations.
© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Set-valued functions in Banach spaces have received a lot of attention in the literature (see [1–3]). The pioneering papers
by Aumann [1] and Debreu [2] were inspired by problems arising in Control Theory and Mathematical Economics. We also
refer the reader to the papers by Arrow and Debreu [3], McKenzie [4] and the monographs by Hindenbrand [5], Aubin and
Frankowska [6], Castaing and Valadier [7], Klein and Thompson [8] and the survey by Hess [9].

The paper of Rassias [10] hasmotivated the development of what we callHyers–Ulam stability or theHyers–Ulam–Rassias
stability of functional equations (also see [11,12]). A generalization of the Rassias theorem was obtained by Găvruta [13] by
replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias’ approach.

The functional equation

f (x + y) + f (x − y) = 2f (x) + 2f (y)

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a
quadratic mapping. A generalized Hyers–Ulam stability problem for the quadratic functional equation was discussed by
Skof [14] for mappings f : X → Y , where X is a normed space and Y is a Banach space. Cholewa [15] noticed that the
theorem of Skof is still true if the relevant domain X is replaced by an Abelian group. Czerwik [16] discussed the generalized
Hyers–Ulam stability of the quadratic functional equation.

In [17], Jun and Kim considered the cubic functional equation

f (2x + y) + f (2x − y) = 2f (x + y) + 2f (x − y) + 12f (x). (1.1)

It is easy to show that the function f (x) = x3 satisfies the functional equation (1.1) on R, which is called a cubic functional
equation and every solution of the cubic functional equation is said to be a cubic mapping.
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In [18], Lee et al. considered the quartic functional equation

f (2x + y) + f (2x − y) = 4f (x + y) + 4f (x − y) + 24f (x) − 6f (y). (1.2)

It is easy to show that the function f (x) = x4 satisfies the functional equation (1.2) on R, which is called a quartic functional
equation and every solution of the quartic functional equation is said to be a quartic mapping.

Let Y be a real normed space. The family of all closed subsets, containing 0, of Y will be denoted by cz(Y ).
Let A, B be nonempty subsets of a real vector space X and λ a real number. We define

A + B = {x ∈ X : x = a + b, a ∈ A, b ∈ B},
λA = {x ∈ X : x = λa, a ∈ A}.

Lemma 1.1 ([19]). Let λ and µ be real numbers. If A and B are nonempty subset of a real vector space X, then

λ(A + B) = λA + λB,
(λ + µ)A ⊆ λA + µA.

Moreover, if A is a convex set and λµ ≥ 0, then we have

(λ + µ)A = λA + µA.

A subset A ⊆ X is said to be a cone if A+ A ⊆ A and λA ⊆ A for all λ > 0. If the zero vector in X belongs to A, then we say
that A is a cone with zero.

Set-valued functional equations have been investigated by a number of authors and there are many interesting results
concerning this problem (see [20–25]).

In this paper, we define the Jensen additive set-valued functional equation, the quadratic set-valued functional equation,
the cubic set-valued functional equation and the quartic set-valued functional equation, and prove the Hyers–Ulam stability
of some set-valued functional equations.

Throughout this paper, let X be a real vector space, A ⊆ X a cone with zero and Y a Banach space.

2. Stability of the Jensen additive set-valued functional equation

In this section, we prove the Hyers–Ulam stability of the Jensen additive set-valued functional equation.

Theorem 2.1. If F : A → cz(Y ) is a set-valued map satisfying F(0) = {0},

F(x) + F(y) ⊆ 2F

x + y
2


(2.1)

and

sup{diam(F(x)) : x ∈ A} < +∞

for all x, y ∈ A, then there exists a unique additive map g : A → Y (which we call the Jensen additive map) such that g(x) ∈ F(x)
for all x ∈ A.

Proof. For x ∈ A, letting y = 0 in (2.1), we get

F(x) + F(0) = F(x) ⊆ 2F
 x
2


(2.2)

and if we replace x by 2n+1x, n ∈ N, in (2.2), then we obtain

F(2n+1x) ⊆ 2F(2nx)

and

F(2n+1x)
2n+1

⊆
F(2nx)
2n

.

Let Fn(x) =
F(2nx)
2n , x ∈ A, n ∈ N and we obtain that (Fn(x))n≥0 is a decreasing sequence of closed subsets of the Banach

space Y . We have also

diam(Fn(x)) =
1
2n

diam(F(2nx)).

Now since sup{diam(F(x)) : x ∈ A} < +∞, we get that limn→+∞ diam(Fn(x)) = 0 for all x ∈ A.
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Using the Cantor theorem for the sequence (Fn(x))n≥0, we obtain that the intersection


n≥0 Fn(x) is a singleton set and
we denote this intersection by g(x) for all x ∈ A. Thus we obtain a map g : A → Y . Then g(x) ∈ F0(x) = F(x) for all x ∈ A.

Now we show that g is additive. We have (note Lemma 1.1)

Fn(x) + Fn(y) =
F(2nx)
2n

+
F(2ny)
2n

⊆
1
2n

· 2F

2nx + 2ny

2


= 2Fn


x + y
2


.

By the definition of g , we get for all x, y ∈ A,

g(x) + g(y) =

∞
n=0

Fn(x) +

∞
n=0

Fn(y) ⊆

∞
n=0


2Fn


x + y
2


.

Thus

g(x) + g(y) = 2g

x + y
2


for all x, y ∈ A and so g is additive.

Therefore, we conclude that there exists an additive map g : A → Y such that g(x) ∈ F(x) for all x ∈ A.
Next, let us prove the uniqueness of g .
Suppose that F have two additive selections g1, g2 : A → Y . We have

ngi(x) = gi(nx) ∈ F(nx)

for all n ∈ N, x ∈ A, i ∈ {1, 2}. Then we get

n‖g1(x) − g2(x)‖ = ‖ng1(x) − ng2(x)‖ = ‖g1(nx) − g2(nx)‖ ≤ 2 · diam(F(nx))

for all x ∈ A, n ∈ N. It follows from sup{diam(F(x)) : x ∈ A} < +∞ that g1(x) = g2(x) for all x ∈ A, as desired. �

3. Stability of the quadratic set-valued functional equation

In this section, we prove the Hyers–Ulam stability of the quadratic set-valued functional equation.

Theorem 3.1. If F : A + (−1)A → cz(Y ) is a set-valued map satisfying F(0) = {0},

F(x + y) + F(x − y) ⊆ 2F (x) + 2F(y) (3.1)

and

sup{diam(F(x)) : x ∈ A} < +∞

for all x, y ∈ A, then there exists a unique quadratic map g : A + (−1)A → Y such that g(x) ∈ F(x) for all x ∈ A.

Proof. Letting x = y in (3.1), we get

F(2x) + F(0) = F(2x) ⊆ 4F(x). (3.2)

Replacing x by 2nx, n ∈ N, in (3.2), we obtain

F(2 · 2nx) ⊆ 4F(2nx)

and

F(2n+1x)
4n+1

⊆
F(2nx)
4n

.

Let Fn(x) =
F(2nx)
4n , x ∈ A, n ∈ N,we obtain that (Fn(x))n≥0 is a decreasing sequence of closed subsets of the Banach space

Y . We have also

diam(Fn(x)) =
1
4n

diam(F(2nx)).

Taking into account that sup{diam(F(x)) : x ∈ A} < +∞, we get

lim
n→∞

diam(Fn(x)) = 0.

Using the Cantor theorem for the sequence (Fn(x))n≥0, we obtain that the intersection ∩n≥0 Fn(x) is a singleton set and we
denote this intersection by g(x) for all x ∈ A. Thus we get a map g : A + (−1)A → Y and g(x) ∈ F0(x) = F(x) for all x ∈ A.
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We now show that g is quadratic. For all x, y ∈ A and n ∈ N,

Fn(x + y) + Fn(x − y) =
F(2n(x + y))

4n
+

F(2n(x − y))
4n

⊆
2F (2nx)

4n
+

2F (2ny)
4n

= 2Fn (x) + 2Fn(y).

By the definition of g , we obtain

g(x + y) + g(x − y) =

∞
n=0

Fn(x + y) +

∞
n=0

Fn(x − y) ⊆

∞
n=0

(2Fn (x) + 2Fn(y)) ,

2g (x) ∈ 2Fn (x) and 2g(y) ∈ 2Fn(y). Thus we get

‖g(x + y) + g(x − y) − 2g (x) − 2g(y)‖ ≤ 2 · diam(Fn (x)) + 2 · diam(Fn(y)),

which tends to zero as n tends to ∞. Thus

g(x + y) + g(x − y) = 2g(x) + 2g(y)

for all x, y ∈ A.
Next, let us prove the uniqueness of g .
Suppose that F have two quadratic selections g1, g2 : A + (−1)A → Y . We have

(2n)2gi(x) = gi(2nx) ∈ F(2nx)

for all n ∈ N, x ∈ A, i ∈ {1, 2}. Then we get

(2n)2‖g1(x) − g2(x)‖ = ‖(2n)2g1(x) − (2n)2g2(x)‖ = ‖g1(2nx) − g2(2nx)‖ ≤ 2 · diam(F(2nx))

for all x ∈ A, n ∈ N. It follows from sup{diam(F(x)) : x ∈ A} < +∞ that g1(x) = g2(x) for all x ∈ A, as desired. �

4. Stability of the cubic set-valued functional equation

In this section, we prove the Hyers–Ulam stability of the cubic set-valued functional equation.

Theorem 4.1. If F : A + (−1)A → cz(Y ) is a set-valued map satisfying,

F(2x + y) + F(2x − y) ⊆ 2F (x + y) + 2F(x − y) + 12F(x) (4.1)

and

sup{diam(F(x)) : x ∈ A} < +∞

for all x, y ∈ A, then there exists a unique cubic map g : A + (−1)A → Y such that g(x) ∈ F(x) for all x ∈ A.

Proof. Letting y = 0 in (4.1), we get

2F(2x) ⊆ 16F(x). (4.2)

Replacing x by 2nx, n ∈ N, in (4.2), we obtain

F(2 · 2nx) ⊆ 8F(2nx)

and

F(2n+1x)
8n+1

⊆
F(2nx)
8n

.

The rest of the proof is similar to the proofs of Theorems 2.1 and 3.1. �

5. Stability of the quartic set-valued functional equation

In this section, we prove the Hyers–Ulam stability of the quartic set-valued functional equation.

Theorem 5.1. If F : A + (−1)A → cz(Y ) is a set-valued map satisfying F(0) = {0},

F(2x + y) + F(2x − y) + 6F(y) ⊆ 4F (x + y) + 4F(x − y) + 24F(x) (5.1)

and

sup{diam(F(x)) : x ∈ A} < +∞

for all x, y ∈ A, then there exists a unique quartic map g : A + (−1)A → Y such that g(x) ∈ F(x) for all x ∈ A.
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Proof. Letting y = 0 in (5.1), we get

2F(2x) ⊆ 32F(x). (5.2)

Replacing x by 2nx, n ∈ N, in (5.2), we obtain

F(2 · 2nx) ⊆ 16F(2nx)

and

F(2n+1x)
16n+1

⊆
F(2nx)
16n

.

The rest of the proof is similar to the proofs of Theorems 2.1 and 3.1. �

Acknowledgments

The authors would like to thank the referees for giving useful suggestions for the improvement of this paper. The first
author was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the
Ministry of Education, Science and Technology (NRF-2009-0070788).

References

[1] R.J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965) 1–12.
[2] G. Debreu, Integration of correspondences, in: Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. II, 1966,

pp. 351–372. Part I.
[3] K.J. Arrow, G. Debreu, Existence of an equilibrium for a competitive economy, Econometrica 22 (1954) 265–290.
[4] L.W. McKenzie, On the existence of general equilibrium for a competitive market, Econometrica 27 (1959) 54–71.
[5] W. Hindenbrand, Core and Equilibria of a Large Economy, Princeton Univ. Press, Princeton, 1974.
[6] J.P. Aubin, H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
[7] C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, in: Lect. Notes in Math., 580, Springer, Berlin, 1977.
[8] E. Klein, A. Thompson, Theory of Correspondence, Wiley, New York, 1984.
[9] C. Hess, Set-valued Integration and Set-valued Probability Theory: anOverview, in:Handbook ofMeasure Theory, vols. I, II, North-Holland, Amsterdam,

2002.
[10] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297–300.
[11] S.M. Ulam, Problems in Modern Mathematics, Chapter VI, Science ed., Wiley, New York, 1940.
[12] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941) 222–224.
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