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1. Introduction

The stability problem of functional equations originated from a question of Ulam [1]
concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative
answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by
Aoki [3] for additive mappings and by Rassias [4] for linear mappings by considering
an unbounded Cauchy difference. The paper of Rassias [4] has provided a lot of influ-
ence in the development of what we now call generalized Hyers-Ulam stability of func-
tional equations. In 1994, a generalization of the Rassias’ theorem was obtained by
Gavruta [5] by replacing the unbounded Cauchy difference by a general control func-
tion in the spirit of Rassias’ approach.

The functional equation

fle+y)+flx—y) = 2f(x) + 2f(¥) (1.1)

is related to a symmetric bi-additive mapping [6,7]. It is natural that this equation is
called a quadratic functional equation. In particular, every solution of the quadratic
equation (1.1) is said to be a quadratic mapping. It is well known that a mapping f
between real vector spaces is quadratic if and only if there exits a unique symmetric
bi-additive mapping B such that flx) = B(x, x) for all x (see [6,7]). The bi-additive map-
ping B is given by

By = ()~ f(x =) (12)

A generalized Hyers-Ulam stability problem for the quadratic functional equation
(1.1) was proved by Skof for mappings f: A — B, where A is normed space and B is a
Banach space [8] (see [9-12]).
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Jun and Kim [13] introduced the following cubic functional equation
f2x+y)+f(2x—y) = 2f(x+y) + 2f (x — y) + 12f (x) (1.3)

and they established the general solution and the generalized Hyers-Ulam stability
for the functional equation (1.3). They proved that a mapping f between two real vec-
tor spaces X and Y is a solution of (1.3) if and only if there exists a unique mapping C
: X x X x X - Y such that f (x) = C(x, x, x) for all x € X, moreover, C is symmetric
for each fixed one variable and is additive for fixed two variables. The mapping C is
given by

Clopd) =, (v +2) + fr=y=2) ~flxry=2) ~ fr=y+2) (14

for all x, y, z € X. During the last decades, several stability problems for various
functional equations have been investigated by many mathematicians; [14-21].

Eshaghi and Khodaei [22] have established the general solution and investigated the
generalized Hyers-Ulam stability for a mixed type of cubic, quadratic, and additive
functional equation with f(0) = 0,

Fle+hy) +f(x = ky) = 2 (x+y) + 1f (x = ) + 2(1 = k)f (x) (1.5)

in quasi-Banach spaces, where k is nonzero integer numbers with k = + 1. Obviously,
the function f (x) = ax + bx* + cx® is a solution of the functional equation (1.5). Inter-
esting new results concerning mixed functional equations has recently been obtained
by Najati et. al. [23,24], Jun and Kim [25,26] as well as for the fuzzy stability of a
mixed type of additive and quadratic functional equation by Park [27] (see also
[28-43]).

This paper is organized as follows: In Section 3, we prove the generalized Hyers-
Ulam stability of the functional equation (1.5) in fuzzy Banach spaces for an even case.
In Section 4, we prove the generalized Hyers-Ulam stability of the functional equation
(1.5) in fuzzy Banach spaces for an odd case. In Section 5, we prove the generalized
Hyers-Ulam stability of generalized mixed cubic, quadratic, and additive functional
equation (1.5) in fuzzy Banach spaces.

2. Preliminaries
We use the definition of fuzzy normed spaces given in [44] to investigate a fuzzy ver-
sion of the generalized Hyers-Ulam stability for the functional equation (1.5) in the
fuzzy normed space setting.

Definition 2.1. (Bag and Samanta [44], Mirmostafaee [45]). Let X be a real linear
space. A function N : X x R — [0, 1] is said to be a fuzzy norm on X if for all x, y €
Xandalls te R;

(N;) N(x, t) =0 for all £ < 0;
(N,) x = 0 if and only if N(x, t) = 1 for all £ > 0;
t
(N3) N(ex, t) =N (x, |c|) ifc 20
(Ng) N(x + y, s + t) 2 min{N(x, s), N(y, £)};
(N5) N(x, -) is non-decreasing function on R and lim, ., N(x, £) = 1;
(Ne) N(x, -) is left continuous on R for every x = 0.
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The pair (X, N) is called a fuzzy normed linear space.

The properties of fuzzy normed vector spaces and examples of fuzzy norms are given
in ([3,45-47]).

Definition 2.2. (Bag and Samanta [44], Mirmostafaee [45]). Let (X, N) be a fuzzy
normed linear space. A sequence {x,} in X is said to be convergent if there exists x €
X such that lim,,_,.. N(x,, - x, £) = 1 for all £ > 0. In that case, x is called the limit of
the sequence (x,) and we write N - lim,,_,.. x,, = x.

Definition 2.3. (Bag and Samanta [44], Mirmostafaee [45]). Let (X, N) be a fuzzy
normed linear space. A sequence {x,} in X is called Cauchy if for each ¢ > 0 and each
0 > 0, there exists 7y € N such that N(x,, - x,, ) > 1 - ¢ (m, n = ny).

It is well known that every convergent sequence in a fuzzy normed vector space is
Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be
complete and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a function f: X — Y between fuzzy normed vector spaces X and Y is
continuous at a point xg € X if for each sequence {x;} converging to x, in X, then the
sequence {flxy)} converges to flxy). If f: X — Y is continuous at each x € X, then f: X
— Y is said to be continuous on X (see [48]).

In the rest of this paper, unless otherwise explicitly stated, we will assume that X is a
vector space, (Z, N’) is a fuzzy normed space, and (Y, N) is a fuzzy Banach space. For

convenience, we use the following abbreviation for a given function f: X — Y,
Dy(x,y) = f(x+ky) + f(x = ky) = f(x +7) = Pf(x = y) = 2(1 = k*)f (x)

for all x, y € X, where k is nonzero integer numbers with k = + 1.

3. Fuzzy stability of the functional equation (1.5): an even case
In this section, we prove the generalized Hyers-Ulam stability of the functional equa-
tion (1.5) in fuzzy Banach spaces, for an even case. From now on, V; and V, will be
real vector spaces.

Lemma 3.1. [22]. If an even mapping f: Vi — V, satisfies (1.5), then f(x) is

quadratic.
Theorem 3.2. Let £ € {-1, 1} be fixed and let ¢, : X x X — Y be a mapping such
that
@q(kx, ky) = agy(x,y) (3.1)

for all x, y € X and for some positive real number o with o <k*€. Suppose that an
even mapping f: X — Y with fl0) = 0 satisfies the inequality

N(Ds(x,y),t) = N'(@q(x,y), t) (3.2)
forall x, ye X and all t > 0. Then, the limit

(k")

Q(x) =N-— nll)rlgo J2n )

exists for all x € X and Q : X — Y is a unique quadratic mapping satisfying

G
N((x) - Q@) 1) = N' (goq(O,x), - )t) (3.3)

forall x e X and all t > 0.
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Proof. Case (1): € = 1. By putting x = 0 in (3.2) and then using evenness of fand f(0)

= 0, we obtain

N(2f (ky) = 212f (y), £) = N'(4(0,), 1) (3-4)

for all x, y e X and all £ > 0. If we replace y in (3.4) by x, we get

N ()~ 950, ) ) = N, (00,0 65)
for all x € X. So
N (f (k’ix) ), 2;) > N'(¢4(0,), 1) (3.6)

for all x € X and all £ > 0. Then by our assumption
t
N (001 = N (40,0, ) 67)
o

for all x € X and all ¢ > 0. Replacing x by k”x in (3.6) and using (3.7), we obtain

f™x)  f(k'x) ¢ ) n ) t
N( ) T pan kz(kzn)) > N'(¢q(0,k'x),t) =N ((pq(O, x), a”) (3.8)

forall x € X, ¢t > 0 and #n > 0. Replacing ¢ by &t in (3.8), we see that

fx) ) o\
N( R2m+1) T p2n kZ?an)) = N'(¢4(0,x), 1) (3.9)

forallx e X, t >0 and n > 0. It follows from f(gnx) —f(x) = Z;':Bl (fgg:l’;) — f(;j‘jf))
and (3.9) that

fk™x) = ot T f*x)  f(kx) ot
N( 2 f(x)’gkz(kz)j) > mm]L:OJ{N<k2(j+1) TR ’kz(kz)f)} (3.10)

N'(4(0, %), 1)

A%

forall x € X, ¢t > 0 and n > 0. Replacing x by Kx in (3.10), we observe that
feem)  f(x) S et o (0. B , t
N( o ~Jan L pagayen | 2N GO0 =N (00,
j=
forallx e X, all£>0and all m >0, n > 0. Hence

flmmx) ) "o ot ,
N( K2(n+m) o R2m Fzm kz(kz)]) ZN(QOQ(O,X)!I)

forall x € X, all £ > 0 and all m > 0, n > 0. By last inequality, we obtain

flemmx)  f(k"x) ' t
N < )~ gam L) 2N eg(0x) (3.11)

o
Z kZ(kZ)J'

j=m
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forallxe X,all¢>0andall m >0, n> 0. Since 0 <o <k and Z](‘fo (;;2)’ < o0, the

Cauchy criterion for convergence and (N5) imply that {f (gnx) is a Cauchy sequence in

Y. Since Y is a fuzzy Banach space, this sequence converges to some point Q(x) € Y.
So one can define the function Q : X — Y by

Q) = N — Tim /9, (3.12)

n—oo R2n

for all x € X. Fix x € X and put m = 0 in (3.11) to obtain

j:ZO K2 (k2y

forallx e X, all £ > 0 and all # > 0. From which we obtain

NEW -0 = minfnee =100 D (MY - pw, )]

Je2n f2n

¢ (3.13)
/!
> N 1e(0x), y
j§0: k2 (k2)
for n large enough. Taking the limit as # — oo in (3.13), we obtain
, k2 —a)t

N(QW -9 = N (w00, © ) (.1)

for all x € X and all ¢ > 0. It follows from (3.8) and (3.12) that

kx k kn+1 "
N (Q;(ez ) _ow) t) > min { N (Q}gzx) G ;) N g, ),

N (f(k"*lx) B f(k"x)l t)} N ((pq(O,x), kz(kzn)t>

k2(n+1) k2n 3 3o
for all x € X and all ¢ > 0. Therefore,
Q(kx) = ¥ Q(x) (3.15)

for all x € X. Replacing x, y by K"x, K"y in (3.2), respectively, we obtain
N ! Dy(K'x, k"), t | = N'(@q(K"x, k"y), K*"t) = N’ [ 04(x, ) L
pan DFUEX Y] L) = NA@(RX REY ), =N egxy)

which tends to 1 as n — « for all x, y € X and all £ > 0. So, we see that Q satisfies
(1.5). Thus, by Lemma 3.1, the function x » flx) is quadratic. Therefore, (3.15) implies
that the function Q is quadratic.

Now, to prove the uniqueness property of Q, let Q* X — Y be another quadratic
function satisfying (3.3). It follows from (3.3), (3.7) and (3.15) that

Page 5 of 22
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N(Q(x) — Q’(x)l )=N (Q(k”x) 3 Q/(knx)lt>

ol (A7) (19 )
= (w00, ) < (w0, L)

for all x € X and all ¢ > 0. Since o <k*, we obtain lim,,_, .o N’ (904(0, x), kz"(sza)f) =1

4a71
Thus, Q(x) = Q'(x).
Case (2): £ = -1. We can state the proof in the same pattern as we did in the first
case.

Replacing x by , in (3.5), we obtain

N (f(x) - K’f (z) ;) >N (f/)q (0, z) , t) (3.16)

for all x € X and all ¢ > 0. Replacing x and ¢ by j, and ,}, in (3.16), respectively, we

obtain

X t

N (kznf (;:1) _ kZ(n+1)f(kn+1 ), ;) >N’ ((pq(O, k:il ), kz”) =N’ (qoq(O, x), (;:2 )nat)

forall x e X, all £ > 0 and all # > 0. One can deduce
N X x t
N (kz(” m)f (kn+m) - ksz (km> ! t) =N (,04(0, x), n+m ) (3.17)

for all x € X, all £ > 0 and all m > 0, n > 0. From which we conclude that {kz”f (k’;)}
is a Cauchy sequence in the fuzzy Banach space (Y, N). Therefore, there is a mapping
Q : X > Y defined by Q(x) := N — lim,_,ok*"f (% ). Employing (3.17) with m = 0, we

obtain

(a —2k2)t>

NQU) — f(x),0) = N (qu(Or %),

for all x € X and all £ > 0. The proof for uniqueness of Q for this case proceeds simi-
larly to that in the previous case, hence it is omitted. O

Remark 3.3. Let 0 <o <k*. Suppose that the function ¢ » N(flx) - Q(x), .) from (0, )
into [0, 1] is right continuous. Then, we obtain a better fuzzy (3.14) as follows.

We obtain

N@Q) — ) ¢+9) = min | () =76, ) o (159 oo

t
= N/ (pq(o'x)' n—1 .
o
Z kZ(k)Zf)

j=0
>N’ (goq(O,x), (k> — oe)t) )
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Tending s to zero we infer that
N(Q(x) — f(x), 1) = N'(¢4(0, x), (> — a)t)

forall x € X and all £ > 0.

From Theorem 3.2, we obtain the following corollary concerning the generalized
Hyers-Ulam stability [4] of quadratic mappings satisfying (1.5), in normed spaces.

Corollary 3.4. Let X be a normed space and Y be a Banach space. Let ¢, A be non-
negative real numbers such that A = 2. Suppose that an even mapping f: X — Y with f
(0) = 0 satisfies

I D(x,y) 1< e(ll <l *+ 1yl *) (3.18)
for all x, y € X. Then, the limit

(k")

QW) =N = lim 75, )

exists for all x € X and Q : X — Y is a unique quadratic mapping satisfying

A
2e [l x|l

[If (x) = Qx)II < o2 — 1) (3.19)

for all x € X, where A€ < 2¢.
Proof. Define the function N by

L t>0
N(x,t)={(t)+llxll o

It is easy to see that (X, N) is a fuzzy normed space and (Y, N) is a fuzzy Banach
space. Denote ¢, : X x X — R, the function sending each (x, y) to &(||x| I* + |1yl By

assumption

N(Dy(x,y),t) = N'(¢q(x,y). 1)
note that N* R x R — [0, 1] given by

t
N )= e t> 0
0, t=<0
is a fuzzy norm on R. By Theorem 3.2, there exists a unique quadratic mapping Q :
X — Y satisfying the equation (1.5) and

t

[l f(x) — Q) Il N(f(x) — Q(x),t)

S N ((pq(O,x), o(k? ;k‘)t)

U S AN Tt
)

N )»’ =
Gﬂﬂ £(k? — M)+ 2¢ | x|t

and thus

t - o(k* — kM)t
t+ || f(x) = Q(x) I — £(k> — k*)t + 26 || x|1*

which implies that, £(k* - K)||fix) - Q@)|| < 2¢||%||* for all x e X. ©

Page 7 of 22
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In the following theorem, we will show that under some extra conditions on Theo-
rem 3.2, the quadratic function r » Q(rx) is fuzzy continuous. It follows that in such a
case, Q(rx) = Q(x) for all x € X and re R.

In the following result, we will assume that all conditions of the theorem 3.2 hold.

Theorem 3.5. Denote N, the fuzzy norm obtained as Corollary 3.4 on R . Let for all x
€ X, the functions r — flrx) (from (R, Ny) into (Y, N)) and r = ¢,4(0, rx) (from (R, Ny)
into (Z, N)) be fuzzy continuous. Then, for all x € X, the function r » Q(rx) is fuzzy
continuous and Q(rx) = r*Q(x) forallre R.

Proof. Case (1): € = 1. Let {ry} be a sequence in R that converge to some r € R, and

let £ > 0. Let & > 0 be given, since 0 <& <k%, 50 lim,_, o (kQI;lzjfznt = o0, there is m e N
such that
k? — o)kt
NG (wq(o, ), 12‘3” ) ~1-¢ (3.20)

It follows from (3.14) and (3.20) that

k™rx) B Q(k'”rx), t 1.
N (f ( )

o o 3 (3.21)

By the fuzzy continuity of functions r = f{rx) and r » ¢,(0, rx), we can find some
J € N such that for any n > j,

f(k"rx)  f(K™rx) ¢
N( f2m - k2m ’ 3 >1—e (322)
and
kz _ k2m
N (a0, ) — gy (0,1), & Ry (3.23)
12a™
It follows from (3.20) and (3.23) that
, (F* — a)k*™t
N'(¢4(0, 7ix), o )>1—¢ (3.24)
On the other hand,
f(R"rx) Q(k"rx)  f(k™nx) ¢
N (Q(Tkx) o J2m / J2m = N J2m o }2m ! J2m
(3.25)
- N (0, rx) (R — o)t
> ¢q(0,mx),
It follows from (3.24) and (3.25) that
f(k"rex) t
N (Q(rkx) — T am 73 >1-—¢ (3.26)

So, it follows from (3.21), (3.22) and (3.26) that for any n > j,
N(Q(rex) — Q(rx), 1) > 1 —¢

Therefore, for every choice x € X, t > 0, and ¢ > 0, we can find some 7 € N such
that N(Q(rx) - Q(rx), t) > 1 - ¢ for every n > 7. This shows that Q(rx) — Q(rx). The
proof for € = -1 proceeds similarly to that in the previous case.

Page 8 of 22
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It is not hard to see that Q(rx) = r*Q(x) for each rational number r. Since Q is a
fuzzy continuous function, by the same reasoning as in the proof of [45], the quadratic
mapping Q : X — Y satisfies Q(rx) = r*Q(x) for each re R. ©

4. Fuzzy stability of the functional equation (1.5): an odd case
In this section, we prove the generalized Hyers-Ulam stability of the functional equa-
tion (1.5) in fuzzy Banach spaces for an odd case.

Lemma 4.1. [22,24]. If an odd mapping f: V1 — V, satisfies (1.5), then the mapping
g: V1 > V,, defined by g(x) = fi2x) - 8fix), is additive.

Theorem 4.2. Let £ € {-1, 1} be fixed and let ¢, : X x X — Z be a function such that

®a(2x,2y) = a@a(x,y) (4.1)

for all x, y € X and for some positive real number o with ol < 2¢. Suppose that an
odd mapping f: X — Y satisfies the inequality

N(Dy(x,y),t) = N'(@a(x, ), 1) (4.2)

forall x, ye X and all t > 0. Then, the limit
1
A(x) =N — lim _, (f(2°"*'x) — 8f(2""x))
n—oo 2n

exists for all x € X and A : X — Y is a unique additive mapping satisfying

N(f(2x) — 8f(x) — A(x), £) = M, (x, “22_ @) t) (4.3)
forall x e X and all t > 0, where
sy s 220 e e ).
D)™ )
ot D 0 ).
e e ),

/ 02 - 1)
N ((pa((IZk — 1)x,x), N t)} .
Proof. Case (1): € = 1. It follows from (4.2) and using oddness of f that

Ny +) = flly = ) = 1+ ) = (= ) + 208 = 1), ) wa
> N'(ga(x,y),1)
for all x, y € X and all £ > 0. Putting y = x in (4.4), we have
N(f((k+1)x) — f((k — 1)x) — K> f(2x) + 2(k* — 1)f(x),t) = N'(ga(x,x),t)  (4.5)
for all x € X and all ¢ > 0. It follows from (4.5) that

N(f(2(k+ 1)x) — f(2(k — 1)x) — K2 f(4x) + 2(k* — 1)f(2x), t) > N'(@a(2x,2x),t)  (4.6)
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for all x € X and all £ > 0. Replacing x and y by 2x and x in (4.4), respectively, we get
N(f((k +2)x) = f((k = 2)x) = k*f(3x) — k*f (x) + 2(k* — 1)f(2x), 1)

(4.7)
> N'(¢a(2x,x), 1)
for all x € X. Setting y = 2x in (4.4), we have
N(f((2k + 1)x) = f((2k — 1)x) = K*f(3x) — *f (=) + 2(k* — 1)f (%), ¢) 8)
= N'(¢alx, 26),1) '
for all x € X and all £ > 0. Putting y = 3x in (4.4), we obtain
N(f((3k + 1)x) — f((3k — 1)x) — K*f(4x) — K> f(—2x) + 2(k* — 1)f(x), t) (4.9)

= N'(¢a(x, 3x), 1)

for all x € X and all ¢ > 0. Replacing x and y by (k + 1)x and x in (4.4), respectively,

we get

N(f((2k + 1)x) — f(—x) — K2 ((k + 2)x) — K*f(kx) + 2(K* — 1)f ((k + 1)x), t)

(4.10)
> N'(@a((k + 1)x,x), t)

for all x € X and all ¢ > 0. Replacing x and y by (k - 1)x and x in (4.4), respectively,
one gets

N(F((2k = 1)x) = f(x) = k2 ((k = 2)x) = Kf (kx) + 2(k* = 1)f ((k = 1)x), 1) (

4.11)
> N'(ga((k = 1)x,%), 1)

for all x € X and all £ > 0. Replacing x and y by (2k + 1)x and x in (4.4), respectively,
we obtain

N(f((3k + 1)x) — f(—(k + 1)x) — K*f(2(k + 1)x) — k*f (2kx)

(4.12)
+2(k* — 1)f((2k + 1)x), 1) > N'(@a((2k + 1)x,x), t)

for all x € X and all £ > 0. Replacing x and y by (2k - 1)x and x in (4.4), respectively,

we have

N(f((3k = 1)x) = f(=(k = 1)x) — K*f(2(k — 1)x) — k*f (2kx)

(4.13)
+2(k* — 1)f((2k — 1)x),t) > N'(ga((2k — 1)x,x), t)
for all x € X and all ¢ > 0. It follows from (4.5), (4.7), (4.8), (4.10) and (4.11) that

N (2f(3x) — 8f(2x) + 10f (x), kz(kzz_ 3 QR — 1) +k* + 3)t>

> min {N'(@a(x, x), 1), N' (¢a(2x, x), ), N' (¢a(x, 2x), 1),
N'(@a((k + 1)x,x), 1), N'(a((k = 1)x,x), 1)}

for all x € X and all £ > 0. And, from (4.5), (4.6), (4.8), (4.9), (4.12) and (4.14), we

conclude that

(4.14)

N (f(4x) — 2f(3x) — 2f (2x) + 6f(x), kz(kzl_ 3 (K> —1)+k* + 4)t)

> min{N'(g,(x, x), t), N’ (0a(2x, 2x), ), N (@a(x, 2x), 1), N’ (@a (%, 3x), 1),
N'(a((2k + 1)x,x), 1), N'(¢a((2k = 1)x, x), 1)}

(4.15)
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for all x € X and all ¢ > 0. Finally, by using (4.14) and (4.15), we obtain that Similar
to the proof Theorem 3.2, we have

K2

(f(4x) — 10f(2x) + 16f(x), " 1)t> > min{N'(ga(x, x), t), N'(¢a(2x, x), t),

kz(kz (4.16)
N'(@a(x, 2x),£), N'(@a((k + 1)x, ), £), N'(@a((k — 1)x, %), t)), N'(@a(2x, 2%), ), '
N'(@a(x, 3x), ), N'(¢a((2k + 1)x, x), 1), N'(¢a((2k — 1)x, x), 1)}
for all x € X and all ¢ > 0, where
k(R — 1 K2 (k2 — 1
M,(x,t) = min {N’ ((pa(x, x), 9(k2 )t> N ((pa(zx, x), 9(k2 )t) ,
, K (k* — k2 (k* — 1)
N ((pa(x, 2x), N ) ( a((k+ 1)x, x), o2 + ) ,
, 7‘»’2(722 1) , 2(’?«2 -1)
N ((pa((k — 1)x,x), o2 4 t)),N ((pa(2x, 2x), e t) ,
, k?(k* — k2 (k* — 1)
N ((pa(x, 3x), N ) ((p ((2k + 1)x, x), ok + 4 t),
, k2 (K - 1)
N <<pa((2k— 1)x, x), o2 + )}
for all x € X and all ¢ > 0. Thus, (4.16) means that
N(f(4x) — 10f(2x) + 16f(x), t) = M,(x, t) (4.17)

forallx € X and all £ > 0. Let g: X — Y be a mapping defined by g(x):= fi2x) - 8fix)
for all x € X. From (4.17), we conclude that

N(g(2x) — 2g(x), t) = Ma(x, 1) (4.18)

for all x € X and all £ > 0. So
N (g(zx) ~ 5, t) > M, (1) (4.19)
2 2
for all x € X and all £ > 0. Then, by our assumption
Ma(2x, 1) = M, (x, ;) (4.20)

for all x € X and all ¢ > 0. Replacing x by 2"x in (4.19) and using (4.20), we obtain

g(2™'x)  g(2"x) t
N( ot T gn o) T Mo(2"x,1) = Ma (%, (4.21)
forall x € X, £ > 0 and n > 0. Replacing t by "¢ in (4.21), we see that
g(2™'x)  g(2"x) ta®
N ( 2ﬂ+l - on ’ 2(271) = Md(xl t) (4’22)

forallx e X, t >0 and n > 0. It follows from g(;:x) —8(*) =X ( (i;x) (;;x))
and (4.22) that
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1 g(2*x)  g(Px) ot
mmjL_g{N( 2+l T ) ’2(2)f>} (4.23)

M,(x, t)

g(2"x) & ot
( - 8(x), Zz(z),)

v

forall x € X, ¢t > 0 and n > 0. Replacing x by 2”x in (4.23), we observe that

+ -1 i
g2(2™"x)  g(2™x) § ot t
N Qn+m - om ! Z j = M“(zmx’ t) =Ma|x o

forallxe X,allt>0and all m >0, n > 0. So

s _ 82" 0 "SRl )
N pn+m ]sz 2(2)] _Ma(x' t)

forallx e X, all £>0and all m >0, n > 0. Hence

2n+m 2"1 t
N (g( ) _ & x),t> > M, | % (4.24)
2"+m 2m n+m—1 o
2 202y
j=m

forallxe X,allt>0andall m >0, 7> 0. Since 0 <o < 2 and Y72 (2)" < oo, the
Cauchy criterion for convergence and (Ns) imply that [g(;’:x) ] is a Cauchy sequence in

(Y; N) to some point A(x) € Y. So one can define the mapping A : X — Y by

A(x) = N — lim 3%:’“)) (4.25)

n—o0

for all x € X. Fix x € X and put m = 0 in (4.24) to obtain

2" t

N (g(znx) —g(x), t) > M, | x, -
o
Z 2(2)1'

j=0

forallx e X, ¢t > 0 and n > 0. From which we obtain

NaW -0 = minfn (a0 ) N (00 g0,

(4.26)

for n large enough. Taking the limit as 7 — <o in (4.26), we obtain

N(A(x) — g(x), 1) = M, (x, (2 2_ a)> (4.27)
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for all x € X and all ¢ > 0. It follows from (4.21) and (4.25) that

(3 (15 )

2 2n+1 on -
n+1 n n
,N(g(2 x) g2 x))lt):Ma(x, 2(2) t)
2n+1 on 3 3qn
for all x € X and all ¢ > 0. Therefore,
A(2x) = 2A(x) (4.28)

for all x € X. Replacing x, y by 2"x, 2"y in (4.2), respectively, we obtain

1
N <2n Dy(2"x,2"), t) = N(Df(2™'x, 2"'y) — 8Df(2"x, 2"y), 2"t)

_ . N(D 2n+1 2n+l 2% N(D 2n 271 2%
=min { N(Dy( X, Y), ) ), N(Dg(2"x, 2"), 16)

> mi N/ n+1 n+1 2nt / n n znt
> min ©0a (2" x, 2™y, ) SN @a(2"x,27y), 16

. / ong 2™t
= min {N (wa(x, ), 2+l ) N’ ((ﬂa(x, ) 16an>}

which tends to 1 as n — « for all x, y € X and all £ > 0. So we see that A satisfies
(1.5). Thus, by Lemma 4.1, the mapping x « A(2x) - 8A(x) is additive. So (4.28) implies
that the mapping A is additive.

The rest of the proof is similar to the proof of Theorem 3.2 and we omit the
details. O

Remark 4.3. Let 0 <o < 2. Suppose that the function ¢ » N(f(2x) - 8f(x) - A(x), .)
from (0, ) into [0, 1] is right continuous. Then, we obtain a better fuzzy approxima-
tion than (4.27).

Corollary 4.4. Let X be a normed space and Y be a Banach space. Let ¢, A be non-
negative real numbers such that ). = 1. Suppose that an odd mapping f: X — Y satis-
fies the inequality (3.18) for all x, y € X. Then, the limit

A) = Jim L (F2") — 87(27)

exists for all x € X and A : X — Y is a unique additive mapping satisfying

12k + €1* + 1)(9K? + 4)e || x||*

2 (k2 — 1)(1 — 2471) (4.29)

I1(22) - 81 - A@)| = ¢
for all x e X, where AL <¢.
Proof. The proof is similar to the proof of Corollary 3.4 and the result follows from
Theorem 4.2. O

Theorem 4.5. Denote N, the fuzzy norm obtained as Corollary 3.4 on R. Let for all x
€ X, the functions r — f(2rx) - 8f(rx) (from (R, Ny) into (Y, N)) and r — ¢,(t1rx, 157ry)
(from (R, Ny) into (Z, N)) be fuzzy continuous, where 1; € {1, 2, (k + 1), (k - 1), (2k +
1), 2k - 1)} and 1, € {1, 2, 3}. Then, for all x € X, the function r » A(rx) is fuzzy con-
tinuous and A(rx) = rA(x) for all r € R.

Proof. The proof is similar to the proof of Theorem 3.5 and the result follows from
Theorem 4.2. O
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Lemma 4.6. [22,24]. If an odd mapping f: V|, — V; satisfies (1.5), then the mapping
h: Vi — V, defined by h(x) = f(2x) - 2fix) is cubic.

Theorem 4.7. Let £ € {-1, 1} be fixed and let ¢. : X x X — Z be a mapping such
that

®c(2x, 2y) = agc(x,y) (4.30)

for all x, y € X and for some positive real number o with o < 8¢. Suppose that an
odd mapping f: X — Y satisfies the inequality

N(Dy(x,y),t) = N'(¢c(x,y), t) (4.31)

forall x, ye X and all t > 0. Then, the limit
1
C(x) =N — lim (f(2£”*1x) - 2f(2l"x))
n—oo 81

exists for all x € X and C : X — Y is a unique cubic mapping satisfying

N(F(2x) — 2f (x) — C(x), 1) > M, (x ‘o 5 “ t) (4.32)
forall x e X and all t > 0, where
M(x, t) = min {N’ (wc(x, x), kz;:j :41) t> N (‘/’C(zx' %) kz;:j +_41) t> '
(e B Do ),
N’ (wc((k — 1)x,), k29(Zj :41) t))rN’ (%(2& 2x), kz;:zz :41) t> '
N’ ((pc(x, 3x), k}i :41) t) N (‘/’c((zk +1)x,x), kzg(:j : 41) t> ,
N (a7 )

Proof. Case (1): € = 1. Similar to the proof of Theorem 4.2, we have
N(f(4x) — 10f(2x) + 16f(x), t) > M,(x, t)

for for all x € X and all £ > 0, where M_.(x, £) is defined as in above. Letting /2 : X —
Y be a mapping defined by /(x):= fi2x) - 2flx). Then, we conclude that

N(h(2x) — 8h(x), ) > Mc(x, t) (4.33)

forallx e X and all £ > 0. So

N (h(zx) — h(x), ;) > M(x, 1) (4.34)

for all x € X and all £ > 0. Then, by our assumption

Me(2%, 1) = M. (x, ;) (4.35)
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for all x € X and all ¢ > 0. Replacing x by 2"x in (4.34) and using (4.35), we obtain

h(2™'x)  h(@"x) t t
N ( 8‘rl+1 - 8” 4 8(8”) 2 MC(zn‘xl t) = MC (x/ C(n> (436)
forall x € X, £ > 0 and »n > 0. Replacing t by "¢ in (4.36), we see that
h(2™'x)  h(2"x) ta"
N < gn+l o 8n ’ 8(8‘71) z Mc(x' t) (437)

forallx € X, t> 0 and #n > 0. It follows from h(g:x) —h(x) = Z <h(2]]:x) h(;&))
and (4.37) that

o (M) @) it
N — h(x), Z 8(8)] - U {N( gitl 8’ 8(8)j)}(4-38)

> M(x, t)

forall x € X, t > 0 and #n > 0. Replacing x by 2”x in (4.38), we observe that

h(2™™ h(2"x) S ot t
N HETR) A x),§ T s M@ 1) = M. (
gn+m 8m — 8(8)]”" am
j=

forallxe X,allt>0and all m >0, n > 0. So

h(2™"x) h(2 ) ol _
{n+m ]Xm: 8(8)1 —MC(x't)

forallx e X, all £ >0 and all m >0, n > 0. Hence

h(2™™ h(2™ t
N S Gt SR RV I (4.39)
gn+m 8m n+m—1
> 8(8);)
j=m

forallxe X, all £ >0andall m >0, 1> 0. Since 0 <o < 8 and 33 (%)" < o0, the
Cauchy criterion for convergence and (Ns) imply that { h(ézx)} is a Cauchy sequence in
(Y, N) to some point C(x) € Y. So one can define the mapping C : X — Y by

C() =N — lim ")

n—o0

) (4.40)

for all x € X. Fix x € X and put m = 0 in (4.39) to obtain

N (h(énx) _ h(x),t) >Mc|x
o
¥ )
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forallx e X, ¢t > 0 and n > 0. From which we obtain

h(2"x) t 2" t
N(C(x) = h(x),f) > min {N(C(x) _ @)y G g, )}
gn 2 8" 2
. (4.41)
>z Mc|x
o
i:X(:) 4(8]))
for n large enough. Taking the limit as # — o in (4.41), we obtain
rwqm—mnOzanf“;”) (0.42)

for all x € X and all ¢ > 0. It follows from (4.36) and (4.40) that

N (C(gx) — Cx), t) > min {N (C(zx) _he x)) , ;),N (h(2 9 _ o), ;)

8 8n+1 8n
n+1 n n

N LRIy O om, (x 8(8) t)
8n+1 8n 3 3gh

for all x € X and all ¢t > 0. Therefore,
C(2x) = 8C(x) (4.43)

for all x € X. Replacing %, y by 2"x, 2"y in (4.31), respectively, we obtain
1 n + +
N(SnDh(Z x, 2"y),t> = N(Dy(2™'x, 2™ 1y) — 2Dy (2"x, 2"y), 8™)
n n
= min {N (Df(z"*lx, 21y, 8;) N (Df(z"x, 2"y, 84t>}

> min N/ n+1 n+1 8"t / n n 8"t
> w2527 1), )N (9@ 2,

n

. ! 8 t ’ 8nt
= min {N ((pc(x, Y) Za"“)'N (@c(x,p), 4a”)}

which tends to 1 as n — oo for all x, y € X and all £ > 0. So we see that C, satisfies
(1.5). Thus, by Lemma 4.6, the mapping x ~» C(2x) - 2C(x) is cubic. So (4.43) implies
that the function C is cubic. The rest of the proof is similar to the proof of Theorem
3.2 and we omit the details. O

Remark 4.8. Let 0 <o < 8. Suppose that the function ¢ » N(f(2x) - 2f(x) - C(x), .)
from (0, ) into [0, 1] is right continuous. Then, we obtain a better fuzzy approxima-
tion than(4.42).

Corollary 4.9. Let X be a normed space and Y be a Banach space. Let ¢, A be non-
negative real numbers such that ). = 3. Suppose that an odd mapping f: X — Y satis-
fies the inequality (3.18) for all x, y € X. Then, the limit

Clx) = lim (12 1x) — 2f(2))
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exists for all x € X and C : X — Y is a unique cubic mapping satisfying

(12k + €]* + 1)(9K? + 4)e | x|I*

1) =2~ Cll =

(4.44)

for all x € X, where AL < 3¢.

Theorem 4.10. Denote N, the fuzzy norm obtained as Corollary 3.4 on R. Let for all
x € X, the functions r = fl2rx) - 2firx) (from (R, Ny) into (Y, N)) and r = ¢ (i17%, 157y)
(from (R, Ny) into (Z, N)) be fuzzy continuous, where ; € {1, 2, (k + 1), (k - 1), (2k +
1), 2k - 1)} and 1, € {1, 2, 3}. Then, for all x € X, the function r » C(rx) is fuzzy con-
tinwous and C(rx) = r*C(x) forall re R.

Proof. The proof is similar to the proof of Theorem 3.5 and the result follows from
Theorem 4.7. ©

Theorem 4.11. Let ¢ : X x X — Z be a mapping such that
¢(2%,2y) = ag(x,y) (4.45)

for all x, y € X and for some positive real number o. Suppose that an odd mapping f
: X — Y satisfies the inequality

N(Ds(x,y),t) = N'(¢(x,y), 1) (4.46)

forall x, ye X and all t > 0. Then, there exist a unique cubic mapping C : X > Y
and a unique additive mappingA : X — Y such that

min {M(x, ), M(x, *E N 0 <a <2
N(f(x) — A(x) — C(x),£) = { min {M(x, > ), M(x, &N, 2<a<8 (447)

min {M(x, 3[(0‘2_2) ), M(x, 3'(0’2_8)) , a>38

forall x e X and all t > 0, where

M(x, t) = min {N/ ((p(x,x), (e ”r) N ((p(zx,x), R~ l)t),

9?2 +4 9?2 +4
, k2 (k2 — 1) , k2 (k2 — 1)
,2 ’ ’ 1 ’ ’ ’
N ((p(x x) e t) N ((p((k+ )x, x) e t>
k2 (k2 — 1) k2 (k2 — 1)
’ — 1)x,x), N p(2x, 2x), ,
N ((p((k )x, x) N t)) N ((p( X, 2x) e t>

N’ ((p(x, 3x), kz;:j :41) z) N («;((zk +1)x,x), w0 = 1) t) ,

k2 + 4
N’ (<p((2k — 1)x,x), ng(Zj :41) t)} .

Proof. Case (1): 0 <o < 2. By Theorems 4.2 and 4.7, there exist an additive mapping
Ao : X = Y and a cubic mapping Cy : X — Y such that

N(2x) — 8f(x) — Ao(x), 1) = M (x 12 N “)) (4.48)

and

N(f(2x) — 2f (x) — Co(x), £) = M (x s 2_ ‘”) (4.49)
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for all x € X and all ¢ > 0. It follows from (4.48) and (4.49) that
N (f(x) + éAo(x) - éCo(x), t) > min {M (x, 3t(22_ a)) M <x, 3t(82_ oz))} (4.50)

for all x € X and all ¢ > 0. Letting A(x) = —éAo(x) and C(x) = éCO(x) in (4.50), we

obtain

3t(2 — 3t(8 —
Nm@—mm—qngzmmbdk (2a»JMQ,(2a»} (4.51)
for all x € X and all £ > 0. To prove the uniqueness of A and C, let A’, C: X — Y be
another additive and cubic mappings satisfying (4.51). Let A=A —A’and C=C — C-
So

NG+ €, 1) = min |N () = 4G9 - O, ) ) N (1) = 40 = €0, )|

> min {M (x 3t(24— a)) M (x 3t(84— ot))}

for all x € X and all ¢ > 0. Therefore, it follows from the last inequalities that

N(A(2™) + C(2"), 8"t) > min { M (2% 3(8")ti2 - a)) M <2an 3(8")ti8 - a))}

i {M (x 3(8")(2 — oe)) M (x 3(8")1(8 — oc))}

4on 4on

for all x € X and all ¢ > 0. So, lim,,ooN (g (A(2"x) + C(2"x)), t) = 1, hence ¢ = 0
and then A = (. The rest of the proof, proceeds similarly to that in the previous case. B

Remark 4.12. Let 0 <o < 2. Suppose that the function ¢ » N(f{x) - A(x) - C(x), .)
from (0, ) into [0, 1] is right continuous. Then, we obtain a better fuzzy approxima-
tion than (4.51).

Corollary 4.13. Let X be a normed space and Y be a Banach space. Let & A be non-
negative real numbers. Suppose that an odd mapping f: X — Y satisfies the inequality
(3.18) for all x, y € X. Then there exist a unique additive mapping A : X — Y and a
unique cubic mapping C : X — Y such that

I f(x) —A(x) — C(x) |l
1 (12k+£)*+1)(9k?+4)e 1 1 A
6 12(k2-1) ((1_2)\71) + (4-20-1) I xI*, A <1
1 (12k+€)*+1)(9k%+4) 1 1

< | § PR (o + acdey) I 1 <2 <3

1 (12k+£[*+1)(9k*+4)e 1 1 A
GO () oty ) Il 2> 3

(4.52)

forall x e X.

Proof. The result follows by Corollaries 4.4 and 4.9. ©

Theorem 4.14. Denote N, the fuzzy norm obtained as Corollary 3.4 on R. Let for all
x € X, the functions r — firx) (from (R, Ny) into (Y, N)) and r — ¢(11rx, tory) (from (R,
N,) into (Z, N)) be fuzzy continuous, where 1, € {1, 2, (k + 1), (k - 1), 2k + 1), (2k -
1)} and 1, € {1, 2, 3}. Then, for all x € X, the function r » A(rx) + C(rx) is fuzzy con-
tinuous and A(rx) + C(rx) = rA(x) + r’C(x) for all r € R.

Proof. The result follows by Theorems 4.5 and 4.10. ©
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5. Fuzzy stability of the functional equation (1.5)
In this section, we prove the generalized Hyers-Ulam stability of a mixed cubic, quad-
ratic, and additive functional equation (1.5) in fuzzy Banach spaces.

Theorem 5.1. Let ¢ : X x X — Z be a function which satisfies (3.1) and (4.45) for all
x, y € X and for some positive real number o. Suppose that a mapping f: X — Y satis-
fies the inequality

N(Dy(x,y), 1) = N'(¢(x,y), 1) (5.1)
for all x, ye X and all t > 0. Furthermore, assume that fl0) = 0 in (5.1) for the case f

is even. If |k| = 2, then there exist a unique cubic mapping C : X — Y, a unique quad-
ratic mapping Q : X — Y and a unique additive mapping A : X — Y such that

min{M, (x,t), M; (—x,1)}, 0 < o < 2
min{Mj(x,t), Ma(—x, 1)}, 2 < @ < k?

NG = €)= QE) = A O 2 it (1), M (=, ), 2 < < 8 02
min{My(x, t), Ma(—x,t)}, @ > 8
forall x e X and all t > 0, otherwise
min{Mi (x, ), M1 (= 1)}, 0 < & < 2
N(() — C(x) — Q) — A(@), 1) = | PiniM(x ) M0 1)) 2 < <8 5 g

min{Ms(x, t), Ms(—x, 1)}, 8 < o < k2
min{My(x, t), My(—x, 1)}, & > k2

forall x e X and all t > 0, where

My (x, 1) = min | N’ (w(O, %), (k2 N “)t> M (x 31(2 - a)) M, 3t(8 —a) } ’
My (x, t) = min { N’ <¢,(o,x)/ ( 2;“%) M <x 3t(Ot - )) M 3t(8 —a),
Ms(x, 1) = min | N’ <<p(0,x), (e ;k2)t> M (x 3t(ot - )) M(x 3t(8 ~a)|
My(x,t) = min { N <(.0(0,x), (o ;kz)t> M <x, 3t(0‘ - ))  M(x 3t(a -8) ’
Ms(x, ) = min |N' <¢(O,x), (k2; )t) M <x 3t(ot - z)) M 3t(a _8)
and
- %10 e e %1
k2 k2 — kz kz _
N’ ((p(x, 2x), 9(k2 ) )t) N/ (@((k +1)x, %), 9(k2 : 41)t> /

ot I8 ) ¢ (. F D),

N’ ((p(x, 3x), kz;:j R z) N («;((zk +1)x,x), ng(Zj :41) t) ,

( ((2k — 1)x,x) szg(Z:;)t)}'
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Proof. Case (1): 0 <o < 2. Assume that ¢ : X x X — Z satisfies (1.6) for all x, y € X.
Let fo(x) = ) (f(x) + f(—x)) for all x € X, then £(0) = 0, fo(-x) = f.(x), and

N(Dy, (x,y), t) = min{N'(¢(x,y), 1), N'(¢(—x, =), 1)}

for all v, y € X and all £ > 0. By Theorem 3.2 for all x, y € X, there exist a unique
quadratic mapping Q : X — Y such that

_ 2 _
N(f(x) — Q(x), ©) > min{N’ ((p(O,x), (kzz o) t) N (90(0/ _y, R ‘”r)} (5.4)
for all x € X and all £ > 0. Now, if ¢ : X x X — Z satisfies (4.45) for all x, y € X, and
let fo(x) = J(f(x) — f(—x)) for all x € X, then
N(Dy, (x,y), t) = min{N'(¢(x,y), 1), N'(¢(—x, =y), 1)}

for all x, y € X and all £ > 0. By Theorem 4.11, it follows that there exist a unique
cubic mapping C : X — Y and a unique additive mapping A ; X — Y such that

N(fo(x) — C(x) — A(x), t) > min [M (x, 3t(22_ “)> M (x, 3f(82— a))

M (—x, 3t(22— a)) M (_x’ 3t(82— a))}

for all x € X and all ¢ > 0. It follows from (5.4) and (5.5) that
N(f(x) — C(x) — Q(x) — A(x), t)

Zmin{ ((p(O %), (2; )t),M(x,3t(24_a)),M(x,3t(84_a)),

NG ((,,(0 —x), (k* )),M(—x, 3t(24— a)),M(—x, 3t(84_ a)} (5.6)

(5.5)

= min {Ml(x, £), My (—x, t)}

The rest of the proof proceeds similarly to that in the previous case. O

Remark 5.2. Let 0 <o < 2. Suppose that the function ¢ » N(f{x) - C(x) - Q(x) - A(x),
.) from (0, =) into [0, 1] is right continuous. Then, we obtain a better fuzzy approxi-
mation than (5.2) or (5.3).

Corollary 5.3. Let X be a normed space and Y be a Banach space. Let ¢, A be non-
negative real numbers. Suppose that fl0) = 0 in (3.18) for the case f: X — Y is even.
Then, there exist a unique cubic mapping C : X — Y, a unique quadratic mapping Q :
X — Y and a unique additive mapping A : X — Y such that

I f(x) — C(x) — Q(x) —A(x) |

r %2
é(|2k+t;€|2(+k12)(2) o ((1 21y * (4 ZA 1)) Il + k2 ak'\ Il 2 <1
s 2
| (o b)) D L <R <2 (5)
= n %2
b (PO e ((p L by ) Al 2 P 2 << 3
n 2
é“zk*‘;lz{k?(?’i o ((zﬂ * ) ¥+ 3 W6 >3
forall x e X.

Proof. The result follows by Corollaries 3.4 and 4.13. O
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Theorem 5.4. Denote N, the fuzzy norm obtained as Corollary 3.4 on R. Let for all x
€ X, the functions r — frx) (from (R, Ny) into (Y, N)) and r » ¢(i1rx, 15ry) (from (R,
N,y) into (Z, N')) be fuzzy continuous, where 1 € {0, + 1, £ 2, + (k + 1), + (k- 1), £ (2k
+1), £ k- 1} and iy € {1, £ 2, +3}. Then, for all x € X, the function r » C(rx) +
Q(rx) + A(rx) is fuzzy continuous and C(rx) + Q(rx) + A(rx) = r*C(x) + *Q(x) + rA(x)
forallre R

Proof. The result follows by Theorems 3.5 and 4.14. ©
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