RESEARCH Open Access

Fuzzy Stability of Generalized Mixed Type Cubic, Quadratic, and Additive Functional Equation

Madjid Eshaghi Gordji¹, Mahdie Kamyar¹, Hamid Khodaei¹, Dong Yun Shin² and Choonkil Park^{3*}

available at the end of the article

Abstract

In this paper, we prove the generalized Hyers-Ulam stability of generalized mixed type cubic, quadratic, and additive functional equation, in fuzzy Banach spaces. **2010 Mathematics Subject Classification:** 39B82; 39B52.

Keywords: fuzzy Hyers-Ulam stability, mixed functional equation, fuzzy normed space

1. Introduction

The stability problem of functional equations originated from a question of Ulam [1] concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative answer to the question of Ulam for Banach spaces. Hyers' theorem was generalized by Aoki [3] for additive mappings and by Rassias [4] for linear mappings by considering an unbounded Cauchy difference. The paper of Rassias [4] has provided a lot of influence in the development of what we now call *generalized Hyers-Ulam stability* of functional equations. In 1994, a generalization of the Rassias' theorem was obtained by Găvruta [5] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

The functional equation

$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$
(1.1)

is related to a symmetric bi-additive mapping [6,7]. It is natural that this equation is called a quadratic functional equation. In particular, every solution of the quadratic equation (1.1) is said to be a quadratic mapping. It is well known that a mapping f between real vector spaces is quadratic if and only if there exits a unique symmetric bi-additive mapping B such that f(x) = B(x, x) for all x (see [6,7]). The bi-additive mapping B is given by

$$B(x, y) = \frac{1}{4}(f(x+y) - f(x-y)) \tag{1.2}$$

A generalized Hyers-Ulam stability problem for the quadratic functional equation (1.1) was proved by Skof for mappings $f: A \to B$, where A is normed space and B is a Banach space [8] (see [9-12]).

^{*} Correspondence: baak@hanyang. ac.kr ³Department of Mathematics, Research Institute For Natural Sciences, Hanyang University, Seoul 133-791, Korea Full list of author information is

Jun and Kim [13] introduced the following cubic functional equation

$$f(2x+y) + f(2x-y) = 2f(x+y) + 2f(x-y) + 12f(x)$$
(1.3)

and they established the general solution and the generalized Hyers-Ulam stability for the functional equation (1.3). They proved that a mapping f between two real vector spaces X and Y is a solution of (1.3) if and only if there exists a unique mapping $C: X \times X \times X \to Y$ such that f(x) = C(x, x, x) for all $x \in X$, moreover, C is symmetric for each fixed one variable and is additive for fixed two variables. The mapping C is given by

$$C(x, y, z) = \frac{1}{24} (f(x+y+z) + f(x-y-z) - f(x+y-z) - f(x-y+z))$$
 (1.4)

for all x, y, $z \in X$. During the last decades, several stability problems for various functional equations have been investigated by many mathematicians; [14-21].

Eshaghi and Khodaei [22] have established the general solution and investigated the generalized Hyers-Ulam stability for a mixed type of cubic, quadratic, and additive functional equation with f(0) = 0,

$$f(x+ky) + f(x-ky) = k^2 f(x+y) + k^2 f(x-y) + 2(1-k^2)f(x)$$
(1.5)

in quasi-Banach spaces, where k is nonzero integer numbers with $k \neq \pm 1$. Obviously, the function $f(x) = ax + bx^2 + cx^3$ is a solution of the functional equation (1.5). Interesting new results concerning mixed functional equations has recently been obtained by Najati et. al. [23,24], Jun and Kim [25,26] as well as for the fuzzy stability of a mixed type of additive and quadratic functional equation by Park [27] (see also [28-43]).

This paper is organized as follows: In Section 3, we prove the generalized Hyers-Ulam stability of the functional equation (1.5) in fuzzy Banach spaces for an even case. In Section 4, we prove the generalized Hyers-Ulam stability of the functional equation (1.5) in fuzzy Banach spaces for an odd case. In Section 5, we prove the generalized Hyers-Ulam stability of generalized mixed cubic, quadratic, and additive functional equation (1.5) in fuzzy Banach spaces.

2. Preliminaries

We use the definition of fuzzy normed spaces given in [44] to investigate a fuzzy version of the generalized Hyers-Ulam stability for the functional equation (1.5) in the fuzzy normed space setting.

Definition 2.1. (Bag and Samanta [44], Mirmostafaee [45]). Let X be a real linear space. A function $N: X \times \mathbb{R} \to [0, 1]$ is said to be a fuzzy norm on X if for all $x, y \in X$ and all $x, t \in \mathbb{R}$;

- $(N_1) N(x, t) = 0 \text{ for all } t \le 0;$
- (N_2) x = 0 if and only if N(x, t) = 1 for all t > 0;

$$(N_3) N(cx, t) = N\left(x, \frac{t}{|c|}\right) \text{ if } c \neq 0;$$

- $(N_4) N(x + y, s + t) \ge \min\{N(x, s), N(y, t)\};$
- (N_5) $N(x, \cdot)$ is non-decreasing function on \mathbb{R} and $\lim_{t\to\infty} N(x, t) = 1$;
- (N_6) $N(x, \cdot)$ is left continuous on \mathbb{R} for every $x \neq 0$.

The pair (X, N) is called a fuzzy normed linear space.

The properties of fuzzy normed vector spaces and examples of fuzzy norms are given in ([3,45-47]).

Definition 2.2. (Bag and Samanta [44], Mirmostafaee [45]). Let (X, N) be a fuzzy normed linear space. A sequence $\{x_n\}$ in X is said to be convergent if there exists $x \in X$ such that $\lim_{n\to\infty} N(x_n - x, t) = 1$ for all t > 0. In that case, x is called the limit of the sequence (x_n) and we write $N - \lim_{n\to\infty} x_n = x$.

Definition 2.3. (Bag and Samanta [44], Mirmostafaee [45]). Let (X, N) be a fuzzy normed linear space. A sequence $\{x_n\}$ in X is called Cauchy if for each $\epsilon > 0$ and each $\delta > 0$, there exists $n_0 \in \mathbb{N}$ such that $N(x_m - x_n, \delta) > 1 - \epsilon$ $(m, n \ge n_0)$.

It is well known that every convergent sequence in a fuzzy normed vector space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a function $f: X \to Y$ between fuzzy normed vector spaces X and Y is continuous at a point $x_0 \in X$ if for each sequence $\{x_k\}$ converging to x_0 in X, then the sequence $\{f(x_k)\}$ converges to $f(x_0)$. If $f: X \to Y$ is continuous at each $x \in X$, then $f: X \to Y$ is said to be continuous on X (see [48]).

In the rest of this paper, unless otherwise explicitly stated, we will assume that X is a vector space, (Z, N') is a fuzzy normed space, and (Y, N) is a fuzzy Banach space. For convenience, we use the following abbreviation for a given function $f: X \to Y$,

$$D_f(x, y) = f(x + ky) + f(x - ky) - k^2 f(x + y) - k^2 f(x - y) - 2(1 - k^2) f(x)$$

for all $x, y \in X$, where k is nonzero integer numbers with $k \neq \pm 1$.

3. Fuzzy stability of the functional equation (1.5): an even case

In this section, we prove the generalized Hyers-Ulam stability of the functional equation (1.5) in fuzzy Banach spaces, for an even case. From now on, V_1 and V_2 will be real vector spaces.

Lemma 3.1. [22]. If an even mapping $f: V_1 \to V_2$ satisfies (1.5), then f(x) is quadratic.

Theorem 3.2. Let $\ell \in \{-1, 1\}$ be fixed and let $\phi_q : X \times X \to Y$ be a mapping such that

$$\varphi_q(kx, ky) = \alpha \varphi_q(x, y) \tag{3.1}$$

for all $x, y \in X$ and for some positive real number α with $\alpha \ell < k^2 \ell$. Suppose that an even mapping $f: X \to Y$ with f(0) = 0 satisfies the inequality

$$N(D_f(x, \gamma), t) \ge N'(\varphi_q(x, \gamma), t)$$
(3.2)

for all $x, y \in X$ and all t > 0. Then, the limit

$$Q(x) = N - \lim_{n \to \infty} \frac{f(k^{\ell n} x)}{k^{2\ell n}})$$

exists for all $x \in X$ and $Q: X \to Y$ is a unique quadratic mapping satisfying

$$N(f(x) - Q(x), t) \ge N'\left(\varphi_q(0, x), \frac{\ell(k^2 - \alpha)t}{2}\right)$$
(3.3)

for all $x \in X$ and all t > 0.

Proof. Case (1): $\ell = 1$. By putting x = 0 in (3.2) and then using evenness of f and f(0) = 0, we obtain

$$N(2f(ky) - 2k^2 f(y), t) \ge N'(\varphi_q(0, y), t)$$
(3.4)

for all $x, y \in X$ and all t > 0. If we replace y in (3.4) by x, we get

$$N\left(f(kx) - k^2 f(x), \frac{t}{2}\right) \ge N'(\varphi_q(0, x), t) \tag{3.5}$$

for all $x \in X$. So

$$N\left(\frac{f(kx)}{k^2} - f(x), \frac{t}{2k^2}\right) \ge N'(\varphi_q(0, x), t)$$
(3.6)

for all $x \in X$ and all t > 0. Then by our assumption

$$N'(\varphi_q(0,kx),t) = N'\left(\varphi_q(0,x), \frac{t}{\alpha}\right)$$
(3.7)

for all $x \in X$ and all t > 0. Replacing x by $k^n x$ in (3.6) and using (3.7), we obtain

$$N\left(\frac{f(k^{n+1}x)}{k^{2(n+1)}} - \frac{f(k^nx)}{k^{2n}}, \frac{t}{k^2(k^{2n})}\right) \ge N'(\varphi_q(0, k^nx), t) = N'\left(\varphi_q(0, x), \frac{t}{\alpha^n}\right)$$
(3.8)

for all $x \in X$, t > 0 and $n \ge 0$. Replacing t by $\alpha^n t$ in (3.8), we see that

$$N\left(\frac{f(k^{n+1}x)}{k^{2(n+1)}} - \frac{f(k^nx)}{k^{2n}}, \frac{\alpha^n t}{k^2(k^{2n})}\right) \ge N'(\varphi_q(0, x), t)$$
(3.9)

for all $x \in X$, t > 0 and n > 0. It follows from $\frac{f(k^n x)}{k^{2n}} - f(x) = \sum_{j=0}^{n-1} \left(\frac{f(k^{j+1} x)}{k^{2(j+1)}} - \frac{f(k^j x)}{k^{2j}} \right)$ and (3.9) that

$$N\left(\frac{f(k^{n}x)}{k^{2n}} - f(x), \sum_{j=0}^{n-1} \frac{\alpha^{j}t}{k^{2}(k^{2})^{j}}\right) \geq \min \bigcup_{j=0}^{n-1} \left\{ N\left(\frac{f(k^{j+1}x)}{k^{2(j+1)}} - \frac{f(k^{j}x)}{k^{2j}}, \frac{\alpha^{j}t}{k^{2}(k^{2})^{j}}\right) \right\}$$

$$\geq N'(\varphi_{q}(0, x), t)$$
(3.10)

for all $x \in X$, t > 0 and n > 0. Replacing x by $k^m x$ in (3.10), we observe that

$$N\left(\frac{f(k^{n+m}x)}{k^{2(n+m)}} - \frac{f(k^mx)}{k^{2m}}, \sum_{j=0}^{n-1} \frac{\alpha^j t}{k^2 (k^2)^{j+m}}\right) \ge N'(\varphi_q(0, k^mx), t) = N'\left(\varphi(0, x), \frac{t}{\alpha^m}\right)$$

for all $x \in X$, all t > 0 and all $m \ge 0$, n > 0. Hence

$$N\left(\frac{f(k^{n+m}x)}{k^{2(n+m)}} - \frac{f(k^mx)}{k^{2m}}, \sum_{j=m}^{n+m-1} \frac{\alpha^j t}{k^2 (k^2)^j}\right) \ge N'(\varphi_q(0,x), t)$$

for all $x \in X$, all t > 0 and all $m \ge 0$, n > 0. By last inequality, we obtain

$$N\left(\frac{f(k^{n+m}x)}{k^{2(n+m)}} - \frac{f(k^{m}x)}{k^{2m}}, t\right) \ge N'\left(\varphi_{q}(0, x), \frac{t}{\sum_{j=m}^{n+m-1} \frac{\alpha^{j}}{k^{2}(k^{2})^{j}}}\right)$$
(3.11)

for all $x \in X$, all t > 0 and all $m \ge 0$, n > 0. Since $0 < \alpha < k^2$ and $\sum_{j=0}^{\infty} \left(\frac{\alpha}{k^2}\right)^j < \infty$, the Cauchy criterion for convergence and (N_5) imply that $\left\{\frac{f(k^n x)}{k^{2n}}\right\}$ is a Cauchy sequence in Y. Since Y is a fuzzy Banach space, this sequence converges to some point $Q(x) \in Y$. So one can define the function $Q: X \to Y$ by

$$Q(x) = N - \lim_{n \to \infty} \frac{f(k^n x)}{k^{2n}}$$
 (3.12)

for all $x \in X$. Fix $x \in X$ and put m = 0 in (3.11) to obtain

$$N\left(\frac{f(k^n x)}{k^{2n}} - f(x), t\right) \ge N'\left(\varphi_q(0, x), \frac{t}{\sum_{i=0}^{n-1} \frac{\alpha^i}{k^2 (k^2)^i}}\right)$$

for all $x \in X$, all t > 0 and all n > 0. From which we obtain

$$N(Q(x) - f(x), t) \geq \min \left\{ N(Q(x) - \frac{f(k^{n}x)}{k^{2n}}, \frac{t}{2}), N\left(\frac{f(k^{n}x)}{k^{2n}} - f(x), \frac{t}{2}\right) \right\}$$

$$\geq N'\left(\varphi_{q}(0, x), \frac{t}{\sum_{j=0}^{n-1} \frac{2a^{j}}{k^{2}(k^{2})^{j}}}\right)$$
(3.13)

for *n* large enough. Taking the limit as $n \to \infty$ in (3.13), we obtain

$$N(Q(x) - f(x), t) \ge N'\left(\varphi_q(0, x), \frac{(k^2 - \alpha)t}{2}\right)$$
(3.14)

for all $x \in X$ and all t > 0. It follows from (3.8) and (3.12) that

$$N\left(\frac{Q(kx)}{k^{2}} - Q(x), t\right) \ge \min\left\{N\left(\frac{Q(kx)}{k^{2}} - \frac{f(k^{n+1}x)}{k^{2(n+1)}}, \frac{t}{3}\right), N\left(\frac{f(k^{n}x)}{k^{2n}} - Q(x), \frac{t}{3}\right), N\left(\frac{f(k^{n+1}x)}{k^{2(n+1)}} - \frac{f(k^{n}x)}{k^{2n}}, \frac{t}{3}\right)\right\} = N'\left(\varphi_{q}(0, x), \frac{k^{2}(k^{2n})t}{3\alpha^{n}}\right)$$

for all $x \in X$ and all t > 0. Therefore,

$$Q(kx) = k^2 Q(x) \tag{3.15}$$

for all $x \in X$. Replacing x, y by $k^n x$, $k^n y$ in (3.2), respectively, we obtain

$$N\left(\frac{1}{k^{2n}}D_f(k^nx,k^ny),t\right) \geq N'(\varphi_q(k^nx,k^ny),k^{2n}t) = N'\left(\varphi_q(x,y),\frac{k^{2n}t}{\alpha^n}\right)$$

which tends to 1 as $n \to \infty$ for all $x, y \in X$ and all t > 0. So, we see that Q satisfies (1.5). Thus, by Lemma 3.1, the function $x \leadsto f(x)$ is quadratic. Therefore, (3.15) implies that the function Q is quadratic.

Now, to prove the uniqueness property of Q, let $Q': X \to Y$ be another quadratic function satisfying (3.3). It follows from (3.3), (3.7) and (3.15) that

$$N(Q(x) - Q'(x), t) = N\left(\frac{Q(k^{n}x)}{k^{2n}} - \frac{Q'(k^{n}x)}{k^{2n}}, t\right)$$

$$\geq \min\left\{N\left(\frac{Q(k^{n}x)}{k^{2n}} - \frac{f(k^{n}x)}{k^{2n}}, \frac{t}{2}\right), N\left(\frac{f(k^{n}x)}{k^{2n}} - \frac{Q'(k^{n}x)}{k^{2n}}, \frac{t}{2}\right)\right\}$$

$$\geq N'\left(\varphi_{q}(0, k^{n}x), \frac{k^{2n}(k^{2} - \alpha)t}{4}\right) = N'\left(\varphi_{q}(0, x), \frac{k^{2n}(k^{2} - \alpha)t}{4\alpha^{n}}\right)$$

for all $x \in X$ and all t > 0. Since $\alpha < k^2$, we obtain $\lim_{n \to \infty} N'\left(\varphi_q(0, x), \frac{k^{2n}(k^2 - \alpha)t}{4\alpha^n}\right) = 1$. Thus, Q(x) = Q'(x).

Case (2): $\ell = -1$. We can state the proof in the same pattern as we did in the first case.

Replacing x by $\frac{x}{k}$ in (3.5), we obtain

$$N\left(f(x) - k^2 f\left(\frac{x}{k}\right), \frac{t}{2}\right) \ge N'\left(\varphi_q\left(0, \frac{x}{k}\right), t\right) \tag{3.16}$$

for all $x \in X$ and all t > 0. Replacing x and t by $\frac{x}{k^n}$ and $\frac{t}{k^{2n}}$ in (3.16), respectively, we obtain

$$N\left(k^{2n}f\left(\frac{x}{k^n}\right)-k^{2(n+1)}f(\frac{x}{k^{n+1}}),\frac{t}{2}\right)\geq N'\left(\varphi_q(0,\frac{x}{k^{n+1}}),\frac{t}{k^{2n}}\right)=N'\left(\varphi_q(0,x),(\frac{\alpha}{k^2})^n\alpha t\right)$$

for all $x \in X$, all t > 0 and all n > 0. One can deduce

$$N\left(k^{2(n+m)}f\left(\frac{x}{k^{n+m}}\right) - k^{2m}f\left(\frac{x}{k^m}\right), t\right) \ge N'\left(\varphi_q(0, x), \frac{t}{\sum\limits_{j=m+1}^{n+m} \frac{2k^{2j}}{k^2\alpha^j}}\right)$$
(3.17)

for all $x \in X$, all t > 0 and all $m \ge 0$, $n \ge 0$. From which we conclude that $\left\{k^{2n}f\left(\frac{x}{k^n}\right)\right\}$ is a Cauchy sequence in the fuzzy Banach space (Y, N). Therefore, there is a mapping $Q: X \to Y$ defined by $Q(x) := N - \lim_{n \to \infty} k^{2n}f\left(\frac{x}{k^n}\right)$. Employing (3.17) with m = 0, we obtain

$$N(Q(x) - f(x), t) \ge N'\left(\varphi_q(0, x), \frac{(\alpha - k^2)t}{2}\right)$$

for all $x \in X$ and all t > 0. The proof for uniqueness of Q for this case proceeds similarly to that in the previous case, hence it is omitted. \Box

Remark 3.3. Let $0 < \alpha < k^2$. Suppose that the function $t \mapsto N(f(x) - Q(x), .)$ from $(0, \infty)$ into [0, 1] is right continuous. Then, we obtain a better fuzzy (3.14) as follows. We obtain

$$N(Q(x) - f(x), t + s) \ge \min \left\{ N\left(Q(x) - \frac{f(k^n x)}{k^{2n}}, s\right), N\left(\frac{f(k^n x)}{k^{2n}} - f(x), t\right) \right\}$$

$$\ge N'\left(\varphi_q(0, x), \frac{t}{\sum_{j=0}^{n-1} \frac{\alpha^j}{k^2(k)^{2j}}}\right)$$

$$\ge N'\left(\varphi_q(0, x), (k^2 - \alpha)t\right).$$

Tending s to zero we infer that

$$N(Q(x) - f(x), t) \ge N'(\varphi_q(0, x), (k^2 - \alpha)t)$$

for all $x \in X$ and all t > 0.

From Theorem 3.2, we obtain the following corollary concerning the generalized Hyers-Ulam stability [4] of quadratic mappings satisfying (1.5), in normed spaces.

Corollary 3.4. Let X be a normed space and Y be a Banach space. Let ε , λ be non-negative real numbers such that $\lambda \neq 2$. Suppose that an even mapping $f: X \to Y$ with f(0) = 0 satisfies

$$\parallel D_f(x, \gamma) \parallel \leq \varepsilon (\parallel x \parallel^{\lambda} + \parallel y \parallel^{\lambda}) \tag{3.18}$$

for all $x, y \in X$. Then, the limit

$$Q(x) = N - \lim_{n \to \infty} \frac{f(k^{\ell n} x)}{k^{2\ell n}})$$

exists for all $x \in X$ and $Q: X \to Y$ is a unique quadratic mapping satisfying

$$||f(x) - Q(x)|| \le \frac{2\varepsilon \|x\|^{\lambda}}{\ell(k^2 - k^{\lambda})}$$
(3.19)

for all $x \in X$, where $\lambda \ell < 2\ell$.

Proof. Define the function N by

$$N(x,t) = \begin{cases} \frac{t}{t + ||x||}, & t > 0 \\ 0, & t \le 0 \end{cases}$$

It is easy to see that (X, N) is a fuzzy normed space and (Y, N) is a fuzzy Banach space. Denote $\phi_q: X \times X \to \mathbb{R}$, the function sending each (x, y) to $\varepsilon(||x||^{\lambda} + ||y||^{\lambda})$. By assumption

$$N(D_f(x, y), t) \ge N'(\varphi_q(x, y), t)$$

note that $N': \mathbb{R} \times \mathbb{R} \to [0, 1]$ given by

$$N'(x,t) = \begin{cases} \frac{t}{t+|x|}, \ t > 0 \\ 0, \quad t \le 0 \end{cases}$$

is a fuzzy norm on \mathbb{R} . By Theorem 3.2, there exists a unique quadratic mapping $Q:X\to Y$ satisfying the equation (1.5) and

$$\begin{split} \frac{t}{t+\parallel f(x)-Q(x)\parallel} &= N(f(x)-Q(x),t) \\ &\geq N'\left(\varphi_q(0,x),\frac{\ell(k^2-k^\lambda)t}{2}\right) \\ &= N'\left(\varepsilon\parallel x\parallel^\lambda,\frac{\ell(k^2-k^\lambda)t}{2}\right) = \frac{\ell(k^2-k^\lambda)t}{\ell(k^2-k^\lambda)t+2\varepsilon\parallel x\parallel^\lambda} \end{split}$$

and thus

$$\frac{t}{t+\parallel f(x)-Q(x)\parallel} \geq \frac{\ell(k^2-k^{\lambda})t}{\ell(k^2-k^{\lambda})t+2\varepsilon \parallel x\parallel^{\lambda}}$$

which implies that, $\ell(k^2 - k^{\lambda})||f(x) - Q(x)|| \le 2\varepsilon||x||^{\lambda}$ for all $x \in X$. \Box

In the following theorem, we will show that under some extra conditions on Theorem 3.2, the quadratic function $r \mapsto Q(rx)$ is fuzzy continuous. It follows that in such a case, $Q(rx) = r^2Q(x)$ for all $x \in X$ and $r \in \mathbb{R}$.

In the following result, we will assume that all conditions of the theorem 3.2 hold.

Theorem 3.5. Denote N_1 the fuzzy norm obtained as Corollary 3.4 on \mathbb{R} . Let for all $x \in X$, the functions $r \mapsto f(rx)$ (from (\mathbb{R}, N_1) into (Y, N)) and $r \mapsto \phi_q(0, rx)$ (from (\mathbb{R}, N_1) into (Z, N')) be fuzzy continuous. Then, for all $x \in X$, the function $r \mapsto Q(rx)$ is fuzzy continuous and $Q(rx) = r^2Q(x)$ for all $r \in \mathbb{R}$.

Proof. Case (1): $\ell = 1$. Let $\{r_k\}$ be a sequence in \mathbb{R} that converge to some $r \in \mathbb{R}$, and let t > 0. Let $\varepsilon > 0$ be given, since $0 < \alpha < k^2$, so $\lim_{n \to \infty} \frac{(k^2 - \alpha)k^{2n}t}{12\alpha^n} = \infty$, there is $m \in \mathbb{N}$ such that

$$N'\left(\varphi_q(0, rx), \frac{(k^2 - \alpha)k^{2m}t}{12\alpha^m}\right) > 1 - \varepsilon \tag{3.20}$$

It follows from (3.14) and (3.20) that

$$N\left(\frac{f(k^m r x)}{k^{2m}} - \frac{Q(k^m r x)}{k^{2m}}, \frac{t}{3}\right) > 1 - \varepsilon \tag{3.21}$$

By the fuzzy continuity of functions $r \mapsto f(rx)$ and $r \mapsto \phi_q(0, rx)$, we can find some $\mathcal{J} \in \mathbb{N}$ such that for any $n \ge j$,

$$N\left(\frac{f(k^m r_k x)}{k^{2m}} - \frac{f(k^m r x)}{k^{2m}}, \frac{t}{3}\right) > 1 - \varepsilon \tag{3.22}$$

and

$$N'(\varphi_q(0, r_k x) - \varphi_q(0, r x), \frac{(k^2 - \alpha)k^{2m}t}{12\alpha^m}) > 1 - \varepsilon$$
 (3.23)

It follows from (3.20) and (3.23) that

$$N'(\varphi_q(0, r_k x), \frac{(k^2 - \alpha)k^{2m}t}{6\alpha^m}) > 1 - \varepsilon$$
(3.24)

On the other hand,

$$N\left(Q(r_{k}x) - \frac{f(k^{m}r_{k}x)}{k^{2m}}, \frac{t}{k^{2m}}\right) = N\left(\frac{Q(k^{m}r_{k}x)}{k^{2m}} - \frac{f(k^{m}r_{k}x)}{k^{2m}}, \frac{t}{k^{2m}}\right)$$

$$\geq N'\left(\varphi_{q}(0, r_{k}x), \frac{(k^{2} - \alpha)t}{2\alpha^{m}}\right)$$
(3.25)

It follows from (3.24) and (3.25) that

$$N\left(Q(r_k x) - \frac{f(k^m r_k x)}{k^{2m}}, \frac{t}{3}\right) > 1 - \varepsilon \tag{3.26}$$

So, it follows from (3.21), (3.22) and (3.26) that for any $n \ge j$,

$$N(Q(r_k x) - Q(rx), t) > 1 - \varepsilon$$

Therefore, for every choice $x \in X$, t > 0, and $\varepsilon > 0$, we can find some $\mathcal{J} \in \mathbb{N}$ such that $N(Q(r_k x) - Q(rx), t) > 1 - \varepsilon$ for every $n \geq \mathcal{J}$. This shows that $Q(r_k x) \to Q(rx)$. The proof for $\ell = -1$ proceeds similarly to that in the previous case.

It is not hard to see that $Q(rx) = r^2Q(x)$ for each rational number r. Since Q is a fuzzy continuous function, by the same reasoning as in the proof of [45], the quadratic mapping $Q: X \to Y$ satisfies $Q(rx) = r^2Q(x)$ for each $r \in \mathbb{R}$. \square

4. Fuzzy stability of the functional equation (1.5): an odd case

In this section, we prove the generalized Hyers-Ulam stability of the functional equation (1.5) in fuzzy Banach spaces for an odd case.

Lemma 4.1. [22,24]. If an odd mapping $f: V_1 \to V_2$ satisfies (1.5), then the mapping $g: V_1 \to V_2$, defined by g(x) = f(2x) - 8f(x), is additive.

Theorem 4.2. Let $\ell \in \{-1, 1\}$ be fixed and let $\phi_q : X \times X \to Z$ be a function such that

$$\varphi_a(2x, 2y) = \alpha \varphi_a(x, y) \tag{4.1}$$

for all $x, y \in X$ and for some positive real number α with $\alpha \ell < 2\ell$. Suppose that an odd mapping $f: X \to Y$ satisfies the inequality

$$N(D_f(x, y), t) \ge N'(\varphi_a(x, y), t) \tag{4.2}$$

for all $x, y \in X$ and all t > 0. Then, the limit

$$A(x) = N - \lim_{n \to \infty} \frac{1}{2^{\ell n}} (f(2^{\ell n + 1}x) - 8f(2^{\ell n}x))$$

exists for all $x \in X$ and $A: X \to Y$ is a unique additive mapping satisfying

$$N(f(2x) - 8f(x) - A(x), t) \ge M_a\left(x, \frac{\ell(2-\alpha)}{2}t\right)$$
 (4.3)

for all $x \in X$ and all t > 0, where

$$\begin{split} M_{a}(x,t) &= \min \left\{ N' \left(\varphi_{a}(x,x), \frac{k^{2}(k^{2}-1)}{9k^{2}+4} t \right), N' \left(\varphi_{a}(2x,x), \frac{k^{2}(k^{2}-1)}{9k^{2}+4} t \right), \\ N' \left(\varphi_{a}(x,2x), \frac{k^{2}(k^{2}-1)}{9k^{2}+4} t \right), N' \left(\varphi_{a}((k+1)x,x), \frac{k^{2}(k^{2}-1)}{9k^{2}+4} t \right), \\ N' \left(\varphi_{a}((k-1)x,x), \frac{k^{2}(k^{2}-1)}{9k^{2}+4} t \right), N' \left(\varphi_{a}(2x,2x), \frac{k^{2}(k^{2}-1)}{9k^{2}+4} t \right), \\ N' \left(\varphi_{a}(x,3x), \frac{k^{2}(k^{2}-1)}{9k^{2}+4} t \right), N' \left(\varphi_{a}((2k+1)x,x), \frac{k^{2}(k^{2}-1)}{9k^{2}+4} t \right), \\ N' \left(\varphi_{a}((2k-1)x,x), \frac{k^{2}(k^{2}-1)}{9k^{2}+4} t \right) \right\}. \end{split}$$

Proof. Case (1): $\ell = 1$. It follows from (4.2) and using oddness of f that

$$N(f(ky+x) - f(ky-x) - k^2 f(x+y) - k^2 f(x-y) + 2(k^2-1)f(x), t)$$

$$\geq N'(\varphi_a(x,y), t)$$
(4.4)

for all $x, y \in X$ and all t > 0. Putting y = x in (4.4), we have

$$N(f((k+1)x) - f((k-1)x) - k^2 f(2x) + 2(k^2 - 1)f(x), t) \ge N'(\varphi_a(x, x), t)$$
 (4.5)

for all $x \in X$ and all t > 0. It follows from (4.5) that

$$N(f(2(k+1)x) - f(2(k-1)x) - k^2 f(4x) + 2(k^2 - 1)f(2x), t) > N'(\varphi_a(2x, 2x), t)$$
 (4.6)

for all $x \in X$ and all t > 0. Replacing x and y by 2x and x in (4.4), respectively, we get

$$N(f((k+2)x) - f((k-2)x) - k^2 f(3x) - k^2 f(x) + 2(k^2 - 1)f(2x), t)$$

$$\geq N'(\varphi_a(2x, x), t)$$
(4.7)

for all $x \in X$. Setting y = 2x in (4.4), we have

$$N(f((2k+1)x) - f((2k-1)x) - k^2 f(3x) - k^2 f(-x) + 2(k^2 - 1)f(x), t)$$

$$\geq N'(\varphi_a(x, 2x), t)$$
(4.8)

for all $x \in X$ and all t > 0. Putting y = 3x in (4.4), we obtain

$$N(f((3k+1)x) - f((3k-1)x) - k^2 f(4x) - k^2 f(-2x) + 2(k^2 - 1)f(x), t)$$

$$\geq N'(\varphi_a(x, 3x), t)$$
(4.9)

for all $x \in X$ and all t > 0. Replacing x and y by (k + 1)x and x in (4.4), respectively, we get

$$N(f((2k+1)x) - f(-x) - k^2 f((k+2)x) - k^2 f(kx) + 2(k^2 - 1)f((k+1)x), t)$$

$$\geq N'(\varphi_a((k+1)x, x), t)$$
(4.10)

for all $x \in X$ and all t > 0. Replacing x and y by (k - 1)x and x in (4.4), respectively, one gets

$$N(f((2k-1)x) - f(x) - k^2 f((k-2)x) - k^2 f(kx) + 2(k^2 - 1)f((k-1)x), t)$$

$$\geq N'(\varphi_a((k-1)x, x), t)$$
(4.11)

for all $x \in X$ and all t > 0. Replacing x and y by (2k + 1)x and x in (4.4), respectively, we obtain

$$N(f((3k+1)x) - f(-(k+1)x) - k^2 f(2(k+1)x) - k^2 f(2kx) + 2(k^2 - 1)f((2k+1)x), t) \ge N'(\varphi_a((2k+1)x, x), t)$$

$$(4.12)$$

for all $x \in X$ and all t > 0. Replacing x and y by (2k - 1)x and x in (4.4), respectively, we have

$$N(f((3k-1)x) - f(-(k-1)x) - k^2 f(2(k-1)x) - k^2 f(2kx) + 2(k^2-1)f((2k-1)x), t) \ge N'(\varphi_a((2k-1)x, x), t)$$
(4.13)

for all $x \in X$ and all t > 0. It follows from (4.5), (4.7), (4.8), (4.10) and (4.11) that

$$N\left(2f(3x) - 8f(2x) + 10f(x), \frac{2}{k^{2}(k^{2} - 1)}(2(k^{2} - 1) + k^{2} + 3)t\right)$$

$$\geq \min\left\{N'(\varphi_{a}(x, x), t), N'(\varphi_{a}(2x, x), t), N'(\varphi_{a}(x, 2x), t), N'(\varphi_{a}((k + 1)x, x), t), N'(\varphi_{a}((k - 1)x, x), t)\right\}$$

$$(4.14)$$

for all $x \in X$ and all t > 0. And, from (4.5), (4.6), (4.8), (4.9), (4.12) and (4.14), we conclude that

$$N\left(f(4x) - 2f(3x) - 2f(2x) + 6f(x), \frac{1}{k^2(k^2 - 1)}(2(k^2 - 1) + k^2 + 4)t\right)$$

$$\geq \min\{N'(\varphi_a(x, x), t), N'(\varphi_a(2x, 2x), t), N'(\varphi_a(x, 2x), t), N'(\varphi_a(x, 3x), t), N'(\varphi_a(2x, 2x), t), N'(\varphi_a(2x, 2x), t)\}$$

$$(4.15)$$

for all $x \in X$ and all t > 0. Finally, by using (4.14) and (4.15), we obtain that Similar to the proof Theorem 3.2, we have

$$N\left(f(4x) - 10f(2x) + 16f(x), \frac{9k^2 + 4}{k^2(k^2 - 1)}t\right) \ge \min\{N'(\varphi_a(x, x), t), N'(\varphi_a(2x, x), t), N'(\varphi_a(x, 2x), t), N'(\varphi_a((k + 1)x, x), t), N'(\varphi_a((k - 1)x, x), t)), N'(\varphi_a(2x, 2x), t), N'(\varphi_a(2x, 2x),$$

for all $x \in X$ and all t > 0, where

$$\begin{split} M_{a}(x,t) &= \min \left\{ N' \left(\varphi_{a}(x,x), \frac{k^{2}(k^{2}-1)}{9k^{2}+4} t \right), N' \left(\varphi_{a}(2x,x), \frac{k^{2}(k^{2}-1)}{9k^{2}+4} t \right), \\ N' \left(\varphi_{a}(x,2x), \frac{k^{2}(k^{2}-1)}{9k^{2}+4} t \right), N' \left(\varphi_{a}((k+1)x,x), \frac{k^{2}(k^{2}-1)}{9k^{2}+4} t \right), \\ N' \left(\varphi_{a}((k-1)x,x), \frac{k^{2}(k^{2}-1)}{9k^{2}+4} t \right), N' \left(\varphi_{a}(2x,2x), \frac{k^{2}(k^{2}-1)}{9k^{2}+4} t \right), \\ N' \left(\varphi_{a}(x,3x), \frac{k^{2}(k^{2}-1)}{9k^{2}+4} t \right), N' \left(\varphi_{a}((2k+1)x,x), \frac{k^{2}(k^{2}-1)}{9k^{2}+4} t \right), \\ N' \left(\varphi_{a}((2k-1)x,x), \frac{k^{2}(k^{2}-1)}{9k^{2}+4} t \right) \right\} \end{split}$$

for all $x \in X$ and all t > 0. Thus, (4.16) means that

$$N(f(4x) - 10f(2x) + 16f(x), t) > M_a(x, t)$$
(4.17)

for all $x \in X$ and all t > 0. Let $g: X \to Y$ be a mapping defined by g(x) := f(2x) - 8f(x) for all $x \in X$. From (4.17), we conclude that

$$N(g(2x) - 2g(x), t) \ge M_a(x, t) \tag{4.18}$$

for all $x \in X$ and all t > 0. So

$$N\left(\frac{g(2x)}{2} - g(x), \frac{t}{2}\right) \ge M_a(x, t) \tag{4.19}$$

for all $x \in X$ and all t > 0. Then, by our assumption

$$M_a(2x,t) = M_a\left(x, \frac{t}{\alpha}\right) \tag{4.20}$$

for all $x \in X$ and all t > 0. Replacing x by $2^n x$ in (4.19) and using (4.20), we obtain

$$N\left(\frac{g(2^{n+1}x)}{2^{n+1}} - \frac{g(2^nx)}{2^n}, \frac{t}{2(2^n)}\right) \ge M_a(2^nx, t) = M_a\left(x, \frac{t}{\alpha^n}\right)$$
(4.21)

for all $x \in X$, t > 0 and $n \ge 0$. Replacing t by $\alpha^n t$ in (4.21), we see that

$$N\left(\frac{g(2^{n+1}x)}{2^{n+1}} - \frac{g(2^nx)}{2^n}, \frac{t\alpha^n}{2(2^n)}\right) \ge M_a(x, t)$$
(4.22)

for all $x \in X$, t > 0 and n > 0. It follows from $\frac{g(2^n x)}{2^n} - g(x) = \sum_{j=0}^{n-1} \left(\frac{g(2^{j+1} x)}{2^{j+1}} - \frac{g(2^j x)}{2^j} \right)$ and (4.22) that

$$N\left(\frac{g(2^{n}x)}{2^{n}} - g(x), \sum_{j=0}^{n-1} \frac{\alpha^{j}t}{2(2)^{j}}\right) \geq \min \bigcup_{j=0}^{n-1} \left\{ N\left(\frac{g(2^{j+1}x)}{2^{j+1}} - \frac{g(2^{j}x)}{2^{j}}, \frac{\alpha^{j}t}{2(2)^{j}}\right) \right\}$$

$$\geq M_{a}(x, t)$$

$$(4.23)$$

for all $x \in X$, t > 0 and n > 0. Replacing x by $2^m x$ in (4.23), we observe that

$$N\left(\frac{g(2^{n+m}x)}{2^{n+m}}-\frac{g(2^mx)}{2^m},\sum_{j=0}^{n-1}\frac{\alpha^jt}{2(2)^{j+m}}\right)\geq M_a(2^mx,t)=M_a\left(x,\frac{t}{\alpha^m}\right)$$

for all $x \in X$, all t > 0 and all $m \ge 0$, n > 0. So

$$N\left(\frac{g(2^{n+m}x)}{2^{n+m}}-\frac{g(2^mx)}{2^m},\sum_{j=m}^{n+m-1}\frac{\alpha^jt}{2(2)^j}\right)\geq M_a(x,t)$$

for all $x \in X$, all t > 0 and all $m \ge 0$, n > 0. Hence

$$N\left(\frac{g(2^{n+m}x)}{2^{n+m}} - \frac{g(2^mx)}{2^m}, t\right) \ge M_a\left(x, \frac{t}{\sum_{j=m}^{n+m-1} \frac{a^j}{2(2)^j}}\right)$$
(4.24)

for all $x \in X$, all t > 0 and all $m \ge 0$, n > 0. Since $0 < \alpha < 2$ and $\sum_{n=0}^{\infty} \left(\frac{\alpha}{2}\right)^n < \infty$, the Cauchy criterion for convergence and (N_5) imply that $\left\{\frac{g(2^n x)}{2^n}\right\}$ is a Cauchy sequence in (Y, N) to some point $A(x) \in Y$. So one can define the mapping $A: X \to Y$ by

$$A(x) = N - \lim_{n \to \infty} \frac{g(2^n x)}{2^n}$$
 (4.25)

for all $x \in X$. Fix $x \in X$ and put m = 0 in (4.24) to obtain

$$N\left(\frac{g(2^n x)}{2^n} - g(x), t\right) \ge M_a \left(x, \frac{t}{\sum_{j=0}^{n-1} \frac{\alpha^j}{2(2)^j}}\right)$$

for all $x \in X$, t > 0 and n > 0. From which we obtain

$$N(A(x) - g(x), t) \geq \min \left\{ N\left(A(x) - \frac{g(2^{n}x)}{2^{n}}, \frac{t}{2}\right), N\left(\frac{g(2^{n}x)}{2^{n}} - g(x), \frac{t}{2}\right) \right\}$$

$$\geq M_{a}\left(x, \frac{t}{\sum_{i=0}^{n-1} \frac{\alpha^{i}}{2^{i}}}\right)$$

$$(4.26)$$

for n large enough. Taking the limit as $n \to \infty$ in (4.26), we obtain

$$N(A(x) - g(x), t) \ge M_a\left(x, \frac{t(2-\alpha)}{2}\right) \tag{4.27}$$

for all $x \in X$ and all t > 0. It follows from (4.21) and (4.25) that

$$N\left(\frac{A(2x)}{2} - A(x), t\right) \ge \min\left\{N\left(\frac{A(2x)}{2} - \frac{g(2^{n+1}x)}{2^{n+1}}\right), \frac{t}{3}\right\}, N\left(\frac{g(2^nx)}{2^n} - A(x), \frac{t}{3}\right)$$

$$, N\left(\frac{g(2^{n+1}x)}{2^{n+1}} - \frac{g(2^nx)}{2^n}\right), \frac{t}{3}\right) = M_a\left(x, \frac{2(2)^nt}{3\alpha^n}\right)$$

for all $x \in X$ and all t > 0. Therefore,

$$A(2x) = 2A(x) \tag{4.28}$$

for all $x \in X$. Replacing x, y by $2^n x$, $2^n y$ in (4.2), respectively, we obtain

$$\begin{split} N\left(\frac{1}{2^{n}}D_{g}(2^{n}x,2^{n}y),t\right) &= N(D_{f}(2^{n+1}x,2^{n+1}y) - 8D_{f}(2^{n}x,2^{n}y),2^{n}t) \\ &= \min\left\{N(D_{f}(2^{n+1}x,2^{n+1}y),\frac{2^{n}t}{2}),N(D_{f}(2^{n}x,2^{n}y),\frac{2^{n}t}{16})\right\} \\ &\geq \min\left\{N'\left(\varphi_{a}(2^{n+1}x,2^{n+1}y),\frac{2^{n}t}{2}\right),N'\left(\varphi_{a}(2^{n}x,2^{n}y),\frac{2^{n}t}{16}\right)\right\} \\ &= \min\left\{N'\left(\varphi_{a}(x,y),\frac{2^{n}t}{2\alpha^{n+1}}\right),N'\left(\varphi_{a}(x,y),\frac{2^{n}t}{16\alpha^{n}}\right)\right\} \end{split}$$

which tends to 1 as $n \to \infty$ for all $x, y \in X$ and all t > 0. So we see that A satisfies (1.5). Thus, by Lemma 4.1, the mapping $x \rightsquigarrow A(2x) - 8A(x)$ is additive. So (4.28) implies that the mapping A is additive.

The rest of the proof is similar to the proof of Theorem 3.2 and we omit the details. $\ \square$

Remark 4.3. Let $0 < \alpha < 2$. Suppose that the function $t \mapsto N(f(2x) - 8f(x) - A(x), .)$ from $(0, \infty)$ into [0, 1] is right continuous. Then, we obtain a better fuzzy approximation than (4.27).

Corollary 4.4. Let X be a normed space and Y be a Banach space. Let ε , λ be nonnegative real numbers such that $\lambda \neq 1$. Suppose that an odd mapping $f: X \to Y$ satisfies the inequality (3.18) for all $x, y \in X$. Then, the limit

$$A(x) = \lim_{n \to \infty} \frac{1}{2^{\ell n}} (f(2^{\ell n + 1}x) - 8f(2^{\ell n}x))$$

exists for all $x \in X$ and $A: X \to Y$ is a unique additive mapping satisfying

$$||f(2x) - 8f(x) - A(x)|| \le \frac{(|2k + \ell|^{\lambda} + 1)(9k^2 + 4)\varepsilon ||x||^{\lambda}}{\ell k^2 (k^2 - 1)(1 - 2^{\lambda - 1})}$$
(4.29)

for all $x \in X$, where $\lambda \ell < \ell$.

Proof. The proof is similar to the proof of Corollary 3.4 and the result follows from Theorem 4.2. \Box

Theorem 4.5. Denote N_1 the fuzzy norm obtained as Corollary 3.4 on R. Let for all $x \in X$, the functions $r \mapsto f(2rx) - 8f(rx)$ (from (R, N_1) into (Y, N)) and $r \mapsto \phi_a(\iota_1 rx, \iota_2 ry)$ (from (R, N_1) into (Z, N')) be fuzzy continuous, where $\iota_1 \in \{1, 2, (k + 1), (k - 1), (2k + 1), (2k - 1)\}$ and $\iota_2 \in \{1, 2, 3\}$. Then, for all $x \in X$, the function $r \mapsto A(rx)$ is fuzzy continuous and A(rx) = rA(x) for all $r \in R$.

Proof. The proof is similar to the proof of Theorem 3.5 and the result follows from Theorem 4.2. \Box

Lemma 4.6. [22,24]. If an odd mapping $f: V_1 \to V_2$ satisfies (1.5), then the mapping $h: V_1 \to V_2$ defined by h(x) = f(2x) - 2f(x) is cubic.

Theorem 4.7. Let $\ell \in \{-1, 1\}$ be fixed and let $\phi_c : X \times X \to Z$ be a mapping such that

$$\varphi_c(2x, 2y) = \alpha \varphi_c(x, y) \tag{4.30}$$

for all $x, y \in X$ and for some positive real number α with $\alpha \ell < 8\ell$. Suppose that an odd mapping $f: X \to Y$ satisfies the inequality

$$N(D_f(x, y), t) \ge N'(\varphi_c(x, y), t) \tag{4.31}$$

for all $x, y \in X$ and all t > 0. Then, the limit

$$C(x) = N - \lim_{n \to \infty} \frac{1}{8^{\ell n}} (f(2^{\ell n + 1}x) - 2f(2^{\ell n}x))$$

exists for all $x \in X$ and $C: X \to Y$ is a unique cubic mapping satisfying

$$N(f(2x) - 2f(x) - C(x), t) \ge M_c\left(x, \frac{\ell(8-\alpha)}{2}t\right)$$
 (4.32)

for all $x \in X$ and all t > 0, where

$$\begin{split} M_c(x,t) &= \min \left\{ N' \left(\varphi_c(x,x), \frac{k^2(k^2-1)}{9k^2+4} t \right), N' \left(\varphi_c(2x,x), \frac{k^2(k^2-1)}{9k^2+4} t \right), \\ N' \left(\varphi_c(x,2x), \frac{k^2(k^2-1)}{9k^2+4} t \right), N' \left(\varphi_c((k+1)x,x), \frac{k^2(k^2-1)}{9k^2+4} t \right), \\ N' \left(\varphi_c((k-1)x,x), \frac{k^2(k^2-1)}{9k^2+4} t \right), N' \left(\varphi_c(2x,2x), \frac{k^2(k^2-1)}{9k^2+4} t \right), \\ N' \left(\varphi_c(x,3x), \frac{k^2(k^2-1)}{9k^2+4} t \right), N' \left(\varphi_c((2k+1)x,x), \frac{k^2(k^2-1)}{9k^2+4} t \right), \\ N' \left(\varphi_c((2k-1)x,x), \frac{k^2(k^2-1)}{9k^2+4} t \right), \\ N' \left(\varphi_c((2k-1)x,x), \frac{k^2(k^2-1)}{9k^2+4} t \right). \end{split}$$

Proof. Case (1): $\ell = 1$. Similar to the proof of Theorem 4.2, we have

$$N(f(4x) - 10f(2x) + 16f(x), t) \ge M_c(x, t)$$

for for all $x \in X$ and all t > 0, where $M_c(x, t)$ is defined as in above. Letting $h: X \to Y$ be a mapping defined by h(x) := f(2x) - 2f(x). Then, we conclude that

$$N(h(2x) - 8h(x), t) \ge M_c(x, t) \tag{4.33}$$

for all $x \in X$ and all t > 0. So

$$N\left(\frac{h(2x)}{8} - h(x), \frac{t}{8}\right) \ge M_c(x, t) \tag{4.34}$$

for all $x \in X$ and all t > 0. Then, by our assumption

$$M_c(2x,t) = M_c\left(x,\frac{t}{\alpha}\right) \tag{4.35}$$

for all $x \in X$ and all t > 0. Replacing x by $2^n x$ in (4.34) and using (4.35), we obtain

$$N\left(\frac{h(2^{n+1}x)}{8^{n+1}} - \frac{h(2^nx)}{8^n}, \frac{t}{8(8^n)}\right) \ge M_c(2^nx, t) = M_c\left(x, \frac{t}{\alpha^n}\right)$$
(4.36)

for all $x \in X$, t > 0 and $n \ge 0$. Replacing t by $\alpha^n t$ in (4.36), we see that

$$N\left(\frac{h(2^{n+1}x)}{8^{n+1}} - \frac{h(2^nx)}{8^n}, \frac{t\alpha^n}{8(8^n)}\right) \ge M_c(x, t)$$
(4.37)

for all $x \in X$, t > 0 and n > 0. It follows from $\frac{h(2^n x)}{8^n} - h(x) = \sum_{j=0}^{n-1} \left(\frac{h(2^{j+1} x)}{8^{j+1}} - \frac{h(2^j x)}{8^j} \right)$ and (4.37) that

$$N\left(\frac{h(2^{n}x)}{8^{n}}-h(x),\sum_{j=0}^{n-1}\frac{\alpha^{j}t}{8(8)^{j}}\right)\geq\min\bigcup_{j=0}^{n-1}\left\{N\left(\frac{h(2^{j+1}x)}{8^{j+1}}-\frac{h(2^{j}x)}{8^{j}},\frac{\alpha^{j}t}{8(8)^{j}}\right)\right\}(4.38)$$

$$\geq M_{c}(x,t)$$

for all $x \in X$, t > 0 and n > 0. Replacing x by $2^m x$ in (4.38), we observe that

$$N\left(\frac{h(2^{n+m}x)}{8^{n+m}}-\frac{h(2^{m}x)}{8^{m}},\sum_{j=0}^{n-1}\frac{\alpha^{j}t}{8(8)^{j+m}}\right)\geq M_{c}(2^{m}x,t)=M_{c}\left(x,\frac{t}{\alpha^{m}}\right)$$

for all $x \in X$, all t > 0 and all $m \ge 0$, n > 0. So

$$N\left(\frac{h(2^{n+m}x)}{8^{n+m}}-\frac{h(2^mx)}{8^m},\sum_{j=m}^{n+m-1}\frac{\alpha^jt}{8(8)^j}\right)\geq M_c(x,t)$$

for all $x \in X$, all t > 0 and all $m \ge 0$, n > 0. Hence

$$N\left(\frac{h(2^{n+m}x)}{8^{n+m}} - \frac{h(2^{m}x)}{8^{m}}, t\right) \ge M_c\left(x, \frac{t}{\sum_{j=m}^{n+m-1} \frac{\alpha^j}{8(8^j)}}\right)$$
(4.39)

for all $x \in X$, all t > 0 and all $m \ge 0$, n > 0. Since $0 < \alpha < 8$ and $\sum_{n=0}^{\infty} \left(\frac{\alpha}{8}\right)^n < \infty$, the Cauchy criterion for convergence and (N_5) imply that $\left\{\frac{h(2^n x)}{8^n}\right\}$ is a Cauchy sequence in (Y, N) to some point $C(x) \in Y$. So one can define the mapping $C: X \to Y$ by

$$C(x) = N - \lim_{n \to \infty} \frac{h(2^n x)}{8^n}$$
 (4.40)

for all $x \in X$. Fix $x \in X$ and put m = 0 in (4.39) to obtain

$$N\left(\frac{h(2^n x)}{8^n} - h(x), t\right) \ge M_c\left(x, \frac{t}{\sum_{i=0}^{n-1} \frac{\alpha^i}{8(8)^i}}\right)$$

for all $x \in X$, t > 0 and n > 0. From which we obtain

$$N(C(x) - h(x), t) \geq \min \left\{ N(C(x) - \frac{h(2^{n}x)}{8^{n}}, \frac{t}{2}), N(\frac{h(2^{n}x)}{8^{n}} - h(x), \frac{t}{2}) \right\}$$

$$\geq M_{c} \left(x, \frac{t}{\sum_{j=0}^{n-1} \frac{\alpha^{j}}{4(8^{j})}} \right)$$
(4.41)

for n large enough. Taking the limit as $n \to \infty$ in (4.41), we obtain

$$N(C(x) - h(x), t) \ge M_a\left(x, \frac{t(8 - \alpha)}{2}\right) \tag{4.42}$$

for all $x \in X$ and all t > 0. It follows from (4.36) and (4.40) that

$$N\left(\frac{C(2x)}{8} - C(x), t\right) \ge \min\left\{N\left(\frac{C(2x)}{8} - \frac{h(2^{n+1}x)}{8^{n+1}}\right), \frac{t}{3}\right\}, N\left(\frac{h(2^{n}x)}{8^{n}} - C(x), \frac{t}{3}\right),$$

$$N\left(\frac{h(2^{n+1}x)}{8^{n+1}} - \frac{h(2^{n}x)}{8^{n}}\right), \frac{t}{3}\right) = M_{c}\left(x, \frac{8(8)^{n}t}{3\alpha^{n}}\right)$$

for all $x \in X$ and all t > 0. Therefore,

$$C(2x) = 8C(x) \tag{4.43}$$

for all $x \in X$. Replacing x, y by $2^n x$, $2^n y$ in (4.31), respectively, we obtain

$$\begin{split} N\left(\frac{1}{8^{n}}D_{h}(2^{n}x,2^{n}\gamma),t\right) &= N(D_{f}(2^{n+1}x,2^{n+1}\gamma) - 2D_{f}(2^{n}x,2^{n}\gamma),8^{n}t) \\ &= \min\left\{N\left(D_{f}(2^{n+1}x,2^{n+1}\gamma),\frac{8^{n}t}{2}\right),N\left(D_{f}(2^{n}x,2^{n}\gamma),\frac{8^{n}t}{4}\right)\right\} \\ &\geq \min\left\{N'\left(\varphi_{c}(2^{n+1}x,2^{n+1}\gamma),\frac{8^{n}t}{2}\right),N'\left(\varphi_{c}(2^{n}x,2^{n}\gamma),\frac{8^{n}t}{4}\right)\right\} \\ &= \min\left\{N'\left(\varphi_{c}(x,\gamma),\frac{8^{n}t}{2\alpha^{n+1}}\right),N'(\varphi_{c}(x,\gamma),\frac{8^{n}t}{4\alpha^{n}})\right\} \end{split}$$

which tends to 1 as $n \to \infty$ for all $x, y \in X$ and all t > 0. So we see that C, satisfies (1.5). Thus, by Lemma 4.6, the mapping $x \leadsto C(2x) - 2C(x)$ is cubic. So (4.43) implies that the function C is cubic. The rest of the proof is similar to the proof of Theorem 3.2 and we omit the details. \Box

Remark 4.8. Let $0 < \alpha < 8$. Suppose that the function $t \mapsto N(f(2x) - 2f(x) - C(x), .)$ from $(0, \infty)$ into [0, 1] is right continuous. Then, we obtain a better fuzzy approximation than (4.42).

Corollary 4.9. Let X be a normed space and Y be a Banach space. Let ε , λ be non-negative real numbers such that $\lambda \neq 3$. Suppose that an odd mapping $f: X \to Y$ satisfies the inequality (3.18) for all $x, y \in X$. Then, the limit

$$C(x) = \lim_{n \to \infty} \frac{1}{8\ell n} (f(2^{\ell n + 1}x) - 2f(2^{\ell n}x))$$

exists for all $x \in X$ and $C: X \to Y$ is a unique cubic mapping satisfying

$$\|f(2x) - 2f(x) - C(x)\| \le \frac{(|2k + \ell|^{\lambda} + 1)(9k^2 + 4)\varepsilon \|x\|^{\lambda}}{\ell k^2 (k^2 - 1)(4 - 2^{\lambda - 1})}$$
(4.44)

for all $x \in X$, where $\lambda \ell < 3\ell$.

Theorem 4.10. Denote N_1 the fuzzy norm obtained as Corollary 3.4 on R. Let for all $x \in X$, the functions $r \mapsto f(2rx) - 2f(rx)$ (from (R, N_1) into (Y, N)) and $r \mapsto \phi_q(\iota_1 rx, \iota_2 ry)$ (from (R, N_1) into (Z, N')) be fuzzy continuous, where $\iota_1 \in \{1, 2, (k+1), (k-1), (2k+1), (2k-1)\}$ and $\iota_2 \in \{1, 2, 3\}$. Then, for all $x \in X$, the function $r \mapsto C(rx)$ is fuzzy continuous and $C(rx) = r^3 C(x)$ for all $r \in R$.

Proof. The proof is similar to the proof of Theorem 3.5 and the result follows from Theorem 4.7. \Box

Theorem 4.11. Let $\phi: X \times X \to Z$ be a mapping such that

$$\varphi(2x, 2y) = \alpha \varphi(x, y) \tag{4.45}$$

for all $x, y \in X$ and for some positive real number α . Suppose that an odd mapping $f: X \to Y$ satisfies the inequality

$$N(D_f(x, y), t) \ge N'(\varphi(x, y), t) \tag{4.46}$$

for all $x, y \in X$ and all t > 0. Then, there exist a unique cubic mapping $C: X \to Y$ and a unique additive mapping $A: X \to Y$ such that

$$N(f(x) - A(x) - C(x), t) \ge \begin{cases} \min \left\{ M(x, \frac{3t(2-\alpha)}{2}), M(x, \frac{3t(8-\alpha)}{2}) \right\}, & 0 < \alpha < 2 \\ \min \left\{ M(x, \frac{3t(\alpha-2)}{2}), M(x, \frac{3t(8-\alpha)}{2}) \right\}, & 2 < \alpha < 8 \end{cases}$$

$$\min \left\{ M(x, \frac{3t(\alpha-2)}{2}), M(x, \frac{3t(\alpha-8)}{2}) \right\}, & \alpha > 8$$

for all $x \in X$ and all t > 0, where

$$\begin{split} M(x,t) &= \min \left\{ N' \left(\varphi(x,x), \frac{k^2(k^2-1)}{9k^2+4} t \right), N' \left(\varphi(2x,x), \frac{k^2(k^2-1)}{9k^2+4} t \right), \\ N' \left(\varphi(x,2x), \frac{k^2(k^2-1)}{9k^2+4} t \right), N' \left(\varphi((k+1)x,x), \frac{k^2(k^2-1)}{9k^2+4} t \right), \\ N' \left(\varphi((k-1)x,x), \frac{k^2(k^2-1)}{9k^2+4} t \right), N' \left(\varphi(2x,2x), \frac{k^2(k^2-1)}{9k^2+4} t \right), \\ N' \left(\varphi(x,3x), \frac{k^2(k^2-1)}{9k^2+4} t \right), N' \left(\varphi((2k+1)x,x), \frac{k^2(k^2-1)}{9k^2+4} t \right), \\ N' \left(\varphi((2k-1)x,x), \frac{k^2(k^2-1)}{9k^2+4} t \right). \end{split}$$

Proof. Case (1): $0 < \alpha < 2$. By Theorems 4.2 and 4.7, there exist an additive mapping $A_0: X \to Y$ and a cubic mapping $C_0: X \to Y$ such that

$$N(f(2x) - 8f(x) - A_0(x), t) \ge M\left(x, \frac{t(2-\alpha)}{2}\right)$$
(4.48)

and

$$N(f(2x) - 2f(x) - C_0(x), t) \ge M\left(x, \frac{t(8 - \alpha)}{2}\right)$$
(4.49)

for all $x \in X$ and all t > 0. It follows from (4.48) and (4.49) that

$$N\left(f(x) + \frac{1}{6}A_0(x) - \frac{1}{6}C_0(x), t\right) \ge \min\left\{M\left(x, \frac{3t(2-\alpha)}{2}\right), M\left(x, \frac{3t(8-\alpha)}{2}\right)\right\}$$
(4.50)

for all $x \in X$ and all t > 0. Letting $A(x) = -\frac{1}{6}A_0(x)$ and $C(x) = \frac{1}{6}C_0(x)$ in (4.50), we obtain

$$N(f(x) - A(x) - C(x), t) \ge \min\left\{M\left(x, \frac{3t(2-\alpha)}{2}\right), M\left(x, \frac{3t(8-\alpha)}{2}\right)\right\}$$
(4.51)

for all $x \in X$ and all t > 0. To prove the uniqueness of A and C, let A', C': $X \to Y$ be another additive and cubic mappings satisfying (4.51). Let $\bar{A} = A - A'$ and $\bar{C} = C - C'$. So

$$N(\bar{A}(x) + \bar{C}(x), t) \ge \min \left\{ N\left(f(x) - A(x) - C(x), \frac{t}{2}\right), N\left(f(x) - A'(x) - C'(x), \frac{t}{2}\right) \right\}$$

$$\ge \min \left\{ M\left(x, \frac{3t(2 - \alpha)}{4}\right), M\left(x, \frac{3t(8 - \alpha)}{4}\right) \right\}$$

for all $x \in X$ and all t > 0. Therefore, it follows from the last inequalities that

$$N(\bar{A}(2^{n}x) + \bar{C}(2^{n}x), 8^{n}t) \ge \min\left\{M\left(2^{n}x, \frac{3(8^{n})t(2-\alpha)}{4}\right), M\left(2^{n}x, \frac{3(8^{n})t(8-\alpha)}{4}\right)\right\}$$

$$= \min\left\{M\left(x, \frac{3(8^{n})t(2-\alpha)}{4\alpha^{n}}\right), M\left(x, \frac{3(8^{n})t(8-\alpha)}{4\alpha^{n}}\right)\right\}$$

for all $x \in X$ and all t > 0. So, $\lim_{n \to \infty} N\left(\frac{1}{8^n}(\bar{A}(2^nx) + \bar{C}(2^nx)), t\right) = 1$, hence $\bar{C} = 0$ and then $\bar{A} = 0$. The rest of the proof, proceeds similarly to that in the previous case. \Box **Remark 4.12**. Let $0 < \alpha < 2$. Suppose that the function $t \mapsto N(f(x) - A(x) - C(x), .)$ from $(0, \infty)$ into [0, 1] is right continuous. Then, we obtain a better fuzzy approximation than (4.51).

Corollary 4.13. Let X be a normed space and Y be a Banach space. Let ε , λ be nonnegative real numbers. Suppose that an odd mapping $f: X \to Y$ satisfies the inequality (3.18) for all $x, y \in X$. Then there exist a unique additive mapping $A: X \to Y$ and a unique cubic mapping $C: X \to Y$ such that

$$\| f(x) - A(x) - C(x) \|$$

$$\leq \begin{pmatrix} \frac{1}{6} \frac{(|2k+\ell|^{\lambda}+1)(9k^{2}+4)\varepsilon}{k^{2}(k^{2}-1)} \left(\frac{1}{(1-2^{\lambda-1})} + \frac{1}{(4-2^{\lambda-1})} \right) \| x \|^{\lambda}, \lambda < 1 \\ \frac{1}{6} \frac{(|2k+\ell|^{\lambda}+1)(9k^{2}+4)\varepsilon}{k^{2}(k^{2}-1)} \left(\frac{1}{(2^{\lambda-1}-1)} + \frac{1}{(4-2^{\lambda-1})} \right) \| x \|^{\lambda}, 1 < \lambda < 3 \\ \frac{1}{6} \frac{(|2k+\ell|^{\lambda}+1)(9k^{2}+4)\varepsilon}{k^{2}(k^{2}-1)} \left(\frac{1}{(2^{\lambda-1}-1)} + \frac{1}{(2^{\lambda-1}-4)} \right) \| x \|^{\lambda}, \lambda > 3$$

$$(4.52)$$

for all $x \in X$.

Proof. The result follows by Corollaries 4.4 and 4.9. $\ \square$

Theorem 4.14. Denote N_1 the fuzzy norm obtained as Corollary 3.4 on R. Let for all $x \in X$, the functions $r \mapsto f(rx)$ (from (R, N_1) into (Y, N)) and $r \mapsto \phi(\iota_1 rx, \iota_2 ry)$ (from (R, N_1) into (Z, N')) be fuzzy continuous, where $\iota_1 \in \{1, 2, (k+1), (k-1), (2k+1), (2k-1)\}$ and $\iota_2 \in \{1, 2, 3\}$. Then, for all $x \in X$, the function $r \mapsto A(rx) + C(rx)$ is fuzzy continuous and $A(rx) + C(rx) = rA(x) + r^3C(x)$ for all $r \in R$.

Proof. The result follows by Theorems 4.5 and 4.10.

5. Fuzzy stability of the functional equation (1.5)

In this section, we prove the generalized Hyers-Ulam stability of a mixed cubic, quadratic, and additive functional equation (1.5) in fuzzy Banach spaces.

Theorem 5.1. Let $\phi: X \times X \to Z$ be a function which satisfies (3.1) and (4.45) for all $x, y \in X$ and for some positive real number α . Suppose that a mapping $f: X \to Y$ satisfies the inequality

$$N(D_f(x,y),t) > N'(\varphi(x,y),t) \tag{5.1}$$

for all $x, y \in X$ and all t > 0. Furthermore, assume that f(0) = 0 in (5.1) for the case f is even. If |k| = 2, then there exist a unique cubic mapping $C: X \to Y$, a unique quadratic mapping $Q: X \to Y$ and a unique additive mapping $A: X \to Y$ such that

$$N(f(x) - C(x) - Q(x) - A(x), t) \ge \begin{cases} \min{\{\tilde{M}_{1}(x, t), \tilde{M}_{1}(-x, t)\}, 0 < \alpha < 2} \\ \min{\{\tilde{M}_{2}(x, t), \tilde{M}_{2}(-x, t)\}, 2 < \alpha < k^{2}} \\ \min{\{\tilde{M}_{3}(x, t), \tilde{M}_{3}(-x, t)\}, k^{2} < \alpha < 8} \\ \min{\{\tilde{M}_{4}(x, t), \tilde{M}_{4}(-x, t)\}, \alpha > 8} \end{cases}$$
(5.2)

for all $x \in X$ and all t > 0, otherwise

$$N(f(x) - C(x) - Q(x) - A(x), t) \ge \begin{cases} \min\{\tilde{M}_{1}(x, t), \tilde{M}_{1}(-x, t)\}, \ 0 < \alpha < 2 \\ \min\{\tilde{M}_{2}(x, t), \tilde{M}_{2}(-x, t)\}, \ 2 < \alpha < 8 \\ \min\{\tilde{M}_{5}(x, t), \tilde{M}_{5}(-x, t)\}, \ 8 < \alpha < k^{2} \\ \min\{\tilde{M}_{4}(x, t), \tilde{M}_{4}(-x, t)\}, \ \alpha > k^{2} \end{cases}$$
(5.3)

for all $x \in X$ and all t > 0, where

$$\begin{split} \tilde{M}_1(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), M\left(x, \frac{3t(2-\alpha)}{4}\right), M(x, \frac{3t(8-\alpha)}{4}\right\}, \\ \tilde{M}_2(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), M\left(x, \frac{3t(\alpha-2)}{4}\right), M(x, \frac{3t(8-\alpha)}{4}\right\}, \\ \tilde{M}_3(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(\alpha - k^2\right)}{4}t\right), M\left(x, \frac{3t(\alpha-2)}{4}\right), M(x, \frac{3t(8-\alpha)}{4}\right\}, \\ \tilde{M}_4(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(\alpha - k^2\right)}{4}t\right), M\left(x, \frac{3t(\alpha-2)}{4}\right), M(x, \frac{3t(\alpha-8)}{4}\right\}, \\ \tilde{M}_5(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), M\left(x, \frac{3t(\alpha-2)}{4}\right), M(x, \frac{3t(\alpha-8)}{4}\right\}, \\ \tilde{M}_5(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), M\left(x, \frac{3t(\alpha-2)}{4}\right), M(x, \frac{3t(\alpha-8)}{4}\right\}, \\ \tilde{M}_5(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), M\left(x, \frac{3t(\alpha-2)}{4}\right), M(x, \frac{3t(\alpha-8)}{4}\right\}, \\ \tilde{M}_7(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), M\left(x, \frac{3t(\alpha-2)}{4}\right), M(x, \frac{3t(\alpha-8)}{4}\right), \\ \tilde{M}_7(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), M\left(x, \frac{3t(\alpha-2)}{4}\right), M(x, \frac{3t(\alpha-8)}{4}\right), \\ \tilde{M}_7(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), M\left(x, \frac{3t(\alpha-2)}{4}\right), M(x, \frac{3t(\alpha-8)}{4}\right), \\ \tilde{M}_7(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), M\left(x, \frac{3t(\alpha-2)}{4}\right), M(x, \frac{3t(\alpha-8)}{4}\right), \\ \tilde{M}_7(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), M\left(x, \frac{3t(\alpha-2)}{4}\right), M(x, \frac{3t(\alpha-8)}{4}\right), \\ \tilde{M}_7(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), M\left(x, \frac{3t(\alpha-2)}{4}\right), M(x, \frac{3t(\alpha-8)}{4}\right), \\ \tilde{M}_7(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), M\left(x, \frac{3t(\alpha-2)}{4}\right), \\ \tilde{M}_7(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), M\left(x, \frac{3t(\alpha-2)}{4}\right), \\ \tilde{M}_7(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), M\left(x, \frac{3t(\alpha-2)}{4}\right), \\ \tilde{M}_7(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), \\ \tilde{M}_7(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), \\ \tilde{M}_7(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), \\ \tilde{M}_7(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), \\ \tilde{M}_7(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), \\ \tilde{M}_7(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), \\ \tilde{M}_7(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), \\ \tilde{M}_7(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right)}{4}t\right), \\ \tilde{M}_7(x,t) &= \min \left\{ N'\left(\varphi(0,x), \frac{\left(k^2 - \alpha\right$$

and

$$\begin{split} M(x,t) &= \min \left\{ N' \left(\varphi(x,x), \frac{k^2(k^2-1)}{9k^2+4} t \right), N' \left(\varphi(2x,x), \frac{k^2(k^2-1)}{9k^2+4} t \right), \\ N' \left(\varphi(x,2x), \frac{k^2(k^2-1)}{9k^2+4} t \right), N' \left(\varphi((k+1)x,x), \frac{k^2(k^2-1)}{9k^2+4} t \right), \\ N' \left(\varphi((k-1)x,x), \frac{k^2(k^2-1)}{9k^2+4} t \right), N' \left(\varphi(2x,2x), \frac{k^2(k^2-1)}{9k^2+4} t \right), \\ N' \left(\varphi(x,3x), \frac{k^2(k^2-1)}{9k^2+4} t \right), N' \left(\varphi((2k+1)x,x), \frac{k^2(k^2-1)}{9k^2+4} t \right), \\ N' \left(\varphi((2k-1)x,x), \frac{k^2(k^2-1)}{9k^2+4} t \right). \end{split}$$

Proof. Case (1): $0 < \alpha < 2$. Assume that $\phi : X \times X \to Z$ satisfies (1.6) for all $x, y \in X$. Let $f_e(x) = \frac{1}{2}(f(x) + f(-x))$ for all $x \in X$, then $f_e(0) = 0$, $f_e(-x) = f_e(x)$, and

$$N(D_{f_e}(x,y),t) \ge \min\{N'(\varphi(x,y),t),N'(\varphi(-x,-y),t)\}$$

for all $x, y \in X$ and all t > 0. By Theorem 3.2 for all $x, y \in X$, there exist a unique quadratic mapping $Q: X \to Y$ such that

$$N(f_e(x) - Q(x), t) \ge \min \left\{ N'\left(\varphi(0, x), \frac{(k^2 - \alpha)}{2}t\right), N'\left(\varphi(0, -x), \frac{(k^2 - \alpha)}{2}t\right) \right\}$$
(5.4)

for all $x \in X$ and all t > 0. Now, if $\phi : X \times X \to Z$ satisfies (4.45) for all $x, y \in X$, and let $f_o(x) = \frac{1}{2}(f(x) - f(-x))$ for all $x \in X$, then

$$N(D_{f_o}(x, y), t) \ge \min\{N'(\varphi(x, y), t), N'(\varphi(-x, -y), t)\}$$

for all $x, y \in X$ and all t > 0. By Theorem 4.11, it follows that there exist a unique cubic mapping $C: X \to Y$ and a unique additive mapping $A: X \to Y$ such that

$$N(f_{o}(x) - C(x) - A(x), t) \ge \min \left\{ M\left(x, \frac{3t(2-\alpha)}{2}\right), M\left(x, \frac{3t(8-\alpha)}{2}\right) \right\}$$

$$, M\left(-x, \frac{3t(2-\alpha)}{2}\right), M\left(-x, \frac{3t(8-\alpha)}{2}\right) \right\}$$

$$(5.5)$$

for all $x \in X$ and all t > 0. It follows from (5.4) and (5.5) that

$$N(f(x) - C(x) - Q(x) - A(x), t)$$

$$\geq \min \left\{ N'\left(\varphi(0, x), \frac{(k^2 - \alpha)}{4}t\right), M\left(x, \frac{3t(2 - \alpha)}{4}\right), M\left(x, \frac{3t(8 - \alpha)}{4}\right), M\left(x, \frac{3t(8 - \alpha)}{4}\right), M\left(x, \frac{3t(8 - \alpha)}{4}\right)\right\}$$

$$= \min \left\{ \tilde{M}_1(x, t), \tilde{M}_1(-x, t) \right\}$$

$$(5.6)$$

The rest of the proof proceeds similarly to that in the previous case.

Remark 5.2. Let $0 < \alpha < 2$. Suppose that the function $t \mapsto N(f(x) - C(x) - Q(x) - A(x)$, .) from $(0, \infty)$ into [0, 1] is right continuous. Then, we obtain a better fuzzy approximation than (5.2) or (5.3).

Corollary 5.3. Let X be a normed space and Y be a Banach space. Let ε , λ be nonnegative real numbers. Suppose that f(0) = 0 in (3.18) for the case $f: X \to Y$ is even. Then, there exist a unique cubic mapping $C: X \to Y$, a unique quadratic mapping $Q: X \to Y$ and a unique additive mapping $A: X \to Y$ such that

$$| f(x) - C(x) - Q(x) - A(x) |$$

$$\leq \begin{pmatrix} \frac{1}{6} \frac{(|2k+\ell|^{\lambda}+1)(9k^{2}+4)\varepsilon}{k^{2}(k^{2}-1)} \left(\frac{1}{(1-2^{\lambda-1})} + \frac{1}{(4-2^{\lambda-1})} \right) || x ||^{\lambda} + \frac{2\varepsilon}{k^{2}-k^{\lambda}} || x ||^{\lambda}, \lambda < 1 \\ \frac{1}{6} \frac{(|2k+\ell|^{\lambda}+1)(9k^{2}+4)\varepsilon}{k^{2}(k^{2}-1)} \left(\frac{1}{(2^{\lambda-1}-1)} + \frac{1}{(4-2^{\lambda-1})} \right) || x ||^{\lambda} + \frac{2\varepsilon}{k^{2}-k^{\lambda}} || x ||^{\lambda}, 1 < \lambda < 2 \\ \frac{1}{6} \frac{(|2k+\ell|^{\lambda}+1)(9k^{2}+4)\varepsilon}{k^{2}(k^{2}-1)} \left(\frac{1}{(2^{\lambda-1}-1)} + \frac{1}{(4-2^{\lambda-1})} \right) || x ||^{\lambda} + \frac{2\varepsilon}{k^{\lambda}-k^{2}} || x ||^{\lambda}, 2 < \lambda < 3 \\ \frac{1}{6} \frac{(|2k+\ell|^{\lambda}+1)(9k^{2}+4)\varepsilon}{k^{2}(k^{2}-1)} \left(\frac{1}{(2^{\lambda-1}-1)} + \frac{1}{(2^{\lambda-1}-4)} \right) || x ||^{\lambda} + \frac{2\varepsilon}{k^{\lambda}-k^{2}} || x ||^{\lambda}, \lambda > 3 \end{pmatrix}$$

for all $x \in X$.

Proof. The result follows by Corollaries 3.4 and 4.13.

Theorem 5.4. Denote N_1 the fuzzy norm obtained as Corollary 3.4 on R. Let for all $x \in X$, the functions $r \mapsto f(rx)$ (from (R, N_1) into (Y, N)) and $r \mapsto \phi(\iota_1 rx, \iota_2 ry)$ (from (R, N_1) into (Z, N')) be fuzzy continuous, where $\iota_1 \in \{0, \pm 1, \pm 2, \pm (k + 1), \pm (k - 1), \pm (2k + 1), \pm (2k - 1)\}$ and $\iota_2 \in \{\pm 1, \pm 2, \pm 3\}$. Then, for all $x \in X$, the function $r \mapsto C(rx) + Q(rx) + A(rx)$ is fuzzy continuous and $C(rx) + Q(rx) + A(rx) = r^3C(x) + r^2Q(x) + rA(x)$ for all $r \in R$.

Proof. The result follows by Theorems 3.5 and 4.14.

Acknowledgements

The fourth author was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2010-0021792).

Author details

¹Department of Mathematics and Center of Excellence in Nonlinear Analysis and Applications (Cenaa), Semnan University, P.O. Box 35195-363, Semnan, Iran ²Department of Mathematics, University of Seoul, Seoul 130-743, Korea ³Department of Mathematics, Research Institute For Natural Sciences, Hanyang University, Seoul 133-791, Korea

Authors' contributions

All authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 27 June 2011 Accepted: 26 October 2011 Published: 26 October 2011

References

- 1. Ulam, SM: A Collection of the Mathematical Problems. Interscience Publishers, New York (1960)
- Hyers, DH: On the stability of the linear functional equation. Proc Natl Acad Sci. 27, 222–224 (1941). doi:10.1073/ pnas.27.4.222
- Aoki, T: On the stability of the linear transformation in Banach spaces. J Math Soc Japan. 2, 64–66 (1950). doi:10.2969/ imsi/00210064
- Rassias, ThM: On the stability of the linear mapping in Banach spaces. Proc Amer Math Soc. 72, 297–300 (1978). doi:10.1090/S0002-9939-1978-0507327-1
- Găvruta, P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J Math Anal Appl. 184, 431–436 (1994). doi:10.1006/jmaa.1994.1211
- 6. Aczel, J, Dhombres, J: Functional Equations in Several Variables. Cambridge University Press, Cambridge (1989)
- 7. Kannappan, Pl: Quadratic functional equation and inner product spaces. Res Math. 27, 368–372 (1995)
- Skof, F: Propriet locali e approssimazione di operatori. Rend Sem Mat Fis Milano. 53, 113–129 (1983). doi:10.1007/ BF02924890
- 9. Adam, M: On the stability of some quadratic functional equations. J Nonlinear Sci Appl. 4(1):50–59 (2011)
- Adam, M, Czerwik, S: On the stability of the quadratic functional equation in topological spaces. Banach J Math Anal. 1(2):245–251 (2007)
- Czerwik, S: On the stability of the quadratic mapping in normed spaces. Abh Math Sem Univ Hamburg. 62, 59–64 (1992). doi:10.1007/BF02941618
- 12. Schin, SW, Ki, D, Chang, J, Kim, MJ: Random stability of quadratic functional equations: a fixed point approach. J Nonlinear Sci Appl. 4(1), 37–49 (2011)
- Jun, KW, Kim, HM: The generalized Hyers-Ulam-Russias stability of a cubic functional equation. J Math Anal Appl. 274(2), 267–278 (2002)
- Jung, S-M: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor (2001)
- 15. Jung, S-M: A fixed point approach to the stability of an equation of the square spiral. Banach J Math Anal. 1(2):148–153 (2007)
- 16. Khodaei, H, Rassias, TM: Approximately generalized additive functions in several variables. Int J Nonlinear Anal Appl. 1, 22–41 (2010)
- 17. Kim, CH: On the stability of mixed trigonometric functional equations. Banach J Math Anal. 1(2), 227–236 (2007)
- 18. Lee, Y-S, Chung, SY: Stability of a Jensen type functional equation. Banach J Math Anal. 1(1), 91–100 (2007)
- 19. Li, Y, Hua, L: Hyers-Ulam stability of a polynomial equation. Banach J Math Anal. **3**(2), 86–90 (2009)
- Park, C: Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras. Banach J Math Anal. 1(1), 23–32 (2007)
- 21. Park, C, Rassias, TM: Isometric additive mappings in generalized quasi-Banach spaces. Banach J Math Anal. 2(1), 59–69 (2008)
- 22. Eshaghi Gordji, M, Khodaei, H: Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces. Nonlinear Anal TMA. 71, 5629–5643 (2009). doi:10.1016/j.na.2009.04.052
- Najati, A, Moghimi, MB: Stability of a functional equation deriving from quadratic and additive function in quasi-Banach spaces. J Math Anal Appl. 337, 399–415 (2008). doi:10.1016/j.jmaa.2007.03.104

- 24. Najati, A, Zamani Eskandani, G: Stability of a mixed additive and cubic functional equation in quasi-Banach spaces. J Math Anal Appl. 342, 1318–1331 (2008). doi:10.1016/j.jmaa.2007.12.039
- 25. Jun, KW, Kim, HM: Ulam stability problem for a mixed type of cubic and additive functional equation. Bull Belg Math Soc simon Stevin. 13, 271–285 (2006)
- Kim, HM: On the stability problem for a mixed type of quartic and quadratic functional equation. J Math Anal Appl. 324, 358–372 (2006). doi:10.1016/j.jmaa.2005.11.053
- 27. Park, C: Fuzzy Stability of a functional equation associated with inner product spaces. Fuzzy Sets Syst. 160, 1632–1642 (2009). doi:10.1016/j.fss.2008.11.027
- Eshaghi Gordji, M: Stability of a functional equation deriving from quartic and additive functions. Bull Korean Math Soc. 47(3), 491–502 (2010). doi:10.4134/BKMS.2010.47.3.491
- 29. Eshaghi Gordji, M: Stability of an additive-quadratic functional equation of two variables in *F*-spaces. J Nonlinear Sci Appl. **2**(4), 251–259 (2009)
- Eshaghi Gordji, M, Abbaszadeh, S, Park, C: On the stability of generalized mixed type quadratic and quartic functional equation in quasi-Banach spaces. J Ineq Appl 2009, 26 (2009). Article ID 153084
- 31. Eshaghi Gordji, M, Bavand-Savadkouhi, M, Rassias, JM, Zolfaghari, S: Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces. Abs Appl Anal 2009, 14. (Article ID 417473)
- Eshaghi Gordji, M, Ebadian, A, Zolfaghari, S: Stability of a functional equation deriving from cubic and quartic functions. Abstr Appl Anal 2008, 17. (Article ID 801904)
- 33. Eshaghi Gordji, M, Khodaei, H: On the Generalized Hyers-Ulam-Rassias stability of quadratic functional equations. Abs Appl Anal 2009, 11. (Article ID 923476)
- Forti, GL: An existence and stability theorem for a class of functional equations. Stochastica. 4, 23–30 (1980). doi:10.1080/17442508008833155
- Forti, GL: Hyers-Ulam stability of functional equations in several variables. Aequationes Math. 50, 143–190 (1995). doi:10.1007/BF01831117
- Găvruta, P, Găvruta, L: A new method for the generalized Hyers-Ulam-Rassias stability. Int J Nonlinear Anal Appl. 1(2):11–18 (2010)
- Gordji, ME, Ghaemi, MB, Kaboli Gharetapeh, S, Shams, S, Ebadian, A: On the stability of J*-derivations. J Geom Phys. 60(3):454–459 (2010). doi:10.1016/j.geomphys.2009.11.004
- 38. Gordji, ME, Ghaemi, MB, Majani, H: Generalized Hyers-Ulam-Rassias theorem in menger probabilistic normed spaces. Discret Dyn Nat Soc. 11, 162371 (2010)
- 39. Gordji, ME, Ghaemi, MB, Majani, H, Park, C: Generalized Ulam-Hyers Stability of Jensen Functional Equation in erstnev PN spaces. J Ineq Appl. 14, 868193 (2010)
- Gordji, ME, Kaboli-Gharetapeh, S, Park, C, Zolfaghri, S: Stability of an additive-cubic-quartic functional equation. Adv Differ Equ 2009, 20 (2009). Article ID 395693
- 41. Gordji, ME, Kaboli Gharetapeh, S, Rassias, JM, Zolfaghari, S: Solution and stability of a mixed type additive, quadratic and cubic functional equation. Adv Differ Equ**2009**, 17. (Article ID 826130)
- 42. Gordji, ME, Karimi, T, Kaboli Gharetapeh, S: Approximately *n*-Jordan homomorphisms on Banach algebras. J Ineq Appl 8 (2009). Article ID 870843
- 43. Gordji, ME, Khodaei, H, Khodabakhsh, R: General quartic-cubic-quadratic functional equation in non-Archimedean normed spaces. UPB Sci Bull Series A. 72(3), 69–84 (2010)
- 44. Bag, T, Samanta, SK: Finite dimensional fuzzy normed linear spaces. J Fuzzy Math. 11(3), 687–705 (2003)
- Mirmostafaee, AK: A fixed point approach to almost quartic mappings in quasi fuzzy normed spaces. Fuzzy Sets Syst. 160, 1653–1662 (2009), doi:10.1016/i.fss.2009.01.011
- 46. Khodaei, H, Kamyar, M: Fuzzy approximately additive mappings. Int J Nonlinear Anal Appl. 1(2), 44–53 (2010)
- Shakeri, S, Saadati, R, Park, C: Stability of the quadratic functional equation in non-Archimedean ∠-fuzzy normed spaces. Int J Nonlinear Anal Appl. 1(2), 72–83 (2010)
- 48. Bag, T, Samanta, SK: Fuzzy bounded linear operators. Fuzzy Sets Syst. 151, 513–547 (2005). doi:10.1016/j.fss.2004.05.004

doi:10.1186/1029-242X-2011-95

Cite this article as: Gordji et al.: Fuzzy Stability of Generalized Mixed Type Cubic, Quadratic, and Additive Functional Equation. *Journal of Inequalities and Applications* 2011 **2011**:95.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ▶ Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com