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1. Introduction and Preliminaries
Assume that X is a real inner product space and f : X ® ℝ is a solution of the orthogonally

Cauchy functional equation f(x + y) = f(x) + f(y), 〈x, y〉 = 0. By the Pythagorean theorem,

f(x) = ||x||2 is a solution of the conditional equation. Of course, this function does not

satisfy the additivity equation everywhere. Thus, orthogonally Cauchy equation is not

equivalent to the classic Cauchy equation on the whole inner product space.

Pinsker [1] characterized orthogonally additive functionals on an inner product space

when the orthogonality is the ordinary one in such spaces. Sundaresan [2] generalized

this result to arbitrary Banach spaces equipped with the Birkhoff-James orthogonality.

The orthogonally Cauchy functional equation

f (x + y) = f (x) + f (y), x⊥y,

in which ⊥ is an abstract orthogonality relation, was first investigated by Gudder and

Strawther [3]. They defined ⊥ by a system consisting of five axioms and described the

general semi-continuous real-valued solution of conditional Cauchy functional equa-

tion. In 1985, Rätz [4] introduced a new definition of orthogonality by using more

restrictive axioms than of Gudder and Strawther. Moreover, he investigated the struc-

ture of orthogonally additive mappings. Rätz and Szabó [5] investigated the problem in

a rather more general framework.

Let us recall the orthogonality in the sense of Rätz; cf. [4].

Suppose X is a real vector space (algebraic module) with dim X ≥ 2 and ⊥ is a binary

relation on X with the following properties:

(O1) totality of ⊥ for zero: x ⊥ 0, 0 ⊥ x for all x Î X;

(O2) independence: if x, y Î X - {0}, x ⊥ y, then x, y are linearly independent;

(O3) homogeneity: if x, y Î X, x ⊥ y, then ax ⊥ by for all a, b Î ℝ;
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(O4) the Thalesian property: if P is a 2-dimensional subspace of X, x Î P and l Î ℝ+,

which is the set of nonnegative real numbers, then there exists y0 Î P such that x ⊥ y0
and x + y0 ⊥ lx - y0.

The pair (X, ⊥) is called an orthogonality space. By an orthogonality normed space,

we mean an orthogonality space having a normed structure.

Some interesting examples are

(i) The trivial orthogonality on a vector space X defined by (O1), and for non-zero

elements x, y Î X, x ⊥ y if and only if x, y are linearly independent.

(ii) The ordinary orthogonality on an inner product space (X, 〈., .〉) given by x ⊥ y if

and only if 〈x, y〉 = 0.

(iii) The Birkhoff-James orthogonality on a normed space (X, ||·||) defined by x ⊥ y if

and only if ||x + ly|| ≥ ||x|| for all l Î ℝ.

The relation ⊥ is called symmetric if x ⊥ y implies that y ⊥ x for all x, y Î X. Clearly

examples (i) and (ii) are symmetric but example (iii) is not. It is remarkable to note,

however, that a real normed space of dimension greater than 2 is an inner product

space if and only if the Birkhoff-James orthogonality is symmetric. There are several

orthogonality notions on a real normed space such as Birkhoff-James, Boussouis,

Singer, Carlsson, unitary-Boussouis, Roberts, Phythagorean, isosceles and Diminnie

(see [6-12]).

The stability problem of functional equations originated from the following question of

Ulam [13]: Under what condition does there exist an additive mapping near an approxi-

mately additive mapping? In 1941, Hyers [14] gave a partial affirmative answer to the

question of Ulam in the context of Banach spaces. In 1978, Th.M. Rassias [15] extended

the theorem of Hyers by considering the unbounded Cauchy difference ||f(x + y) - f(x) -

f(y)|| ≤ ε(||x||p + ||y||p), (ε > 0, p Î [0, 1)). The result of Th.M. Rassias has provided a lot

of influence in the development of what we now call generalized Hyers-Ulam stability or

Hyers-Ulam stability of functional equations. During the last decades, several stability pro-

blems of functional equations have been investigated in the spirit of Hyers-Ulam-Rassias.

The reader is referred to [16-20] and references therein for detailed information on stabi-

lity of functional equations.

Ger and Sikorska [21] investigated the orthogonal stability of the Cauchy functional

equation f(x + y) = f(x) + f(y), namely, they showed that if f is a mapping from an

orthogonality space X into a real Banach space Y and ||f(x + y) - f(x) - f(y)|| ≤ ε for all

x, y Î X with x ⊥ y and some ε > 0, then there exists exactly one orthogonally additive

mapping g : X ® Y such that ||f (x) − g(x) ‖≤ 16
3 ε for all x Î X.

The first author treating the stability of the quadratic equation was Skof [22] by

proving that if f is a mapping from a normed space X into a Banach space Y satisfying

||f(x + y) + f(x - y) - 2f(x) - 2f(y)|| ≤ ε for some ε > 0, then there is a unique quadratic

mapping g : X ® Y such that ||f (x) − g(x) ‖≤ ε
2. Cholewa [23] extended the Skof’s the-

orem by replacing X by an abelian group G. The Skof’s result was later generalized by

Czerwik [24] in the spirit of Hyers-Ulam-Rassias. The stability problem of functional

equations has been extensively investigated by some mathematicians (see [25-28]).

The orthogonally quadratic equation

f (x + y) + f (x − y) = 2f (x) + 2f (y), x⊥y
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was first investigated by Vajzović [29] when X is a Hilbert space, Y is the scalar field,

f is continuous and ⊥ means the Hilbert space orthogonality. Later, Drljević [30], Fochi

[31], Moslehian [32,33], Szabó [34], Moslehian and Th.M. Rassias [35] and Paganoni

and Rätz [36] have investigated the orthogonal stability of functional equations.

Let X be a set. A function m : X × X ® [0, ∞] is called a generalized metric on X if

m satisfies

(1) m(x, y) = 0 if and only if x = y;

(2) m(x, y) = m(y, x) for all x, y Î X;

(3) m(x, z) ≤ m(x, y) + m(y, z) for all x, y, z Î X.

We recall a fundamental result in fixed point theory.

Theorem 1.1. [37,38]Let (X, m) be a complete generalized metric space and let J : X ®
X be a strictly contractive mapping with Lipschitz constant a < 1. Then, for each given

element x Î X, either

m(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that

(1) m(Jnx, jn+1x) < ∞, ∀n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y* of J;

(3) y* is the unique fixed point of J in the set Y = {y ∈ X|m(Jn0x, y) < ∞};
(4) m(y, y∗) ≤ 1

1−α
m(y, Jy)for all y Î Y.

In 1996, Isac and Th.M. Rassias [39] were the first to provide applications of stability

theory of functional equations for the proof of new fixed point theorems with applica-

tions. By using fixed point methods, the stability problems of several functional equa-

tions have been extensively investigated by a number of authors (see [40-46]).

This paper is organized as follows: In Section 2, we prove the Hyers-Ulam stability of

the following orthogonally additive-quadratic functional equation

2f
(x + y

2

)
+ 2f

(
x − y
2

)
=
3f (x)
2

− f (−x)
2

+
f (y)
2

+
f (−y)
2

(1:1)

in orthogonality spaces by using the fixed point method. In Section 3, we prove the

Hyers-Ulam stability of the orthogonally additive-quadratic functional equation (1.1) in

orthogonality spaces by using the direct method.

Throughout this paper, assume that (X, ⊥) is an orthogonality space and that (Y, ||.||Y)

is a real Banach space.

2. Hyers-Ulam Stability of the Orthogonally Additive-Quadratic Functional
Equation (1.1): Fixed Point Method
For a given mapping f : X ® Y, we define

Df (x, y) : = 2f
(x + y

2

)
+ 2f

(
x − y
2

)

− 3f (x)
2

+
f (−x)
2

− f (y)
2

− f (−y)
2
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for all x, y Î X with x ⊥ y, where ⊥ is the orthogonality in the sense of Rätz.

Let f : X ® Y be an even mapping satisfying f(0) = 0 and (1.1). Then, f is a quadratic

mapping, i.e., 2f
( x+y

2

)
+ 2f

( x−y
2

)
= f (x) + f (y) holds.

Using the fixed point method and applying some ideas from [18,21], we prove the

Hyers-Ulam stability of the additive-quadratic functional equation Df(x, y = 0) in

orthogonality spaces.

Theorem 2.1. Let � : X2 ® [0, ∞) be a function such that there exists an a < 1 with

ϕ(x, y) ≤ 4αϕ
( x
2
,
y
2

)
(2:1)

for all x, y Î X with x ⊥ Y. Let f : X ® Y be an even mapping satisfying f(0) = 0 and

‖ Df (x, y)‖Y ≤ ϕ(x, y) (2:2)

for all x, y Î X with x ⊥ y. Then, there exists a unique orthogonally quadratic map-

ping Q : X ® Y such that

||f (x) − Q(x)‖Y ≤ α

1 − α
ϕ(x, 0) (2:3)

for all x Î X.

Proof. Letting y = 0 in (2.2), we get
∥∥∥4f ( x

2

)
− f (x)

∥∥∥
Y

≤ ϕ(x, 0) (2:4)

for all x Î X, since x ⊥ 0. Thus
∥∥∥∥f (x) − 1

4
f (2x)

∥∥∥∥
Y

≤ 1
4

ϕ(2x, 0) ≤ 4α

4
ϕ(x, 0) (2:5)

for all x Î X.

Consider the set

S := {h : X → Y}

and introduce the generalized metric on S:

m(g, h) = inf{μ ∈ R+ :‖ g(x) − h(x)‖Y ≤ μϕ(x, 0), ∀x ∈ X},

where, as usual, inf j = +∞. It is easy to show that (S, m) is complete (see [[47],

Lemma 2.1]).

Now we consider the linear mapping J : S ® S such that

Jg(x) :=
1
4
g (2x)

for all x Î X.

Let g, h Î S be given such that m(g, h) = ε. Then,

‖ g(x) − h(x)‖Y ≤ ϕ(x, 0)

for all x Î X. Hence

‖ Jg(x) − Jh(x)‖Y =

∥∥∥∥14g(2x) − 1
4
h(2x)

∥∥∥∥
Y

≤ αϕ(x, 0)
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for all x Î X. So m(g, h) = ε implies that m(Jg, Jh) ≤ aε. This means that

m(Jg, Jh) ≤ αm(g, h)

for all g, h Î S.

It follows from (2.5) that m(f, Jf ) ≤ a.
By Theorem 1.1, there exists a mapping Q : X ® Y satisfying the following:

(1) Q is a fixed point of J, i.e.,

Q(2x) = 4Q(x) (2:6)

for all x Î X. The mapping Q is a unique fixed point of J in the set

M = {g ∈ S : m(h, g) < ∞}.

This implies that Q is a unique mapping satisfying (2.6) such that there exists a μ Î
(0, ∞) satisfying

||f (x) − Q(x)‖Y ≤ μϕ(x, 0)

for all x Î X;

(2) m(Jnf, Q) ® 0 as n ® ∞. This implies the equality

lim
n→∞

1
4n

f (2nx) = Q(x)

for all x Î X;

(3) m(f ,Q) ≤ 1
1−α

m(f , Jf ), which implies the inequality

m(f ,Q) ≤ α

1 − α
.

This implies that the inequality (2.3) holds.

It follows from (2.1) and (2.2) that

∥∥DQ(x, y)
∥∥
Y = lim

n→∞
1
4n

‖ Df (2nx, 2ny)‖Y

≤ lim
n→∞

1
4n

ϕ(2nx, 2ny) ≤ lim
n→∞

4nαn

4n
ϕ(x, y) = 0

for all x, y Î X with x ⊥ y. So DQ(x, y) = 0 for all x, y Î X with x ⊥ y. Hence Q : X ® Y

is an orthogonally quadratic mapping, as desired. □
Corollary 2.2. Assume that (X, ⊥) is an orthogonality normed space. Let θ be a posi-

tive real number and p a real number with 0 <p < 2. Let f : X ® Y be an even map-

ping satisfying f(0) = 0 and

‖ Df (x, y)‖Y ≤ θ(‖ x‖p+ ‖ y‖p) (2:7)

for all x, y Î X with x ⊥ y. Then, there exists a unique orthogonally quadratic map-

ping Q : X ® Y such that

‖ f (x) − Q(x)‖Y ≤ 2pθ
4 − 2p

||x||p

for all x Î X.

Proof. Taking �(x, y) = θ(||x||p + ||y||p) for all x, y Î X with x ⊥ y and choosing a =

2p-2 in Theorem 2.1, we get the desired result. □
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Theorem 2.3. Let � : X2 ® [0, ∞) be a function such that there exists an a < 1 with

ϕ(x, y) ≤ α

4
ϕ(2x, 2y)

for all x, y Î X with x ⊥ y. Let f : X ® Y be an even mapping satisfying f(0) = 0 and

(2.2). Then, there exists a unique orthogonally quadratic mapping Q : X ® Y such that

‖ f (x) − Q(x)‖Y ≤ 1
1 − α

ϕ(x, 0)

for all x Î X.

Proof. Let (S, m) be the generalized metric space defined in the proof of

Theorem 2.1.

Now we consider the linear mapping J : S ® S such that

Jg(x) := 4g
( x
2

)

for all x Î X.

It follows from (2.4) that m(f, Jf) ≤ 1.

The rest of the proof is similar to the proof of Theorem 2.1. □
Corollary 2.4. Assume that (X, ⊥) is an orthogonality normed space. Let θ be a posi-

tive real number and p a real number with p > 2. Let f : X ® Y be an even mapping

satisfying f(0) = 0 and (2.7). Then, there exists a unique orthogonally quadratic map-

ping Q : X ® Y such that

‖ f (x) − Q(x)‖Y ≤ 2pθ
2p − 4

||x||p

for all x Î X.

Proof. Taking �(x, y) = θ(||x||p + ||y||p) for all x, y Î X with x ⊥ y and choosing a =

22-p in Theorem 2.3, we get the desired result. □
Let f : X ® Y be an odd mapping satisfying (1.1). Then, f is an additive mapping, i.e.,

2f
( x+y

2

)
+ 2f

( x−y
2

)
= 2f (x) holds.

Theorem 2.5. Let � : X2 ® [0, ∞) be a function such that there exists an a < 1 with

ϕ(x, y) ≤ 2αϕ
( x
2
,
y
2

)

for all x, y Î X with x ⊥ y. Let f : X ® Y be an odd mapping satisfying (2.2). Then,

there exists a unique orthogonally additive mapping A : X ® Y such that

‖ f (x) − A(x)‖Y ≤ α

2 − 2α
ϕ(x, 0)

for all x Î X.

Proof. Letting y = 0 in (2.2), we get
∥∥∥4f ( x

2

)
− 2f (x)

∥∥∥
Y

≤ ϕ(x, 0) (2:8)

for all x Î X, since x ⊥ 0. Thus,
∥∥∥∥f (x) − 1

2
f (2x)

∥∥∥∥
Y

≤ 1
4

ϕ(2x, 0) ≤ 2α

4
ϕ(x, 0) (2:9)
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for all x Î X.

Let (S, m) be the generalized metric space defined in the proof of Theorem 2.1.

Now we consider the linear mapping J : S ® S such that

Jg(x) :=
1
2
g(2x)

for all x Î X.

It follows from (2.9) that m(f , Jf ) ≤ α
2.

The rest of the proof is similar to the proof of Theorem 2.1. □
Corollary 2.6. Assume that (X, ⊥) is an orthogonality normed space. Let θ be a posi-

tive real number and p a real number with 0 <p < 1. Let f : X ® Y be an odd mapping

satisfying (2.7). Then, there exists a unique orthogonally additive mapping A : X ® Y

such that

‖ f (x) − A(x)‖Y ≤ 2pθ
2(2 − 2p)

||x||p

for all x Î X.

Proof. Taking �(x, y) = θ(||x||p + ||y||p) for all x, y Î X with x ⊥ y and choosing a =

2p-1 in Theorem 2.5, we get the desired result. □
Theorem 2.7. Let � : X2 ® [0, ∞) be a function such that there exists an a < 1 with

ϕ(x, y) ≤ α

2
ϕ(2x, 2y)

for all x, y Î X with x ⊥ y. Let f : X ® Y be an odd mapping satisfying (2.2). Then,

there exists a unique orthogonally additive mapping A : X ® Y such that

‖ f (x) − A(x)‖Y ≤ 1
2 − 2α

ϕ(x, 0)

for all x Î X.

Proof. Let (S, m) be the generalized metric space defined in the proof of Theorem 2.1.

Now we consider the linear mapping J : S ® S such that

Jg(x) := 2g
( x
2

)

for all x Î X.

It follows from (2.8) that m(f , Jf ) ≤ 1
2.

The rest of the proof is similar to the proof of Theorem 2.1. □
Corollary 2.8. Assume that (X, ⊥) is an orthogonality normed space. Let θ be a posi-

tive real number and p a real number with p > 1. Let f : X ® Y be an odd mapping

satisfying (2.7). Then, there exists a unique orthogonally additive mapping A : X ® Y

such that

‖ f (x) − A(x)‖Y ≤ 2pθ

2(2p − 2)
||x||p

for all x Î X.

Proof. Taking �(x, y) = θ(||x||p + ||y||p) for all x, y Î X with x ⊥ y and choosing a =

21-p in Theorem 2.7, we get the desired result. □
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Let f : X ® Y be a mapping satisfying f(0) = 0 and (1.1). Let fe(x) :=
f (x)+f (−x)

2
and

fo(x) =
f (x)−f (−x)

2
. Then, fe is an even mapping satisfying (1.1) and fo is an odd mapping

satisfying (1.1) such that f(x) = fe(x) + fo(x). So we obtain the following.

Theorem 2.9. Assume that (X, ⊥) is an orthogonality normed space. Let θ be a positive

real number and p a positive real number with p ≠ 1. Let f : X ® Y be a mapping satisfy-

ing f(0) = 0 and (2.7). Then, there exist an orthogonally additive mapping A : X ® Y and

an orthogonally quadratic mapping Q : X ® Y such that

‖ f (x) − A(x) − Q(x)‖Y ≤
(

2p

2|2 − 2p| +
2p

|4 − 2p|
)

θ ||x||p

for all x Î X.

3. Hyers-Ulam Stability of the Orthogonally Additive-Quadratic Functional
Equation (1.1): Direct Method
In this section, using the direct method and applying some ideas from [18,21], we

prove the Hyers-Ulam stability of the additive-quadratic functional equation Df(x, y) =

0 in orthogonality spaces.

Theorem 3.1. Let f : X ® Y be an even mapping satisfying f(0) = 0 for which there

exists a function � : X2 ® [0, ∞) satisfying (2.2) and

ϕ̃(x, y) :=
∞∑
j=0

4jϕ
( x
2j
,
y
2j

)
< ∞ (3:1)

for all x, y Î X with x ⊥ y. Then, there exists a unique orthogonally quadratic map-

ping Q : X ® Y such that

‖ f (x) − Q(x)‖Y ≤ ϕ̃(x, 0) (3:2)

for all x Î X.

Proof. It follows from (2.4) that

∥∥∥4lf ( x

2l

)
− 4mf

( x
2m

)∥∥∥
Y

≤
m−1∑
j=1

4jϕ
( x
2j
, 0

)
(3:3)

for all nonnegative integers m and l with m >l and all x Î X. It follows from (3.1) and

(3.3) that the sequence {4nf ( x
2n )} is a Cauchy sequence for all x Î X. Since Y is complete,

the sequence {4nf ( x
2n )} converges. So one can define the mapping Q : X ® Y by

Q(x) := lim
n→∞ 4nf

( x
2n

)

for all x Î X.

By the same reasoning as in the proof of Theorem 2.1, one can show that the map-

ping Q : X ® Y is an orthogonally quadratic mapping satisfying (3.2).

Now, let Q′: X ® Y be another orthogonally quadratic mapping satisfying (3.2).

Then, we have

‖ Q(x)−Q′(x)‖Y = 4n
∥∥∥Q( x

2n

)
− Q′

( x
2n

)∥∥∥
Y

≤ 4n
(∥∥∥Q( x

2n

)
− f

( x
2n

)∥∥∥
Y
+

∥∥∥Q′
( x
2n

)
− f

( x
2n

)∥∥∥
Y

)

≤ 2 · 4nϕ̃
( x
2n

, 0
)
,

Park Fixed Point Theory and Applications 2011, 2011:66
http://www.fixedpointtheoryandapplications.com/content/2011/1/66

Page 8 of 11



which tends to zero as n ® ∞ for all x Î X. So we can conclude that Q(x) = Q′(x)

for all x Î X. This proves the uniqueness of Q. □
Corollary 3.2. Assume that (X, ⊥) is an orthogonality space. Let θ be a positive real

number and p a real number with p > 2. Let f : X ® Y be an even mapping satisfying f

(0) = 0 and (2.7). Then, there exists a unique orthogonally quadratic mapping Q : X ®
Y such that

‖ f (x) − Q(x)‖Y ≤ 2pθ
2p − 4

||x||p

for all x Î X.

Proof. Taking �(x, y) = θ(||x||p + ||y||p) for all x, y Î X with x ⊥ y, and applying The-

orem 3.1, we get the desired result. □
Similarly, we can obtain the following. We will omit the proof.

Theorem 3.3. Let f : X ® Y be an even mapping satisfying f(0) = 0 for which there

exists a function � : X2 ® [0, ∞) satisfying (2.2) and

ϕ̃(x, y) :=
∞∑
j=1

1
4j

ϕ(2jx, 2jy) < ∞

for all x, y Î X with x ⊥ y. Then, there exists a unique orthogonally quadratic map-

ping Q : X ® Y such that

‖ f (x) − Q(x)‖Y ≤ ϕ̃(x, 0)

for all x Î X.

Corollary 3.4. Assume that (X, ⊥) is an orthogonality space. Let θ be a positive real

number and p a real number with 0 <p < 2. Let f : X ® Y be an even mapping satisfy-

ing f(0) = 0 and (2.7). Then, there exists a unique orthogonally quadratic mapping Q :

X ® Y such that

||f (x) − Q(x)‖Y ≤ 2pθ
4 − 2p

||x||p

for all x Î X.

Proof. Taking �(x, y) = θ(||x||p + ||y||p) for all x, y Î X with x ⊥ y, and applying The-

orem 3.3, we get the desired result. □
Theorem 3.5. Let f : X ® Y be an odd mapping for which there exists a function � :

X2 ® [0, ∞) satisfying (2.2) and

ϕ̃(x, y) :=
∞∑
j=0

2jϕ
( x
2j
,
y
2j

)
< ∞ (3:4)

for all x, y Î X with x ⊥ y. Then, there exists a unique orthogonally additive mapping

A : X ® Y such that

||f (x) − A(x)‖Y ≤ 1
2

ϕ̃(x, 0) (3:5)

for all x Î X.

Proof. It follows from (2.8) that

∥∥∥f (x) − 2f
( x

2

)∥∥∥
Y

≤ 1
2

ϕ(x, 0)
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for all x Î X.

The rest of the proof is similar to the proofs of Theorems 2.5 and 3.1. □
Corollary 3.6. Assume that (X, ⊥) is an orthogonality space. Let θ be a positive real

number and p a real number with p > 1. Let f : X ® Y be an odd mapping satisfying

(2.7). Then, there exists a unique orthogonally additive mapping A : X ® Y such that

‖ f (x) − A(x)‖Y ≤ 2pθ

2(2p − 2)
||x||p

for all x Î X.

Proof. Taking �(x, y) = θ(||x||p + ||y||p) for all x, y Î X with x ⊥ y, and applying

Theorem 3.5, we get the desired result. □
Similarly, we can obtain the following. We will omit the proof.

Theorem 3.7. Let f : X ® Y be an odd mapping for which there exists a function � :

X2 ® [0, ∞) satisfying (2.2) and

ϕ̃(x, y) : =
∞∑
j=1

1
2j

ϕ(2jx, 2jy) < ∞

for all x, y Î X with x ⊥ y. Then, there exists a unique orthogonally additive mapping

A : X ® Y such that

‖ f (x) − A(x)‖Y ≤ 1
2

ϕ̃(x, 0)

for all x Î X.

Corollary 3.8. Assume that (X, ⊥) is an orthogonality space. Let θ be a positive real

number and p a real number with 0 <p < 1. Let f : X ® Y be an odd mapping satisfy-

ing (2.7). Then, there exists a unique orthogonally additive mapping A : X ® Y such

that

‖ f (x) − A(x)‖Y ≤ 2pθ
2(2 − 2p)

||x||p

for all x Î X.

Proof. Taking �(x, y) = θ(||x||p + ||y||p) for all x, y Î X with x ⊥ y, and applying The-

orem 3.7, we get the desired result. □
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