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1. Introduction and preliminaries
A classical question in the theory of functional equations is the following: “When is it

true that a function which approximately satisfies a functional equation must be close

to an exact solution of the equation?” If the problem accepts a solution, we say that

the equation is stable. The first stability problem concerning group homomorphisms

was raised by Ulam [1] in 1940. In the next year, Hyers [2] gave a positive answer to

the above question for additive groups under the assumption that the groups are

Banach spaces. In 1978, Rassias [3] proved a generalization of the Hyers’ theorem for

additive mappings. The result of Rassias has provided a lot of influence during the last

three decades in the development of a generalization of the Hyers-Ulam stability con-

cept. This new concept is known as generalized Hyers-Ulam stability or Hyers-Ulam-

Rassias stability of functional equations (see [4-8]). Furthermore, in 1994, a generaliza-

tion of the Rassias’ theorem was obtained by Găvruta [9] by replacing the bound ε(||

x||p + ||y||p) by a general control function �(x, y).

The functional equation

f (x + y) + f (x − y) = 2f (x) + 2f (y)

is called a quadratic functional equation. In particular, every solution of the quadra-

tic functional equation is said to be a quadratic mapping. In 1983, a generalized

Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof

[10] for mappings f : X ® Y, where X is a normed space and Y is a Banach space. In

1984, Cholewa [11] noticed that the theorem of Skof is still true if the relevant domain

X is replaced by an Abelian group and, in 2002, Czerwik [12] proved the generalized

Hyers-Ulam stability of the quadratic functional equation.
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The stability problems of several functional equations have been extensively investi-

gated by a number of authors, and there are many interesting results concerning this

problem (see [13-32]).

In 1897, Hensel [33] has introduced a normed space that does not have the Archi-

medean property. It turned out that non-Archimedean spaces have many nice applica-

tions (see [34-37]).

Now, we give some definitions and lemmas for the main results in this paper.

A valuation is a function |·| from a field K into [0, ∞) such that, for all r, s ∈ K, the

following conditions hold:

(a) |r| = 0 if and only if r = 0;

(b) |rs| = |r||s|;

(c) |r + s| ≤ |r| + |s|.

A field K is called a valued field if K carries a valuation. The usual absolute values of

ℝ and C are examples of valuations.

Let us consider a valuation that satisfies a stronger condition than the triangle

inequality. If the triangle inequality is replaced by

|r + s| ≤ max{|r|, |s|}

for all r, s ∈ K, then the function |·| is called a non-Archimedean valuation and the

field is called a non-Archimedean field. Clearly, |1| = | -1| = 1 and |n| ≤ 1 for all n Î
N. A trivial example of a non-Archimedean valuation is the function |·| taking every-

thing except for 0 into 1 and |0| = 0.

Definition 1.1. Let X be a vector space over a field K with a non-Archimedean

valuation |·|. A function ||·|| : X ® [0, ∞) is called a non-Archimedean norm if the fol-

lowing conditions hold:

(a) ||x|| = 0 if and only if x = 0 for all x Î X;

(b) ||rx|| = |r| ||x|| for all r Î K and x Î X;

(c) the strong triangle inequality holds:

||x + y|| ≤ max{||x||, ||y||}

for all x, y Î X.

Then (X, ||·||) is called a non-Archimedean normed space (briefly NAN-space).

Definition 1.2. Let {xn} be a sequence in a non-Archimedean normed space X.

(1) The sequence {xn} is called a Cauchy sequence if, for any ε >0, there is a positive

integer N such that

||xn − xm|| ≤ ε

for all n, m ≥ N.

(2) The sequence {xn} is said to be convergent if, for any ε >0, there are a positive

integer N and x Î X such that

||xn − x|| ≤ ε

for all n ≥ N. Then, the point x Î X is called the limit of the sequence {xn}, which is

denoted by limn®∞ xn = x.

(3) If every Cauchy sequence in X converges, then the non-Archimedean normed

space X is called a non-Archimedean Banach space.
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Note that ||xn - xm|| ≤ max{||xj+1 - xj|| : m ≤ j ≤ n - 1} for all m, n ≥ 1 with n > m.

Definition 1.3. Let X be a set. A function d : X × X ® [0, ∞] is called a generalized

metric on X if d satisfies the following conditions:

(a) d(x, y) = 0 if and only if x = y for all x, y Î X;

(b) d(x, y) = d(y, x) for all x, y Î X;

(c) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z Î X.

Theorem 1.1. [38,39]Let (X, d) be a complete generalized metric space and J : X ® X

be a strictly contractive mapping with Lipschitz constant L <1. Then, for all x Î X,

either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that

(a) d(Jnx, Jn+1x) <∞ for all n0 ≥ n0;

(b) the sequence {Jnx} converges to a fixed point y* of J;

(c) y* is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0x, y) < ∞};
(d) d(y, y∗) ≤ 1

1−L d(y, Jy)for all y Î Y.

In this paper, using the fixed point and direct methods, we prove the generalized

Hyers-Ulam stability of the following functional equation

11f (x + 2y) + 11f (x − 2y) = 44{f (x + y) + f (x − y)} + 12f (3y)

− 48f (2y) + 60f (y) − 66f (x)
(1:1)

in non-Archimedean normed spaces.

2. Non-Archimedean stability of the equation (1.1): a fixed point method-
odd case
Using the fixed point alternative approach, we prove the generalized Hyers-Ulam stabi-

lity of functional Equation (1.1) in non-Archimedean normed spaces for an odd case.

In [40], Lee et al. considered the following quartic functional equation:

f (2x + y) + f (2x − y) = 4{f (x + y) + f (x − y)} + 24f (x) − 6f (y) (2:1)

It is easy to show that the function f(x) = x4 satisfies the functional Equation (2.1),

which is called a quartic functional equation and every solution of the quartic func-

tional equation is said to be a quartic mapping.

One can easily show that an even mapping f : X ® Y satisfies (1.1) if and only if the

even mapping f : X ® Y is a quartic mapping, that is,

f (2x + y) + f (2x − y) = 4{f (x + y) + f (x − y)} + 24f (x) − 6f (y) (2:2)

and an odd mapping f : X ® Y satisfies (1.1) if and only if the odd mapping f : X ®
Y is a additive-cubic mapping, that is,

f (2x + y) + f (2x − y) = 4{f (x + y) + f (x − y)} − 6f (x) (2:3)

It was shown in [[41], Lemma 2.2] that g(x) = f(2x) - 2f(x) and h(x) = f(2x) - 8f(x) are

cubic and additive, respectively, and that f (x) : = 1
16g(x) − 1

16h(x).
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For a given mapping f : X ® Y, we define

�f (x, y) = 11f (x + 2y) + 11f (x − 2y) − 44{f (x + y) + f (x − y)}
− 12f (3y) + 48f (2y) − 60f (y) + 66f (x)

for all x, y Î X.

Using the fixed point method, we prove the generalized Hyers-Ulam stability of the

functional equation Ff(x, y) = 0 in non-Archimedean normed spaces: an odd case.

Throughout this section, let |8| ≠ 1.

Theorem 2.1. Let X be a non-Archimedean normed space and Y a non-Archimedean

Banach space. Assume that g : X2 ® [0, ∞) is a function such that there exists an L <1

with

γ
( x

2
,
y

2

)
≤ L

|8|γ (x, y) (2:4)

for all x, y Î X. If f : X ® Y is an odd mapping satisfying

||�f (x, y)|| ≤ γ (x, y) (2:5)

for all x, y Î X, then the limit

C(x) := lim
n→∞ 8n

(
f
( x
2n−1

)
− 2f

( x
2n

))

exists for all x Î X and defines a unique cubic mapping C : X ® Y such that

||f (2x) − 2f (x) − C(x)|| ≤ L
|8| − |8|Lmax

{
1

|11|γ (2x, x),
∣∣∣∣1433

∣∣∣∣ γ (x, 0)
}
. (2:6)

Proof. Putting x = 0 in (2.5), we have

||12f (3y) − 48f (2y) + 60f (y)|| ≤ γ (y, 0) (2:7)

for all y Î X.

Replacing x by 2y in (2.5), we get

||11f (4y) − 56f (3y) + 114f (2y) − 104f (y)|| ≤ γ (2y, y) (2:8)

for all y Î X. By (2.7) and (2.8), we have

∥∥f (4y) − 10f (2y) + 16f (y)
∥∥ =

∥∥∥∥ 1
11

[
11f (4y) − 56f (3y) + 114f (2y) − 104f (y)

]
+
14
33

[12f (3y) − 48f (2y) + 60f (y)]

∥∥∥∥
≤ max

{
1

|11|γ (2y, y),
∣∣∣∣1433

∣∣∣∣ γ (y, 0)
} (2:9)

for all y Î X. Letting y := x
2 and g(x) := f (2x) - 2f(x) for all x Î X, we get

∥∥∥g(x) − 8g
( x
2

)∥∥∥ ≤ max
{

1
|11|γ

(
x,

x
2

)
,

∣∣∣∣1433
∣∣∣∣ γ ( x

2
, 0

)}
. (2:10)

Consider the set

S := {g : X → Y}
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and the generalized metric d in S defined by

d(f , g) = inf
μ∈(0,+∞)

{
||g(x) − h(x)|| ≤ μmax

{
1

|11|γ (2x, x),
∣∣∣∣1433

∣∣∣∣ γ (x, 0)
}
,∀x ∈ X

}
,

where inf ∅ = +∞. It is easy to show that (S, d) is complete (see [[42], Lemma 2.1]).

Now, we consider a linear mapping J : S ® S such that

Jg(x) := 8g
( x
2

)
(2:11)

for all x Î X. Let g, h Î S be such that d(g, h) = ε. Then we have

||g(x) − h(x)|| ≤ εmax
{

1
|11|γ (2x, x),

∣∣∣∣1433
∣∣∣∣ γ (x, 0)

}

for all x Î X and so

||Jg(x) − Jh(x)|| =
∥∥∥8g ( x

2

)
− 8h

( x
2

)∥∥∥
≤ |8|max

{
1

|11|γ
(
x,

x
2

)
,

∣∣∣∣1433
∣∣∣∣ γ ( x

2
, 0

)}

≤ |8| · L
|8|εmax

{
1

|11|γ (2x, x),
∣∣∣∣1433

∣∣∣∣ γ (x, 0)
}

for all x Î X. Thus d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h Î S. It follows from (2.10) that

d(g, Jg) ≤ L

|8| . (2:12)

By Theorem 1.1, there exists a mapping C : X ® Y satisfying the following:

(1) C is a fixed point of J, that is,

1
8
C(x) = C

( x

2

)
(2:13)

for all x Î X. The mapping C is a unique fixed point of J in the set

� = {h ∈ S : d(g, h) < ∞}.

This implies that C is a unique mapping satisfying (2.13) such that there exists μ Î
(0, ∞) satisfying

||g(x) − C(x)|| ≤ μmax
{

1
|11|γ (2x, x),

∣∣∣∣1433
∣∣∣∣ γ (x, 0)

}

for all x Î X.

(2) d(Jng, C) ® 0 as n ® ∞. This implies the equality

lim
n→∞ 8ng

( x
2n

)
= lim

n→∞ 8n
(
f
( x
2n−1

)
− 2f

( x
2n

))
= C(x)

for all x Î X.
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(3) d(g,C) ≤ d(g,Jg)
1−L

with g Î Ω, which implies the inequality

d(g,C) ≤ L

|8| − |8|L . (2:14)

This implies that the inequality (2.6) holds.

Since Fg(x, y) = Ff (2x, 2y) - 2Ff (x, y), using (2.4) and (2.5), we have

||�C(x, y)|| = lim
n→∞ |8|n

∥∥∥�g

( x
2n

,
y
2n

)∥∥∥
= lim

n→∞ |8|n
∥∥∥�f

( x
2n−1

,
y

2n−1

)
− 2�f

( x
2n

,
y
2n

)∥∥∥
≤ lim

n→∞ |8|n max
{∥∥∥�f

( x
2n−1

,
y

2n−1

)∥∥∥ , |2|
∥∥∥�f

( x
2n

,
y
2n

)∥∥∥}
≤ lim

n→∞ |8|n max
{
γ

( x
2n−1

,
y

2n−1

)
, |2|γ

( x
2n

,
y
2n

)}

≤ lim
n→∞ |8|n max

{
Ln−1

|8|n−1
γ (x, y),

|2|Ln
|8|n γ (x, y)

}
= 0

for all x, y Î X and n ≥ 1 and so ||FC(x, y)|| = 0 for all x, y Î X. Therefore, the

mapping C : X ® Y is cubic. This completes the proof. □
Corollary 2.1. Let θ ≥ 0 and r be a real number with r >1. Let f : X ® Y be an odd

mapping satisfying

||�f (x, y)|| ≤ θ(||x||r + ||y||r) (2:15)

for all x, y Î X. Then the limit C(x) = limn→∞8n
(
f
( x
2n−1

) − 2f
( x
2n

))
exists for all x Î

X and C : X ® Y is a unique cubic mapping such that

||f (2x) − 2f (x) − C(x)|| ≤ |8|r
|8| − |8|r+1 max

{
(|2|r + 1)θ ||x||r

|11| ,

∣∣∣∣1433
∣∣∣∣ θ ||x||r

}

for all x Î X.

Proof. The proof follows from Theorem 2.1 if we take

γ (x, y) = θ(||x||r + ||y||r)

for all x, y Î X. In fact, if we choose L = |8|r, then we get the desired result. □
Theorem 2.2. Let X be a non-Archimedean normed space and Y a non-Archimedean

Banach space. Assume that g : X2 ® [0, ∞) is a function such that there exists an L <1

with

γ (2x, 2y) ≤ |8|Lγ (x, y) (2:16)

for all x, y Î X. If f : X ® Y is an odd mapping satisfying (2.5), then the limit

C(x) = lim
n→∞

f (2n+1x) − 2f (2nx)
8n

exists for all x Î X and defines a unique cubic mapping C : X ® Y such that

||f (2x) − 2f (x) − C(x)|| ≤ 1
|8| − |8|L max

{
1

|11|γ (2x, x),
∣∣∣∣1433

∣∣∣∣ γ (x, 0)
}
. (2:17)
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Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.

Consider the mapping J : (S, d) ® (S, d) such that

Jg(x) :=
1
8
g(2x) (2:18)

for all x Î X.

Proceeding as in the proof of Theorem 2.1, we find that d(g, h) = ε implies that d(Jg,

Jh) ≤ Lε. This means that d(Jg, Jh) ≤ Ld(g, h) for all g, h Î S.

It follows from (2.10) that∥∥∥∥g(2x)8
− g(x)

∥∥∥∥ ≤ 1
|8| max

{
1

|11|γ (2x, x),
∣∣∣∣1433

∣∣∣∣ γ (x, 0)
}

for all x Î X. So

d(g, Jg) ≤ 1
|8| . (2:19)

By Theorem 1.1, there exists a mapping C : X ® Y satisfying the following:

(1) C is a fixed point of J, that is,

8C(x) = C(2x) (2:20)

for all x Î X. The mapping C is a unique fixed point of J in the set

� = {h ∈ S : d(g, h) < ∞}.

This implies that C is a unique mapping satisfying (2.20) such that there exists μ Î
(0, ∞) satisfying

||g(x) − C(x)|| ≤ μmax
{

1
|11|γ (2x, x),

∣∣∣∣1433
∣∣∣∣ γ (x, 0)

}

for all x Î X.

(2) d(Jng, C) ® 0 as n ® ∞. This implies the equality

lim
n→∞

g(2nx)
8n

= lim
n→∞

f (2n+1x) − 2f (2nx)
8n

= C(x)

for all x Î X.

(3) d(g,C) ≤ d(g,Jg)
1−L

with g Î Ω, which implies the inequality

d(g,C) ≤ 1
|8| − |8|L . (2:21)

This implies that the inequality (2.17) holds. The rest of the proof is similar to the

proof of Theorem 2.1. □
Corollary 2.2. Let θ ≥ 0 and r be a real number with 0 < r <1. Let f : X ® Y be an

odd mapping satisfying (2.15). Then the limit C(x) = limn→∞
f (2n+1x)−2f (2nx)

8n
exists for all

x Î X and C : X ® Y is a unique cubic mapping such that

||f (2x) − 2f (x) − C(x)|| ≤ |8|r
|8|r+1 − |8|2 max

{
(|2|r + 1)θ ||x||r

|11| ,

∣∣∣∣1433
∣∣∣∣ θ ||x||r

}

for all x Î X.
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Proof. The proof follows from Theorem 2.2 if we take

γ (x, y) = θ(||x||r + ||y||r)

for all x, y Î X. In fact, if we choose L = |8|1-r, then we get the desired result. □
Theorem 2.3. Let X be a non-Archimedean normed space and Y a non-Archimedean

Banach space. Assume that g : X2 ® [0, ∞) is a function such that there exists an L <1

with

γ
( x

2
,
y

2

)
≤ L

|2|γ (x, y) (2:22)

for all x, y Î X. If f : X ® Y is an odd mapping satisfying (2.5), then the limit

A(x) := lim
n→∞ 2n

(
f
( x
2n−1

)
− 8f

( x
2n

))

exists for all x Î X and defines a unique additive mapping A : X ® Y such that

||f (2x) − 8f (x) − A(x)|| ≤ L
|2| − |2|L max

{
1

|11|γ (2x, x),
∣∣∣∣1433

∣∣∣∣ γ (x, 0)
}
. (2:23)

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.

Letting y :=
x
2
and h(x) := f (2x) - 8f (x) for all x Î X in (2.9), we get

∥∥∥h(x) − 2h
( x
2

)∥∥∥ ≤ max
{

1
|11|γ

(
x,

x
2

)
,

∣∣∣∣1433
∣∣∣∣ γ ( x

2
, 0

)}
. (2:24)

Now, we consider a linear mapping J : S ® S such that

Jh(x) := 2h
( x
2

)
(2:25)

for all x Î X. Let g, h Î S be such that d(g, h) = ε. Then we have

∥∥g(x) − h(x)
∥∥ ≤ εmax

{
1

|11|γ (2x, x),
∣∣∣∣1433

∣∣∣∣ γ (x, 0)
}

for all x Î X and so

‖ Jg(x) − Jh(x) ‖ =
∥∥∥2g ( x

2

)
− 2h

( x
2

)∥∥∥ ≤ |2|max
{

1
|11|γ

(
x,

x
2

)
,

∣∣∣∣1433
∣∣∣∣ γ ( x

2
, 0

)}

≤ |2| · L
|2|εmax

{
1

|11|γ (2x, x),
∣∣∣∣1433

∣∣∣∣ γ (x, 0)
}

for all x Î X. Thus, d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h Î S. It follows from (2.24) that

d(g, Jg) ≤ L

|2| . (2:26)

By Theorem 1.1, there exists a mapping A : X ® Y satisfying the following:
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(1) A is a fixed point of J, that is,

1
2
A(x) = A

( x

2

)
(2:27)

for all x Î X. The mapping A is a unique fixed point of J in the set

� = {h ∈ S : d(g, h) < ∞}.

This implies that A is a unique mapping satisfying (2.27) such that there exists μ Î
(0, ∞) satisfying

‖ h(x) − A(x) ‖ ≤ μmax
{

1
|11|γ (2x, x),

∣∣∣∣1433
∣∣∣∣ γ (x, 0)

}

for all x Î X.

(2) d(Jnh, A) ® 0 as n ® ∞. This implies the equality

lim
n→∞ 2nh

( x
2n

)
= lim

n→∞ 2n
(
f
( x
2n−1

)
− 8f

( x
2n

))
= A(x)

for all x Î X.

(3) d(h,A) ≤ d(h,Jh)
1−L

with h Î Ω, which implies the inequality

d(h,A) ≤ L

|2| − |2|L . (2:28)

This implies that the inequality (2.23) holds. The rest of the proof is similar to the

proof of Theorem 2.1. □
Corollary 2.3. Let θ ≥ 0 and r be a real number with r > 1. Let f : X ® Y be an odd

mapping satisfying (2.15). Then, the limit A(x) = limn→∞2n
(
f
( x
2n−1

) − 8f
( x
2n

))
exists

for all x Î X and A : X ® Y is a unique additive mapping such that

‖ f (2x) − 8f (x) − A(x) ‖ ≤ |2|r
|2| − |2|r+1 max

{
(|2|r + 1)θ ‖ x‖r

|11| ,

∣∣∣∣1433
∣∣∣∣ θ ‖ x‖r

}

for all x Î X.

Proof. The proof follows from Theorem 2.3 if we take

γ (x, y) = θ(‖ x‖r+ ‖ y‖r)

for all x, y Î X. In fact, if we choose L = |2|r, then we get the desired result. □
Theorem 2.4. Let X be a non-Archimedean normed space and Y a non-Archimedean

Banach space. Assume that g : X2 ® [0, ∞) is a function such that there exists an L < 1

with

γ (2x, 2y) ≤ |2|Lγ (x, y) (2:29)

for all x, y Î X. If f : X ® Y is an odd mapping satisfying (2.5), then the limit

A(x) = lim
n→∞

f (2n+1x) − 8f (2nx)
2n
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exists for all x Î X and defines a unique additive mapping A : X ® Y such that

‖ f (2x) − 8f (x) − A(x) ‖ ≤ 1
|2| − |2|L max

{
1

|11|γ (2x, x),
∣∣∣∣1433

∣∣∣∣ γ (x, 0)
}
. (2:30)

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.

Consider the mapping J : (S, d) ® (S, d) such that

Jg(x) :=
1
2
g(2x) (2:31)

for all x Î X. By (2.24), we obtain∥∥∥∥h(2x)2
− g(x)

∥∥∥∥ ≤ 1
|2| max

{
1

|11|γ (2x, x),
∣∣∣∣1433

∣∣∣∣ γ (x, 0)
}

for all x Î X. So

d(g, Jg) ≤ 1
|2| . (2:32)

By Theorem 1.1, there exists a mapping A : X ® Y satisfying the following:

(1) A is a fixed point of J, that is,

2A(x) = A(2x) (2:33)

for all x Î X. The mapping A is a unique fixed point of J in the set

� = {h ∈ S : d(g, h) < ∞}.

This implies that A is a unique mapping satisfying (2.33) such that there exists μ Î
(0, ∞) satisfying

‖ h(x) − A(x) ‖ ≤ μmax
{

1
|11|γ (2x, x),

∣∣∣∣1433
∣∣∣∣ γ (x, 0)

}

for all x Î X.

(2) d(Jnh, A) ® 0 as n ® ∞. This implies the equality

lim
n→∞

h(2nx)
2n

= lim
n→∞

f (2n+1x) − 8f (2nx)
2n

= A(x)

for all x Î X.

(3) d(h,A) ≤ d(h,Jh)
1−L

with h Î Ω, which implies the inequality

d(h,A) ≤ 1
|2| − |2|L . (2:34)

This implies that the inequality (2.30) holds. The rest of the proof is similar to the

proof of Theorem 2.1. □
Corollary 2.4. Let θ ≥ 0 and r be a real number with 0 <r < 1. Let f : X ® Y be an

odd mapping satisfying (2.15). Then, the limit A(x) = limn→∞
f (2n+1x)−8f (2nx)

2n
exists for all

x Î X and A : X ® Y is a unique additive mapping such that

‖ f (2x) − 8f (x) − A(x) ‖ ≤ 1

|2| − |2|r+2 max
{
(|2|r + 1)θ ‖ x‖r

|11| ,

∣∣∣∣1433
∣∣∣∣ θ ‖ x‖r

}
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for all x Î X.

Proof. The proof follows from Theorem 2.4 if we take

γ (x, y) = θ(‖ x‖r+ ‖ y‖r)

for all x, y Î X. In fact, if we choose L = |2|r + 1, then we get the desired result. □

3. Non-Archimedean stability of the equation (1.1): a fixed point method-
even case
Using the fixed point method, we prove the generalized Hyers-Ulam stability of the

functional Equation (1.1) in non-Archimedean normed spaces for an even case.

Throughout this section, let |16| ≠ 1.

Theorem 3.1. Let X be a non-Archimedean normed space and Y a non-Archimedean

Banach space. Assume that g : X2 ® [0, ∞) is a function such that there exists an L < 1

with

γ (2x, 2y) ≤ |16|Lγ (x, y) (3:1)

for all x, y Î X. If f : X ® Y is an even mapping with f(0) = 0 satisfying (2.5), then the

limit

Q(x) := lim
n→∞

f (2nx)
16n

exists for all x Î X and defines a unique quartic mapping Q : X ® Y such that

‖ f (x) − Q(x) ‖ ≤ 1
|16| − |16|L max

{
1

|22|γ (0, x),
∣∣∣∣ 611

∣∣∣∣ γ (x, x)
}
. (3:2)

Proof. Putting x = 0 in (2.5), we have∥∥12f (3y) − 70f (2y) + 148f (y)
∥∥ ≤ γ (0, y) (3:3)

for all y Î X.

Substituting x = y in (2.5), we get∥∥f (3y) − 4f (2y) − 17f (y)
∥∥ ≤ γ (y, y) (3:4)

for all y Î X. By (3.3) and (3.4), we have

∥∥f (2y) − 16f (y)
∥∥ =

∥∥∥∥−1
22

[
12f (3y) − 70f (2y) + 148f (y)

]
+

6
11

[f (3y) − 4f (2y) − 17f (y)]

∥∥∥∥
≤ max

{
1

|22|γ (0, y),
∣∣∣∣ 611

∣∣∣∣ γ (y, y)
} (3:5)

for all y Î X. Consider the set

S := {g : X → Y, g(0) = 0}

and the generalized metric d in S defined by

d(f , g) = inf
μ∈(0,+∞)

{
‖ g(x) − h(x) ‖ ≤ μmax

{
1

|22|γ (0, x),
∣∣∣∣ 611

∣∣∣∣ γ (x, x)
}
,∀x ∈ X

}

where inf ∅ = +∞. It is easy to show that (S, d) is complete (see [[42], Lemma 2.1]).
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Now, we consider a linear mapping J : S ® S such that

Jg(x) :=
1
16

g(2x) (3:6)

for all x Î X. It follows from (3.5) that

d(f , Jf ) ≤ 1
|16| . (3:7)

By Theorem 1.1, there exists a mapping Q : X ® Y satisfying the following:

(1) Q is a fixed point of J, that is,

16Q(x) = Q(2x) (3:8)

for all x Î X. The mapping Q is a unique fixed point of J in the set

� = {h ∈ S : d(g, h) < ∞}.

This implies that Q is a unique mapping satisfying (3.8) such that there exists μ Î (0,

∞) satisfying

‖ f (x) − Q(x) ‖ ≤ μmax
{

1
|22|γ (0, x),

∣∣∣∣ 611
∣∣∣∣ γ (x, x)

}

for all x Î X.

(2) d(Jnf, Q) ® 0 as n ® ∞. This implies the equality

lim
n→∞

f (2nx)
16n

= Q(x)

for all x Î X.

(3) d(f ,Q) ≤ d(f ,Jf )
1−L

with f Î Ω, which implies the inequality

d(f ,C) ≤ 1
|16| − |16|L . (3:9)

This implies that the inequality (3.2) holds. The rest of the proof is similar to the

proof of Theorem 2.1. □
Corollary 3.1. Let θ ≥ 0 and r be a real number with r > 1. Let f : X ® Y be an even

mapping with f(0) = 0 satisfying (2.15). Then, the limit Q(x) = limn→∞
f (2nx)
16n

exists for

all x Î X and Q : X ® Y is a unique quartic mapping such that

‖ f (x) − Q(x) ‖ ≤ 1

|16| − |16|r+1 max
{

θ ‖ x‖r
|22| , 2

∣∣∣∣ 611
∣∣∣∣ θ ‖ x‖r

}

for all x Î X.

Proof. The proof follows from Theorem 3.1 if we take

γ (x, y) = θ(‖ x‖r+ ‖ y‖r)

for all x, y Î X. In fact, if we choose L = |16|r, then we get the desired result. □
Similarly, we can obtain the following. We will omit the proof.

Theorem 3.2. Let X be a non-Archimedean normed space and Y a non-Archimedean

Banach space. Assume that g : X2 ® [0, ∞) is a function such that there exists an L < 1

with
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γ
( x

2
,
y

2

)
≤ L

|16|γ (x, y) (3:10)

for all x, y Î X. If f : X ® Y is an even mapping with f(0) = 0 satisfying (2.5), then the

limit

Q(x) := lim
n→∞ 16nf

( x
2n

)

exists for all x Î X and defines a unique quartic mapping Q : X ® Y such that

‖ f (x) − Q(x) ‖ ≤ L
|16| − |16|L max

{
1

|22|γ (0, x),
∣∣∣∣ 611

∣∣∣∣ γ (x, x)
}
. (3:11)

Corollary 3.2. Let θ ≥ 0 and r be a real number with 0 <r < 1. Let f : X ® Y be an

even mapping with f(0) = 0 satisfying (2.15). Then, the limit Q(x) = limn→∞16nf
( x
2n

)
exists for all x Î X and Q : X ® Y is a unique quartic mapping such that

‖ f (x) − Q(x) ‖ ≤ |16|
|16|r+1 − |16|2 max

{
θ ‖ x‖r
|22| , 2

∣∣∣∣ 611
∣∣∣∣ θ ‖ x‖r

}

for all x Î X.

Proof. The proof follows from Theorem 3.2 if we take

γ (x, y) = θ(‖ x‖r+ ‖ y‖r)

for all x, y Î X. In fact, if we choose L = |16|1-r, then we get the desired result. □

4. Non-Archimedean stability of Equation (1.1): a direct method-odd case
Throughout this section, using direct method, we prove the generalized Hyers-Ulam

stability of the functional Equation (1.1) in non-Archimedean spaces for an odd case.

Theorem 4.1. Let G be an additive semigroup and X a complete non-Archimedean

space. Assume that � : G2 ® [0, +∞) is a function such that

lim
n→∞ |8|nϕ

( x
2n

,
y
2n

)
= 0 (4:1)

for all x, y Î G. Let for all x Î G

�(x) = lim
n→∞max

{
|8|k+1 max

{
1

|11|ϕ
( x

2k
,

x

2k+1

)
,

∣∣∣∣1433
∣∣∣∣ ϕ ( x

2k+1
, 0

)}
; 0 ≤ k < n

}
(4:2)

exist. Suppose that f : G ® X is an odd mapping satisfying the inequality∥∥�f (x, y)
∥∥
X ≤ ϕ(x, y) (4:3)

for all x, y Î G. Then the limit

C(x) := lim
n→∞ 8n

(
f
( x
2n−1

)
− 2f

( x
2n

))

exists for all x Î G and C : G ® X is a cubic mapping satisfying

||f (2x) − 2f (x) − C(x)||X ≤ 1
|8|�(x) (4:4)
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for all x Î G. Moreover, if

lim
j→∞

lim
n→∞max

{
|8|k+1 max

{
1

|11|ϕ
( x

2k
,

x

2k+1

)
,

∣∣∣∣1433
∣∣∣∣ ϕ ( x

2k+1
, 0

)}
; j ≤ k < n + j

}
= 0,

then C is the unique mapping satisfying (4.4).

Proof. Proceeding as in the proof of Theorem 2.1, we obtain

∥∥f (4y) − 10f (2y) + 16f (y)
∥∥
X ≤ max

{
1

|11|ϕ(2y, y),
∣∣∣∣1433

∣∣∣∣ ϕ(y, 0)
}

(4:5)

for all y Î X. Letting y := x
2 and g(x) := f(2x) - 2f(x) for all x Î X, we get

∥∥∥g(x) − 8g
( x
2

)∥∥∥
X

≤ max
{

1
|11|ϕ

(
x,

x
2

)
,

∣∣∣∣1433
∣∣∣∣ ϕ ( x

2
, 0

)}
. (4:6)

Replacing x by x
2n in (4.6), we get

∥∥∥8ng ( x
2n

)
− 8n+1g

( x
2n+1

)∥∥∥
X

≤ |8|n max
{

1
|11|ϕ

( x
2n

,
x

2n+1

)
,

∣∣∣∣1433
∣∣∣∣ ϕ ( x

2n+1
, 0

)}
. (4:7)

It follows from (4.1) and (4.7) that the sequence
{
8ng

( x
2n

)}∞
n=1 is a Cauchy sequence.

Since X is complete, so
{
8ng

( x
2n

)}∞
n=1 is convergent. Set

C(x) := lim
n→∞ 8ng

( x
2n

)
= lim

n→∞ 8n
(
f
( x
2n−1

)
− 2f

( x
2n

))
.

Using induction, we see that∥∥∥8ng ( x
2n

)
− g(x)

∥∥∥
X

≤ 1
|8| max

{
|8|k+1 max

{
1

|11|ϕ
( x
2k

,
x

2k+1

)
,

∣∣∣∣1433
∣∣∣∣ ϕ ( x

2k+1
, 0

)}
; 0 ≤ k < n

}
.
(4:8)

By taking n to approach infinity in (4.8), one obtains (4.4). If L is another mapping

satisfying (4.4), then, for x Î G, we get

‖ C(x) − L(x)‖X
= lim

j→∞

∥∥∥8jL( x
2j

)
− 8jC

( x
2j

)∥∥∥
X

= lim
j→∞

∥∥∥8jL( x

2j

)
± 8jg

( x

2j

)
− 8jC

( x

2j

)∥∥∥
X

≤ lim
j→∞

max
{∥∥∥8j [L( x

2j

)
− g

( x
2j

)]∥∥∥
X
,

∥∥∥8j [g ( x
2j

)
− C

( x
2j

)]∥∥∥
X

}

≤ 1
|8| limj→∞

lim
n→∞max

{
|8|k+1 max

{
1

|11|ϕ
( x

2k
,

x

2k+1

)
,

∣∣∣∣1433
∣∣∣∣ϕ ( x

2k+1
, 0

)}
; j ≤ k < n + j

}
= 0.

Therefore, L = C. This completes the proof. □
Corollary 4.1. Let ξ : [0, ∞) ® [0, ∞) be a function satisfying

ξ

(
t

|2|
)

≤ ξ

(
1
|2|

)
ξ(t), ξ

(
1
|2|

)
<

1
|8|
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for all t ≥ 0. Let δ > 0 and f : G ® X be an odd mapping satisfying the inequality∥∥�f (x, y)
∥∥
X ≤ δ(ξ(|x|) + ξ(|y|)) (4:9)

for all x, y Î G. Then the limit C(x) = limn→∞8n
(
f
( x
2n−1

) − 2f
( x
2n

))
exists for all x Î

G and C : G ® X is a unique cubic mapping such that

||f (2x) − 2f (x) − C(x)||X ≤ max
{

1
|11|δξ(|x|)

(
1 +

1
|8|

)
,

∣∣∣∣ 7
132

∣∣∣∣ ξ(|x|)
}

for all x Î G.

Proof. Defining � : G2 ® [0, ∞) by �(x, y) := δ(ξ(|x|) + ξ(|y|)). Since |8|ξ
(

1
|2|

)
< 1, we

have

lim
n→∞ |8|nϕ

( x
2n

,
y
2n

)
≤ lim

n→∞

[
|8|ξ

(
1
|2|

)]n

ϕ(x, y) = 0

for all x, y Î G. Also for all x Î G

�(x) = lim
n→∞max

{
|8|k+1 max

{
1

|11|ϕ
( x

2k
,

x

2k+1

)
,

∣∣∣∣1433
∣∣∣∣ ϕ ( x

2k+1
, 0

)}
; 0 ≤ k < n

}

= |8|max
{

1
|11|ϕ

(
x,

x
2

)
,

∣∣∣∣1433
∣∣∣∣ ϕ ( x

2
, 0

)}

= |8|max
{

1
|11|δξ(|x|)

(
1 +

1
|8|

)
,

∣∣∣∣ 7
132

∣∣∣∣ ξ(|x|)
}

exists for all x Î G. On the other hand,

lim
j→∞

lim
n→∞max

{
|8|k+1 max

{
1

|11|ϕ
( x

2k
,

x

2k+1

)
,

∣∣∣∣1433
∣∣∣∣ϕ ( x

2k+1
, 0

)}
; j ≤ k < n + j

}

lim
j→∞

|8|j+1 max
{

1
|11|ϕ

( x
2j
,

x
2j+1

)
,

∣∣∣∣1433
∣∣∣∣ ϕ ( x

2j+1
, 0

)}
= 0.

Applying Theorem 4.1, we get the desired result. □
Theorem 4.2. Let G be an additive semigroup and X a complete non-Archimedean

space. Assume that � : G2 ® [0, +∞) is a function such that

lim
n→∞

ϕ(2nx, 2ny)
|8|n = 0 (4:10)

for all x, y Î G. Let for each x Î G

�(x) = lim
n→∞max

{
1

|8|k+1 max
{

1
|11|ϕ(2

k+1x, 2kx),

∣∣∣∣1433
∣∣∣∣ϕ(2kx, 0)

}
; 0 ≤ k < n

}
(4:11)

exist. Suppose that f : G ® X is an odd mapping satisfying the inequality (4.3). Then

the limit

C(x) := lim
n→∞

f (2n+1x) − 2f (2nx)
8n
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exists for all x Î G and C : G ® X is a cubic mapping satisfying

||f (2x) − 2f (x) − C(x)||X ≤ �(x) (4:12)

for all x Î G. Moreover, if

lim
j→∞

lim
n→∞max

{
1

|8|k+1 max
{

1
|11|ϕ(2

k+1x, 2kx),

∣∣∣∣1433
∣∣∣∣ ϕ(2kx, 0)

}
; j ≤ k < n + j

}
= 0,

then C is the unique mapping satisfying (4.12).

Proof. It follows from (4.5) that∥∥∥∥ g(2x)8
− g(x)

∥∥∥∥
X

≤ 1
|8| max

{
1

|11|ϕ(2x, x),
∣∣∣∣1433

∣∣∣∣ ϕ(x, 0)
}

(4:13)

for all x Î G. Replacing x by 2nx in (4.13), we get∥∥∥∥∥g(2
n+1x)

8n+1
− g(2nx)

8n

∥∥∥∥∥
X

≤ 1

|8|n+1 max
{

1
|11|ϕ(2

n+1x, 2nx),

∣∣∣∣1433
∣∣∣∣ ϕ(2nx, 0)

}
. (4:14)

It follows from (4.10) and (4.14) that the sequence
{
g(2nx)
8n

}∞
n=1

is a Cauchy sequence.

Since X is complete,
{
g(2nx)
8n

}∞
n=1

is convergent. It follows from (4.14) that

∥∥∥∥g(2
px)

8p
− g(2qx)

8q

∥∥∥∥
X

=

∥∥∥∥∥∥
q−1∑
k=p

g(2k+1x)
8k+1

− g(2kx)
8k

∥∥∥∥∥∥
X

≤ max

{∥∥∥∥∥g(2
k+1x)

8k+1
− g(2kx)

8k

∥∥∥∥∥
X

; p ≤ k < q − 1

}

≤ max
{

1

|8|k+1 max
{

1
|11|ϕ(2

k+1x, 2kx),

∣∣∣∣1433
∣∣∣∣ϕ(2kx, 0)

}
; p ≤ k < q − 1

}
(4:15)

for all x Î G and all non-negative integers q, p with q >p ≥ 0. Letting p = 0 and pas-

sing the limit q ® ∞ in the last inequality, we obtain (4.12).

The rest of the proof is similar to the proof of Theorem 4.1. □
Corollary 4.2. Let ξ : [0, ∞) ® [0, ∞) be a function satisfying

ξ(|2|t) ≤ ξ(|2|)ξ(t), ξ(|2|) < |8|

for all t ≥ 0. Let δ > 0 and f : G ® X be a mapping satisfying the inequality (4.9).

Then the limit C(x) = limn→∞
f (2n+1x)−2f (2nx)

8n
exists for all x Î G and C : G ® X is a

unique cubic mapping such that

||f (2x) − 2f (x) − C(x)||X ≤ 1
|8|max

{
1 + |8|
|11| δξ(|x|),

∣∣∣∣1433
∣∣∣∣ δξ(|x|)

}
(4:16)

for all x Î G.

Proof. Define � : G2 ® [0, ∞) by �(x, y) := δ(ξ(|x|) + ξ(|y|)). Proceeding as in the

proof of Corollary 4.1, we have

lim
n→∞

ϕ(2nx, 2ny)
|8|n = 0
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for all x, y Î G. Also

�(x) = limn→∞ max
{

1

|8|k+1 max
{

1
|11|ϕ(2

k+1x, 2kx),

∣∣∣∣1433
∣∣∣∣ ϕ(2kx, 0)

}
; 0 ≤ k < n

}

=
1
|8| max

{
1

|11|ϕ(2x, x),
∣∣∣∣1433

∣∣∣∣ ϕ(x, 0)
}

≤ 1
|8| max

{
1 + |8|
|11| δξ(|x|),

∣∣∣∣1433
∣∣∣∣ δξ(|x|)

}

exists for all x Î G. Applying Theorem 4.2, we get the desired result. □
Theorem 4.3. Let G be an additive semigroup and X a complete non-Archimedean

space. Assume that � : G2 ® [0, +∞) is a function such that

lim
n→∞ |2|nϕ

( x
2n

,
y
2n

)
= 0 (4:17)

for all x, y Î G. Let for all x Î G

�(x) = lim
n→∞max

{
|2|kmax

{
1

|11|ϕ
( x

2k
,

x

2k+1

)
,

∣∣∣∣1433
∣∣∣∣ϕ ( x

2k+1
, 0

)}
; 0 ≤ k < n

}
(4:18)

exist. Suppose that f : G ® X is an odd mapping satisfying the inequality (4.3). Then

the limit

A(x) := lim
n→∞ 2n

(
f
( x
2n−1

)
− 8f

( x
2n

))

exists for all x Î G and A : G ® X is an additive mapping satisfying

||f (2x) − 8f (x) − A(x)||X ≤ �(x) (4:19)

for all x Î G. Moreover, if

lim
j→∞

lim
n→∞max

{
|2|kmax

{
1

|11|ϕ
( x

2k
,

x

2k+1

)
,

∣∣∣∣1433
∣∣∣∣ ϕ ( x

2k+1
, 0

)}
; j ≤ k < n + j

}
= 0,

then A is the unique mapping satisfying (4.19).

Proof. Letting y := x
2 and h(x) := f(2x) - 8f(x) for all x Î G in (4.5), we get

∥∥∥h(x) − 2h
( x
2

)∥∥∥
X

≤ max
{

1
|11|ϕ

(
x,

x
2

)
,

∣∣∣∣1433
∣∣∣∣ ϕ ( x

2
, 0

)}
. (4:20)

Replacing x by x
2n in (4.20), we obtain∥∥∥2nh( x

2n

)
− 2n+1h

( x
2n+1

)∥∥∥
X

≤ |2|n max
{

1
|11|ϕ

( x
2n

,
x

2n+1

)
,

∣∣∣∣1433
∣∣∣∣ ϕ ( x

2n+1
, 0

)}
.

(4:21)

Using induction, one can easily show that∥∥∥2nh( x
2n

)
− h(x)

∥∥∥
X

≤ max
{
|2|kmax

{
1

|11|ϕ
( x
2k

,
x

2k+1

)
,

∣∣∣∣1433
∣∣∣∣ ϕ ( x

2k+1
, 0

)}
; 0 ≤ k < n

}
.

(4:22)

The rest of the proof is similar to the proof of Theorem 4.1. □
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Corollary 4.3. Let ξ : [0, ∞) ® [0, ∞) be a function satisfying

ξ

(
t

|2|
)

≤ ξ

(
1
|2|

)
ξ(t), ξ

(
1
|2|

)
<

1
|2|

for all t ≥ 0. Let δ > 0 and f : G ® X be an odd mapping satisfying the inequality

(4.9). Then the limit A(x) = limn→∞2n
(
f
( x
2n−1

) − 8f
( x
2n

))
exists for all x Î G and A :

G ® X is a unique additive mapping such that

||f (2x) − 8f (x) − A(x)||X ≤ max
{(

1 +
1
|2|

)
δξ(|x|)
|11| ,

∣∣∣∣ 7
33

∣∣∣∣ ξ(|x|)
}

for all x Î G.

Proof. Define � : G2 ® [0, ∞) by �(x, y) := δ((ξ(|x|) + ξ(|y|)). Also

�(x) = lim
n→∞max

{
|2|kmax

{
1

|11|ϕ
( x

2k
,

x

2k+1

)
,

∣∣∣∣1433
∣∣∣∣ϕ ( x

2k+1
, 0

)}
; 0 ≤ k < n

}

= max
{(

1 +
1
|2|

)
δξ(|x|)
|11| ,

∣∣∣∣ 7
33

∣∣∣∣ ξ(|x|)
}

exists for all x Î G. Applying Theorem 4.3, we get the desired result. □
Similarly, we can obtain the following. We will omit the proof.

Theorem 4.4. Let G be an additive semigroup and X a complete non-Archimedean

space. Assume that � : G2 ® [0, +∞) is a function such that

lim
n→∞

ϕ(2nx, 2ny)
|2|n = 0 (4:23)

for all x, y Î G. Let for each x Î G

�(x) = lim
n→∞max

{
1

|2|k max
{

1
|11|ϕ(2

k+1x, 2kx),

∣∣∣∣1433
∣∣∣∣ ϕ(2kx, 0)

}
; 0 ≤ k < n

}
(4:24)

exist. Suppose that f : G ® X be an odd mapping satisfying the inequality (4.3). Then

the limit

A(x) := lim
n→∞

f (2n+1x) − 8f (2nx)
2n

exists for all x Î G and A : G ® X is an additive mapping satisfying

||f (2x) − 8f (x) − A(x)||X ≤ 1
|2|�(x) (4:25)

for all x Î G. Moreover, if

lim
j→∞

lim
n→∞max

{
1

|2|k max
{

1
|11|ϕ(2

k+1x, 2kx),

∣∣∣∣1433
∣∣∣∣ ϕ(2kx, 0)

}
; j ≤ k < n + j

}
= 0,

then A is the unique mapping satisfying (4.25).

5. Non-Archimedean stability of Equation (1.1): a direct method-even case
Theorem 5.1. Let G be an additive semigroup and X a complete non-Archimedean

space. Assume that � : G2 ® [0, +∞) is a function such that
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lim
n→∞

ϕ(2nx, 2ny)
|16|n = 0 (5:1)

for all x, y Î G. Let for all x Î G

�(x) = lim
n→∞max

{
1

|16|k max
{

1
|22|ϕ(0, 2

kx),

∣∣∣∣ 611
∣∣∣∣ ϕ(2kx, 2kx)

}
; 0 ≤ k < n

}
(5:2)

exist. Suppose that f : G ® X is an even mapping with f(0) = 0 satisfying the inequal-

ity (4.3). Then the limit

Q(x) := lim
n→∞

f (2nx)
16n

exists for all x Î G and Q : G ® X is a quartic mapping satisfying

||f (x) − Q(x)||X ≤ 1
|16|�(x) (5:3)

for all x Î G. Moreover, if

lim
j→∞

lim
n→∞max

{
1

|16|k max
{

1
|22|ϕ(0, 2

kx),

∣∣∣∣ 611
∣∣∣∣ ϕ(2kx, 2kx)

}
; j ≤ k < n + j

}
= 0,

then Q is the unique mapping satisfying (5.3).

Proof. Proceeding as in the proof of Theorem 3.1, we obtain∥∥∥∥ f (2x)16
− f (x)

∥∥∥∥
X

≤ 1
|16| max

{
1

|22|ϕ(0, x),
∣∣∣∣ 611

∣∣∣∣ϕ(x, x)
}
.

One can easily show that∥∥∥∥ f (2
nx)

16n
− f (x)

∥∥∥∥
X

≤ 1
|16| max

{
1

|16|k max
{

1
|22|ϕ(0, 2

kx),

∣∣∣∣ 611
∣∣∣∣ ϕ(2kx, 2kx)

}
; 0 ≤ k < n

}
.

The rest of the proof is similar to the proof of Theorem 4.1. □
Corollary 5.1. Let ξ : [0, ∞) ® [0, ∞) be a function satisfying

ξ (|2|t) ≤ ξ (|2|) ξ(t), ξ (|2|) < |16|

for all t ≥ 0. Let δ > 0 and f : G ® X be an even mapping with f(0) = 0 satisfying the

inequality (4.9). Then the limit Q(x) = limn→∞
f (2nx)
16n

exists for all x Î G and Q : G ® X

is a unique quartic mapping such that

||f (x) − Q(x)||X ≤ 1
|16| max

{
1

|22| δξ(|x|), 2
∣∣∣∣ 611

∣∣∣∣ ξ(|x|)
}

for all x Î G.

Proof. Define � : G2 ® [0, ∞) by �(x, y) := δ(ξ(|x|) + ξ(|y|)). Also

�(x) = max
{

1
|22|δξ(|x|), 2

∣∣∣∣ 611
∣∣∣∣ ξ(|x|)

}

exists for all x Î G. Applying Theorem 5.1, we get the desired result. □
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Similarly, we can obtain the following. We will omit the proof.

Theorem 5.2. Let G be an additive semigroup and X a complete non-Archimedean

space. Assume that � : G2 ® [0, +∞) is a function such that

lim
n→∞ 16|nϕ

( x
2n

,
y
2n

)
= 0

for all x, y Î G. Let for all x Î G

�(x) = lim
n→∞max

{
|16|k max

{
1

|22|ϕ
(
0,

x

2k+1

)
,

∣∣∣∣ 611
∣∣∣∣ ϕ ( x

2k+1
,

x

2k+1

)}
; 0 ≤ k < n

}

exist. Suppose that f : G ® X is an even mapping satisfying the inequality (4.3). Then

the limit

Q(x) := lim
n→∞ 16nf

( x
2n

)

exists for all x Î G and Q : G ® X is a quartic mapping satisfying

||f (x) − Q(x)||X ≤ �(x) (5:4)

for all x Î G. Moreover, if

lim
j→∞

lim
n→∞max

{
|16|k max

{
1

|22|ϕ
(
0,

x

2k+1

)
,

∣∣∣∣ 611
∣∣∣∣ ϕ ( x

2k+1
,

x

2k+1

)}
; j ≤ k < n + j

}
= 0,

then Q is the unique mapping satisfying (5.4).

6. Conclusion
We linked here three different disciplines, namely, the non-Archimedean normed

spaces, functional equations and fixed point theory. We established the generalized

Hyers-Ulam stability of the functional Equation (1.1) in non-Archimedean normed

spaces.
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