Contents lists available at SciVerse ScienceDirect

Computers and Mathematics with Applications

Trends, probability functions and fuzzy right ideals for *d*-algebras

Kyung Joon Cha^a, Hee Sik Kim^{a,*}, J. Neggers^b

^a Department of Mathematics, Hanyang University, Seoul, 133-791, Republic of Korea ^b Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, USA

ARTICLE INFO

Article history: Received 14 October 2010 Received in revised form 1 August 2011 Accepted 1 August 2011

Keywords: Trend Probability function (Fuzzy) right ideal d-algebra

1. Introduction

ABSTRACT

In this paper, we introduce the notion of a trend (probability function) on a *d*-algebra, and obtain an equivalent condition defining a trend π_0 with condition (j) on a standard *BCK*-algebra. We obtain an example of *d*-algebra such that any function $\varphi : X \to (0, 1)$ with $\int_0^\infty \varphi(z) dz < \infty$ is a fuzzy co-right ideal.

© 2011 Elsevier Ltd. All rights reserved.

Imai and Iséki introduced two classes of abstract algebras: *BCK*-algebras and *BCI*-algebras [1,2]. Dvurečenskij and Graziano [3], Hoo [4] and Font et al. [5] have discussed *BCK*-algebras in connection with the areas of lattice ordered groups, *MV*-algebras and Wajsberg algebras. Mundici [6] proved that *MV*-algebras are categorically equivalent to bounded commutative *BCK*-algebras, and Meng [7] proved that implicative commutative semigroups are equivalent to a class of *BCK*-algebras. Georgescu and lorgulescu [8] introduced the notion of pseudo-*BCK* algebras as an extension of *BCK*-algebras. Neggers and Kim introduced the notion of *d*-algebras which is another useful generalization of *BCK*-algebras, and then investigated several relations between *d*-algebras and *BCK*-algebras as well as several other relations between *d*-algebras and oriented digraphs [9]. After that several further aspects were studied [10–12,9]. Recently, Han et al. [13] defined several special varieties of *d*-algebras such as pre-*d*-algebras. Much of their discussion involved the associative groupoid product (*X*, \Box) = (*X*, *) \Box (*X*, \circ) where $x\Box y = (x * y) \circ (y * x)$. One assertion is that the squared algebra (*X*, \Box , 0) of a pre-*d*-algebra (*X*, *, 0) is a strong *d*-algebra if and only if (*X*, *, 0) is strong.

In this paper, we introduce the notion of a trend (probability function) on a *d*-algebra, and obtain an equivalent condition for a trend π_0 with condition (j) on a standard *BCK*-algebra, and we obtain an example of a *d*-algebra such that any function $\varphi: X \to (0, 1)$ with $\int_0^\infty \varphi(z) dz < \infty$ is a fuzzy co-right ideal.

2. Preliminaries

A d-algebra [9] is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:

(I) x * x = 0,

(II) 0 * x = 0,

(III) x * y = 0 and y * x = 0 imply x = y for all $x, y \in X$.

^{*} Corresponding author. Tel.: +82 2 2220 0897; fax: +82 2 2291 0019. E-mail addresses: kjcha@hanyang.ac.kr (K.J. Cha), heekim@hanyang.ac.kr (H.S. Kim), jneggers@as.ua.edu (J. Neggers).

^{0898-1221/\$ -} see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.camwa.2011.08.005

For brevity we also call *X* a *d*-algebra. In *X* we can define a binary relation " \leq " by $x \leq y$ if and only if x * y = 0. A *BCK*-algebra is a *d*-algebra *X* satisfying the following additional axioms:

(IV) ((x * y) * (x * z)) * (z * y) = 0,

(V) (x * (x * y)) * y = 0 for all $x, y, z \in X$.

Let (X, \leq) be a poset with minimal element 0. Define a binary operation "*" on X by

 $x * y := \begin{cases} 0 & \text{if } x \le y, \\ x & \text{otherwise.} \end{cases}$

Then (X, *, 0) is a *BCK*-algebra, called a *standard BCK*-algebra.

Theorem 2.1 ([11]). Let (*X*, *, 0) be a BCK-algebra.

(i) if x * y = 0 = y * z, then x * z = 0, (ii) if x * y = 0, then (z * y) * (z * x) = 0, (iii) if x * y = 0, then (x * z) * (y * z) = 0.

Definition 2.2 ([14]). Let (X, *, 0) be a *d*-algebra and $\emptyset \neq I \subseteq X$. *I* is called a *d*-subalgebra of *X* if $x * y \in I$ whenever $x \in I$ and $y \in I$. *I* is called a *BCK*-ideal of *X* if it satisfies:

(D₀) $0 \in I$, (D₁) $x * y \in I$ and $y \in I$ imply $x \in I$.

I is called a *d*-*ideal* of *X* if it satisfies (D_1) and

(D₂) $x \in I$ and $y \in X$ imply $x * y \in I$, i.e., $I * X \subseteq I$.

It is known that, in a *d*-algebra *X*, a *BCK*-ideal need not be a *d*-subalgebra, and also a *d*-subalgebra need not be a *BCK*-ideal. Moreover, $\{0\}$ is a *d*-subalgebra of any *d*-algebra *X* and every *d*-ideal of *X* is a *d*-subalgebra, but the converse need not be true. Note that every *d*-ideal of a *d*-algebra is a *BCK*-ideal, but the converse need not be true [14].

Given a poset $P(\leq)$ it is *A*-free if there is no full-subposet $X(\leq)$ of $P(\leq)$ which is order isomorphic to the poset $A(\leq)$. If C_n denotes a chain of length n and if \underline{n} denotes an antichain of cardinal number n, while + denotes the disjoint union of posets, then the poset $(C_2 + \underline{1})$ (or $C_2 + C_1$) has the Hasse-diagram (Fig. 1), and may be represented as { $p \leq q, p || r, q || r$ }, where a || b denotes the relation of not being comparable (i.e., a || b if and only if $a \leq b$ and $b \leq a$ are both false) (see [15]).

Let μ be a fuzzy set in a *d*-algebra X. Then a fuzzy set μ is called a *fuzzy d-subalgebra* [1] of X if

 $\mu(x * y) \ge \min\{\mu(x), \mu(y)\}$

for all $x, y \in X$. A fuzzy set μ is called a *fuzzy BCK-ideal* of X [16] if

 $(\mathbf{F}_0) \ \mu(\mathbf{0}) \geq \mu(\mathbf{x}),$

(F₁) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\},\$

for all $x, y \in X$. A fuzzy set μ is called a *fuzzy d-ideal* [1] of X if it satisfies (F₁) and

(F₂) $\mu(x * y) \ge \mu(x)$ for all $x, y \in X$.

It is known that, in a *d*-algebra, a fuzzy *BCK*-ideal need not be a fuzzy *d*-subalgebra, and also a fuzzy *d*-subalgebra need not be a fuzzy *BCK*-ideal. Moreover, every fuzzy *d*-ideal of a *d*-algebra *X* is a fuzzy *d*-subalgebra, but the converse need not be true. Note that every fuzzy *d*-ideal of a *d*-algebra is a fuzzy *BCK*-ideal, but the converse need not be true.

Lemma 2.3 ([1]). If μ is a fuzzy *d*-ideal of a *d*-algebra *X*, then $\mu(0) \ge \mu(x)$ for all $x \in X$.

Theorem 2.4 ([1]). A fuzzy subset μ of a d-algebra X is a fuzzy d-subalgebra (d-ideal, resp.) of X if and only if, for every $\lambda \in [0, 1]$, $\mu_{\lambda} = \{x \in X | \mu(x) \ge \lambda\}$ is a d-subalgebra (d-ideal, resp.) of X, where $\mu_{\lambda} \neq \emptyset$.

3. Trends and probability functions

Let X be a non-empty set and let $\pi: X \times X \to [0, 1]$ be a mapping. We say $\pi(x, y)$ that "x is less than or equal to y. Among the rules π may be expected to obey the following:

(a) x * y = 0 implies $\pi(x, y) = 1$; (b) $x * y \neq 0$ implies $\pi(x, y) + \pi(y, x) = 1$; (c) y * z = 0 implies $\pi(x, y) \le \pi(x, z)$; (d) $\pi(x, z) \le \pi(x * y, z);$ (e) $\pi(x, y * z) \le \pi(x, y)$

for any $x, y, z \in X$.

Let (*X*, *) be any groupoid. We say π is a *trend* on *X* if it satisfies (a) and (b). A trend π on *X* is said to be a *probability function* on *X* if it satisfies (c).

Proposition 3.1. (i) Let (X, *) be a groupoid with axiom (I). If π is a trend on X, then $\pi(x, x) = 1$ for any $x \in X$. (ii) Let (X, *) be a groupoid with axiom (II). If π is a trend on X, then $\pi(0, x) = 1$ for any $x \in X$. (iii) If (X, *, 0) is a *d*-algebra and π is a trend on X, then $\pi(x, 0) = 0$ for any $x \in X - \{0\}$. (iv) If $\pi_i(i = 1, 2)$ are trends on a groupoid (X, *, 0) and $0 < \alpha < 1$, then $\pi = \alpha \pi_1 + (1 - \alpha)\pi_2$ is also a trend on (X, *, 0).

Proof. (i). Given $x \in X$, x * x = 0. Since π is a trend, we have $\pi(x, x) = 1$. (ii). Since 0 * x = 0, $\pi(0, x) = 1$. (iii). Let (X, *, 0) be a *d*-algebra. We claim that $x * 0 \neq 0$ for any $x \in X - \{0\}$. Assume that there is an $x \ln X - \{0\}$ such that x * 0 = 0. Since 0 * x = 0, by (III) we obtain x = 0, a contradiction. Since π is a trend, $1 = \pi(x, 0) + \pi(0, x) = \pi(x, 0) + 1$ and hence $\pi(x, 0) = 0$ for any $x \in X - \{0\}$. (iv). If x * y = 0, then $\pi_i(x, y) = 1$ and hence $(\alpha \pi_1 + (1 - \alpha)\pi_2)(x, y) = \alpha \pi_1(x, y) + (1 - \alpha)\pi_2(x, y) = \alpha + (1 - \alpha) = 1$. If $x * y \neq 0$, then $\pi_i(x, y) + \pi_i(y, x) = 1$ and hence $(\alpha \pi_1 + (1 - \alpha)\pi_2)(x, y) + (\alpha \pi_1 + (1 - \alpha)\pi_2)(y, x) = \alpha [\pi_1(x, y) + \pi_1(y, x)] + (1 - \alpha)[\pi_2(x, y) + \pi_2(y, x)] = 1$. \Box

Proposition 3.2. Let (X, *, 0) be a d-algebra. If $T(X) := \{ \pi \mid \pi \text{ is a trend on } X \}$, then $T(X) \neq \emptyset$.

Proof. Define a map $\pi_0 : X^2 \rightarrow [0, 1]$ by

$$\pi_0(x, y) := \begin{cases} 0 & \text{if } y * x = 0, \ y \neq x, \\ 1 & \text{if } x * y = 0, \\ \frac{1}{2} & \text{if } x * y \neq 0 \neq y * x. \end{cases}$$

Then it is easy to see that π_0 is a trend on *X*. \Box

Let (X, *, 0) be a *d*-algebra and let $P(X) := \{\pi \mid \pi \text{ is a probability function on } X\}$. Then the trend π_0 need not be a probability function on *X*. See the following example.

Example 3.3. Consider a *d*-algebra $X := \{0, a, b, c\}$ with the following table:

Since b * c = 0, a * c = a, c * a = c, a * b = 0, b * a = b, we have $\pi_0(a, c) = 1/2$, $\pi_0(a, b) = 1$, i.e., $\pi_0(a, b) > 1/2 = \pi_0(a, c)$ proving that $\pi_0 \notin P(X)$.

Given a *d*-algebra (X, *, 0), we classify 3 cases: (i) $P(X) = \emptyset$; (ii) $P(X) \neq \emptyset$, $\pi_0 \notin P(X)$; (iii) $\pi_0 \in P(X)$.

A *d*-algebra (X, *, 0) is said to be *d*-transitive [9] if x * y = 0 = y * z implies x * z = 0.

Theorem 3.4. If (X, *, 0) is a *d*-transitive *d*-algebra, then $\pi_0 \in P(X)$.

Proof. Assume that π_0 is not a probability function on *X*. Then there exist $x, y, z \in X$ such that y * z = 0, but $\pi_0(x, y) > \pi_0(x, z)$. *Case* 1: $\pi_0(x, y) = 1$, $\pi_0(x, z) = 1/2$. Then x * y = 0, $x * z \neq 0 \neq z * x$. Since y * z = 0, we obtain x * z = 0, a contradiction. *Case* 2: $\pi_0(x, y) = 1$, $\pi_0(x, z) = 0$. Then x * y = 0 = z * x, and hence z * y = 0. Since y * z = 0, we obtain y = z, a contradiction. *Case* 3: $\pi_0(x, y) = 1/2$, $\pi_0(x, z) = 0$. Then $x * y \neq 0 \neq y * x$, z * x = 0. Since y * z = 0, we obtain y * x = 0, a contradiction. \Box

Corollary 3.5. Let (X, *, 0) be a BCK-algebra. Then $\pi_0 \in P(X)$, i.e., π_0 is a probability function on X.

Proof. By Theorem 2.1-(i), every *BCK*-algebra is a *d*-transitive *d*-algebra.

Proposition 3.6. Let π be a trend on a BCK-algebra (X, *, 0). Then

(f) x * y = 0 implies $\pi (z * y, z * x) = 1$.

Proof. If x * y = 0, then by Theorem 2.1-(ii), (z * y) * (z * x) = 0. Since π is a trend on X, we obtain $\pi(z * y, z * x) = 1$.

Proposition 3.7. Let π be a trend on a BCK-algebra (X, *, 0). Then

(g) x * y = 0 implies $\pi (x * z, y * z) = 1$.

Proof. If x * y = 0, then by Theorem 2.1-(iii), (x * z) * (y * z) = 0. Since π is a trend on *X*, we obtain $\pi(x * z, y * z) = 1$.

Proposition 3.8. Let (X, *, 0) be a d-algebra. If π is a probability function on X, then

(h) x * y = 0 = y * z implies $\pi(x, z) = 1$.

Proof. Since π is a probability function on *X*, if x * y = 0 = y * z, then $1 = \pi(x, y) \le \pi(x, z)$, proving $\pi(x, z) = 1$.

Proposition 3.9. Let (X, *, 0) be a standard BCK-algebra. Then the trend π_0 satisfies condition (d).

Proof. If x * y = x, then $\pi_0(x * y, z) = \pi_0(x, z)$. If x * y = 0, then by Proposition 3.1-(ii), $\pi_0(x * y, z) = \pi_0(0, z) = 1 \ge \pi_0(x, z)$. \Box

Let X be a non-empty set and let $\pi: X \times X \to [0, 1]$ be a mapping. We have additional rules as follows:

(j) $\pi(x * y, z) \ge \frac{1}{2} [\pi(x, z) + \pi(y, z)];$ (k) $\pi(x * y, z) > \pi(y, z).$

Condition (j) is a special case of the condition (j_{α}) :

 $(\mathbf{j}_{\alpha}) \pi(\mathbf{x} \ast \mathbf{y}, \mathbf{z}) \ge \alpha \pi(\mathbf{x}, \mathbf{z}) + (1 - \alpha) \pi(\mathbf{y}, \mathbf{z})$

where $0 \le \alpha \le 1$. Note that if $\alpha = 1$, then $(j_1) = (d)$, and if $\alpha = 1/2$, then $(j_{1/2}) = (j)$.

Lemma 3.10. Let (X, *, 0) be a standard BCK-algebra associated with a poset (X, \leq) with minimal element 0, and let π_0 be a trend on X with condition (j). Then the poset (X, \leq) is $(C_2 + \underline{1})$ -free.

Proof. Assume that (X, \leq) has a full subposet $(C_2 + \underline{1})$, i.e., there exist $x, y, z \in X$ such that we obtain the diagram in Fig. 2. Then x * y = x and $\pi_0(x * y, z) = \pi_0(x, z) = 1/2$. Since $\pi_0(y, z) = 1$, we have $\pi_0(x * y, z) = 1/2 < 3/4 = \frac{1}{2}[\pi_0(x, z) + \pi_0(y, z)]$, which shows that π_0 does not satisfy condition (j), a contradiction. \Box

Lemma 3.11. Let (X, *, 0) be a standard BCK-algebra associated with a poset (X, \leq) with minimal element 0, and let π_0 be a trend on X with condition (j). Then the poset (X, \leq) is C_3 -free.

Proof. Assume that (X, \leq) has a full subposet C_3 , i.e., there exist $x, y, z \in X$ such that we obtain the diagram in Fig. 3. Then x * y = x and hence $\pi_0(x * y, z) = \pi_0(x, z) = 0$. Since $\pi_0(y, z) = 1$, we obtain $\pi_0(x * y, z) = 0 < 1/2 = \frac{1}{2}[\pi_0(x, z) + \pi_0(y, z)]$, which shows that π_0 does not satisfy the condition (j), a contradiction. \Box

Lemma 3.12. Let (X, *, 0) be a standard BCK-algebra associated with a poset (X, \leq) with minimal element 0, and let π_0 be a trend on X with condition (j). Then the poset (X, \leq) is $\underline{2} \oplus \underline{1}$ -free.

Proof. Assume that (X, \leq) has a full subposet $\underline{2} \oplus \underline{1}$, i.e., there exist $x, y, z \in X$ such that we obtain the diagram in Fig. 4. Then x * y = x and hence $\pi_0(x * y, z) = \pi_0(x, z) = 0$. Since $\pi_0(y, z) = 1/2$, we obtain $\pi_0(x * y, z) = 0 < 1/2 = \frac{1}{2}[\pi_0(x, z) + \pi(y, z)]$, which shows that π_0 does not satisfy condition (j), a contradiction. \Box

Theorem 3.13. Let (X, *, 0) be a standard BCK-algebra associated with a poset (X, \leq) with minimal element 0, and let π_0 be a trend on X with condition (j). Then the poset (X, \leq) is free of $(C_2 + 1)$, C_3 and $2 \oplus 1$.

Proof. It follows from Lemmas 3.10–3.12

It is natural to have a question. Is the converse of Theorem 3.13 also true ? The answer is yes.

Theorem 3.14. Let (X, *, 0) be a standard BCK-algebra associated with a poset (X, \leq) with minimal element 0 which is free of $(C_2 + \underline{1})$, C_3 and $\underline{2} \oplus \underline{1}$. Then the trend π_0 satisfies condition (j).

Proof. Assume the trend π_0 does not satisfy condition (j). Then there exist x, y, $z \in X$ such that

$$\pi_0(x * y, z) < \frac{\pi_0(x, z) + \pi_0(y, z)}{2} \cdots \cdots (**)$$

Case 1. $\pi_0(x * y, z) = 1/2$: By the above inequality (**) we obtain $\pi_0(x, z) = 1 = \pi_0(y, z)$ and hence x * z = 0 = y * z. Since $(x * y) * z \neq 0 \neq z * (x * y)$ and (X, *, 0) is a standard *BCK*-algebra, we obtain x * y = x. In fact, if x * y = 0, then $0 \neq (x * y) * z = 0$, a contradiction. Hence $0 = x * z = (x * y) * z \neq 0$, a contradiction. Case 2. $\pi_0(x * y, z) = 0$, i.e., $z * (x * y) = 0, z \neq x * y$: To satisfy the inequality (**), at least one of $\pi_0(x, z)$ or $\pi_0(y, z)$ should not be zero. Subcase (2.1). $\pi_0(x, z) \neq 0$: We obtain either x * z = 0 or $x * z \neq 0 \neq z * x$. Subcase (2.1.1) x * z = 0: We claim that x * y = 0. In fact, if x * y = x, then 0 = z * (x * y) = z * x, since $\pi_0(x * y, z) = 0$. By assumption x * z = 0, we obtain x = z, which leads to $z \neq x * y = x$, a contradiction, proving the claim. Hence $0 = z * (x * y) = z * 0 = z \neq x * y = 0$, a contradiction. Hence the subcase (2.1.1) cannot happen. Subcase (2.1.2). $x * z \neq 0 \neq z * x$: This means that x and z are incomparable. Since $\pi_0(x * y, z) = 0$, we have z * (x * y) = 0, $z \neq x * y$. We claim that x * y = x. In fact, if x * y = 0, then $0 = z * (x * y) = z * 0 = z \neq x * y = 0$, a contradiction. Hence $0 = z * (x * y) = z * x \neq 0$, a contradiction. Hence this case cannot happen. Subcase (2.2). $\pi_0(y, z) \neq 0$: Then we have either y * z = 0 or $y * z \neq 0 \neq z * y$. Subcase (2.2.1). y * z = 0: Since $\pi_0(x * y, z) = 0$, we have z * (x * y) = 0, $z \neq x * y$. We claim that x * y = x. In fact, if x * y = 0, then $0 = z * (x * y) = z * 0 = z \neq x * y = 0$, a contradiction. Hence 0 = z * (x * y) = z * x. Thus we have as a subposet (Fig. 5), a contradiction. Subcase (2.2.2). $y * z \neq 0 \neq z * y$: This means that y and z are incomparable. We claim that x * y = x. In fact, if x * y = 0, then $0 = z * (x * y) = z * 0 = z \neq x * y = 0$, a contradiction. Hence z * x = z * (x * y) = 0, i.e., $z \le x$. Since (X, *, 0) is a standard *BCK*-algebra, we have

$$y * x := \begin{cases} y & \text{if } y > x \text{ or } y \parallel x \\ 0 & \text{if } y \le x. \end{cases}$$

In any case, we have one of the diagrams in Fig. 6, which is a contradiction, proving the theorem. \Box

Example 3.15. Let (X, *, 0) be a standard *BCK*-algebra associated with a poset $\underline{1} \oplus A$, where A is an antichain (see Fig. 7). Then the trend π_0 satisfies condition (j).

4. Fuzzy right ideals and fuzzy co-right ideals

Let (X, *, 0) be a *d*-algebra and $\emptyset \neq I \subseteq X$. *I* is called a *right ideal* of *X* if it satisfies conditions (D_0) and (D_2) .

Example 4.1. In Example 3.3, if we let $J := \{0, a, c\}$, then J is a right ideal of X, but not a d/BCK-ideal, since $b * c = 0 \in J$, $c \in J$, but $b \notin J$.

We fuzzify the notion of right ideals in *d*-algebras as follows. Let *X* be a *d*-algebra. A fuzzy subset μ of *X* is said to be a *fuzzy right ideal* of *X* if it satisfies conditions (F₀) and (F₂). Then we obtain the following proposition. The proof is similar to Theorem 2.4, and we omit it.

Proposition 4.2. A fuzzy subset μ of a d-algebra X is a fuzzy right ideal of X if and only if, for every $\lambda \in [0, 1]$, $\mu_{\lambda} = \{x \in X | \mu(x) \ge \lambda\}$ is a right ideal of X, where $\mu_{\lambda} \neq \emptyset$.

Note that every fuzzy right ideals of a *d*-algebra (X, *, 0) is a fuzzy *d*-subalgebra of *X*.

Proposition 4.3. Let (X, *, 0) be a d-algebra. If μ is a fuzzy d-ideal of X, then it is a fuzzy right ideal of X.

Proof. It follows immediately from the definitions of fuzzy *d*/right-ideals and Lemma 2.3.

Note that the converse of Proposition 4.3 need not be true in general.

Example 4.4. Consider a *d*-algebra (X, *, 0) [1] with the following table:

*	0	а	b	С
0	0	0	0	0
а	а	0	0	b
b	b	b	0	0
с	с	с	с	0

Define a map μ : $X \rightarrow [0, 1]$ by $\mu(a) = t_1$, $\mu(0) = \mu(b) = \mu(c) = t_2$, $t_1 < t_2$. Then it is a fuzzy right ideal of X, but not a fuzzy d-ideal of X, since $\mu(a) = t_1 < t_2 = \min\{\mu(b), \mu(c)\} = \min\{\mu(a * c), \mu(c)\}$.

Proposition 4.5. Let (X, *, 0) be a d-algebra with |X| = n. Let $\pi: X^2 \to [0, 1]$ be a trend on X with condition (d). If we define a map $\mu_{\pi}(x) := \frac{1}{n} \sum_{y \in X} \pi(x, y)$, then it is a fuzzy right ideal of X.

Proof. Given $x, y \in X$, we have

$$\mu_{\pi}(x * y) = \frac{1}{n} \sum_{z \in X} \pi(x * y, z)$$
$$\geq \frac{1}{n} \sum_{z \in X} \pi(x, z)$$
$$= \mu_{\pi}(x),$$

proving the proposition. \Box

The map μ_{π} discussed in Proposition 4.5 is also a fuzzy *d*-algebra of *X*. We discuss the map μ_{π} in the case that π has condition (j).

Proposition 4.6. Let (X, *, 0) be a d-algebra with |X| = n. Let $\pi: X^2 \to [0, 1]$ be a trend on X with condition (j). If we define a map $\mu_{\pi}(x) := \frac{1}{n} \sum_{y \in X} \pi(x, y)$, then it is a fuzzy d-subalgebra of X.

Proof. Let $t \in [0, 1]$ with $(\mu_{\pi})_t \neq \emptyset$ and let $x, y \in (\mu_{\pi})_t$. Then

$$\mu_{\pi}(x * y) = \frac{1}{n} \sum_{z \in X} \pi(x * y, z)$$

$$\geq \frac{1}{n} \sum_{z \in X} \frac{\pi(x, z) + \pi(y, z)}{2}$$

$$= [\mu_{\pi}(x) + \mu_{\pi}(y)]/2$$

$$\geq t,$$

proving that $x * y \in (\mu_{\pi})_t$. By Theorem 2.4, we proved that μ_{π} is a fuzzy *d*-subalgebra of *X*.

Let (X, *, 0) be a *d*-algebra with |X| = n. Let π be a trend on X and $\varphi: X \to (0, \infty)$ be a map. Define a map $\mu_{\pi}^{\varphi}: X \to [0, 1]$ by $\mu_{\pi}^{\varphi}(x) := \sum_{z \in X} \pi(x, z)\varphi(z)$. The map φ is said to be a *fuzzy co-d-subalgebra (fuzzy co-right ideal*, resp.) of X if μ_{π}^{φ} is a fuzzy *d*-subalgebra (fuzzy right ideal, resp.) of X. In continuous cases, we define the map $\mu_{\pi}^{\varphi}: X \to [0, 1]$ by $\mu_{\pi}^{\varphi}(x) := \int_{0}^{\infty} \pi(x, z)\varphi(z) dz$.

Proposition 4.7. Let (X, *, 0) be a d-algebra with |X| = n. Let π be a trend on X with condition (d). Then the map $\varphi: X \to (0, \infty)$ is a fuzzy co-right ideal of X.

Proof. Assume that π has condition (d). Since $\varphi(z) > 0$, $\pi(x * y, z)\varphi(z) \ge \pi(x, z)\varphi(z)$ and hence $\mu_{\pi}^{\varphi}(x * y) = \sum_{z \in X} \pi(x * y, z)\varphi(z) \ge \sum_{z \in X} \pi(x, z)\varphi(z) = \mu_{\pi}^{\varphi}(x)$. \Box

Theorem 4.8. Let $X := [0, \infty)$. Define a binary operation "*" on X by

$$x * y := \begin{cases} 0 & \text{if } x \le y, \\ x - y & \text{otherwise} \end{cases}$$

If we define a map $\pi: X^2 \to [0, 1]$ by

$$\pi(x, y) := \begin{cases} 1 & \text{if } x \leq y, \\ 0 & \text{otherwise,} \end{cases}$$

then any map $\varphi: X \to (0, 1)$ with $\int_0^\infty \varphi(x) dx < \infty$ is a fuzzy co-right ideal of X.

Proof. It is easy to see that π is a trend and also a probability function on X. Given $x \in X$, we have

$$\mu_{\pi}^{\varphi}(x) = \int_{0}^{\infty} \pi(x, z)\varphi(z)dz$$
$$= \int_{x}^{\infty} \varphi(z)dz.$$

Using Leibniz's rule, we obtain $\frac{d}{dx}[\mu_{\pi}^{\varphi}(x)] = \frac{d}{dx}\int_{x}^{\infty}\varphi(z)dz = -\varphi(x)$. Let $x, y \in [0, \infty)$ with y < x. Then

$$\begin{aligned} u_{\pi}^{\varphi}(x * y) &= \int_{x-y}^{\infty} \varphi(z) dz \\ &= \int_{x-y}^{x} \varphi(z) dz + \int_{x}^{\infty} \varphi(z) dz \\ &\geq \int_{x}^{\infty} \varphi(z) dz = \mu_{\pi}^{\varphi}(x). \end{aligned}$$

Let $x, y \in [0, \infty)$ with $x \leq y$. Then

$$\mu_{\pi}^{\varphi}(x * y) = \int_{0}^{x} \varphi(z) dz + \int_{x}^{\infty} \varphi(z) dz$$
$$\geq \mu_{\pi}^{\varphi}(x).$$

Hence μ_{π}^{φ} is a fuzzy right ideal of X for any positive map φ with $\int_{0}^{\infty} \varphi(z) dz < \infty$, proving the theorem. \Box

Corollary 4.9. Let $F: [0, \infty) \to [0, 1]$ be a map with $\frac{dF}{dx} = -\varphi(x)$, where $\varphi(x)$ is a positive function. If $\lim_{x\to\infty} F(x) = 0$, then it is a fuzzy right ideal of $([0, \infty), *, 0)$ as defined in Theorem 4.8.

Proof. For any α with $x \leq \alpha$, we have $\int_x^{\alpha} \varphi(z) dz = [-F(z)]_x^{\alpha} = F(x) - F(\alpha)$. Since $\lim_{z \to \infty} F(z) = 0$, obtain $F(x) = \int_x^{\infty} \varphi(z) dz = \mu_{\pi}^{\varphi}(x)$ is a fuzzy right ideal by Theorem 4.8. \Box

References

- [1] Y.B. Jun, J. Neggers, H.S. Kim, Fuzzy *d*-ideals of *d*-algebras, J. Fuzzy Math. 8 (2000) 123–130.
- [2] Y.C. Lee, H.S. Kim, On *d*-subalgebras of *d*-transitive *d**-algebras, Math. Slovaca 49 (1999) 27–33.
- [3] A. Dvurečenskij, M.G. Graziano, Commutative BCK-algebras and lattice ordered groups, Math. Japonica 32 (1999) 227–246.
- [4] C.S. Hoo, Unitary extensions of MV and BCK-algebras, Math. Japonica 37 (1992) 585–590.
- [5] J.M. Font, A.J. Rodrígez, A. Torrens, Wajsberg algebras, Stochastica 8 (1984) 5-31.
- [6] D. Mundici, MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japonica 31 (1986) 889-894.
- [7] J. Meng, Implicative commutative semigroups are equivalent to a class of BCK-algebras, Semigroup Forum 50 (1995) 89–96.
- [8] G. Georgescu, A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, in: Proceedings of DMTCS'01: Combinatorics, Computability and Logic, Springer, London, pp. 97–114.
- [9] J. Neggers, H.S. Kim, On d-algebras, Math. Slovaca 49 (1999) 19-26.
- [10] P.J. Allen, H.S. Kim, J. Neggers, Companion d-algebras, Math. Slovaca 57 (2007) 93-106.
- [11] J. Meng, Y.B. Jun, BCK-algebras, Kyungmoon Sa, Korea, 1994.
- [12] J. Neggers, H.S. Kim, Basic Posets, World Scientific Pub. Co, Singapore, 1998.
- [13] J.S. Han, H.S. Kim, J. Neggers, Strong and ordinary d-algebras, J. Mult.-Valued Logic Soft Comput. 16 (2010) 331–339.
- [14] J. Neggers, Y.B. Jun, H.S. Kim, On *d*-ideals in *d*-algebras, Math. Slovaca 49 (1999) 243–251.
- [15] J. Neggers, H.S. Kim, Modular posets and semigroups, Semigroup Forum 53 (1996) 57-62.
- [16] O.G. Xi, Fuzzy BCK-algebras, Math. Japonica 36 (1991) 935–942.