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1. Introduction

Imai and Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras [1,2]. Dvurecenskij and
Graziano [3], Hoo [4] and Font et al. [5] have discussed BCK-algebras in connection with the areas of lattice ordered
groups, MV -algebras and Wajsberg algebras. Mundici [6] proved that MV -algebras are categorically equivalent to bounded
commutative BCK-algebras, and Meng [7] proved that implicative commutative semigroups are equivalent to a class of
BCK -algebras. Georgescu and lorgulescu [8] introduced the notion of pseudo-BCK algebras as an extension of BCK -algebras.
Neggers and Kim introduced the notion of d-algebras which is another useful generalization of BCK-algebras, and then
investigated several relations between d-algebras and BCK-algebras as well as several other relations between d-algebras
and oriented digraphs [9]. After that several further aspects were studied [ 10-12,9]. Recently, Han et al. [ 13] defined several
special varieties of d-algebras, such as strong d-algebras, (weakly) selective d-algebras and others, and they dealt with a
generalization of d-algebras such as pre-d-algebras. Much of their discussion involved the associative groupoid product
(X,0) = (X, %)O(X, o) where xd0y = (x * ¥) o (y * x). One assertion is that the squared algebra (X, O, 0) of a pre-d-algebra
(X, %, 0) is a strong d-algebra if and only if (X, *, 0) is strong.

In this paper, we introduce the notion of a trend (probability function) on a d-algebra, and obtain an equivalent condition
for a trend rp with condition (j) on a standard BCK -algebra, and we obtain an example of a d-algebra such that any function
¢: X — (0, 1) with fooo ¢(2)dz < oo is a fuzzy co-right ideal.

2. Preliminaries

A d-algebra [9] is a non-empty set X with a constant 0 and a binary operation “x” satisfying the following axioms:
M xxx=0,
(I 0xx=0,
(I x«xy=0andy*xx = 0implyx = yforallx, y € X.
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For brevity we also call X a d-algebra. In X we can define a binary relation “<” by x < y ifand only if x x y = 0.
A BCK-algebra is a d-algebra X satisfying the following additional axioms:

(V) ((x*y) % (xx2)) x (z*y) =0,
(V) (x*x(xxy))xy=0forallx,y,z € X.

Let (X, <) be a poset with minimal element 0. Define a binary operation “x” on X by

M 0 ifx <y,
Y= x otherwise.

Then (X, %, 0) is a BCK -algebra, called a standard BCK -algebra.

Theorem 2.1 ([11]). Let (X, *, 0) be a BCK-algebra.
(i)ifx«y=0=yx*xz thenx*xz =0,

(ii) if xxy=0,then (z*xy) * (z*xx) =0,

(iii) if x*y =0, then (x*z) * (y xz) = 0.

Definition 2.2 ([14]). Let (X, %, 0) be a d-algebra and ¥ £ I C X.[I is called a d-subalgebra of X if x *x y € I whenever x € |
and y € I.1 is called a BCK-ideal of X if it satisfies:

(Do) 0el,

(D1) xxy elandy €  implyx € I.

I is called a d-ideal of X if it satisfies (D) and

(D) xelandy e Ximplyxxy € I,i.e, [ *X C I.

Itis known that, in a d-algebra X, a BCK -ideal need not be a d-subalgebra, and also a d-subalgebra need not be a BCK -ideal.
Moreover, {0} is a d-subalgebra of any d-algebra X and every d-ideal of X is a d-subalgebra, but the converse need not be
true. Note that every d-ideal of a d-algebra is a BCK-ideal, but the converse need not be true [14].

Given a poset P(<) it is A-free if there is no full-subposet X (<) of P(<) which is order isomorphic to the poset A(<).If C,
denotes a chain of length n and if n denotes an antichain of cardinal number n, while + denotes the disjoint union of posets,
then the poset (C; + 1) (or C; + C;) has the Hasse-diagram (Fig. 1), and may be represented as {p < q, p||r, q||r}, where
a || b denotes the relation of not being comparable (i.e., a || bif and only if a < b and b < a are both false) (see [15]).

Let 1 be a fuzzy set in a d-algebra X. Then a fuzzy set u is called a fuzzy d-subalgebra [1] of X if

pu(xxy) = min{u(x), n()}
forall x, y € X. A fuzzy set u is called a fuzzy BCK-ideal of X [16] if

(Fo) n(0) = u(x),
(F1) () > min{u(x *y), u(y)},

forall x, y € X. A fuzzy set u is called a fuzzy d-ideal [1] of X if it satisfies (F;) and
(F) u(x*y) > u) forallx,y € X.

It is known that, in a d-algebra, a fuzzy BCK -ideal need not be a fuzzy d-subalgebra, and also a fuzzy d-subalgebra need
not be a fuzzy BCK-ideal. Moreover, every fuzzy d-ideal of a d-algebra X is a fuzzy d-subalgebra, but the converse need not
be true. Note that every fuzzy d-ideal of a d-algebra is a fuzzy BCK-ideal, but the converse need not be true.

Lemma 2.3 ([1)). If w is a fuzzy d-ideal of a d-algebra X, then (£(0) > u(x) forallx € X.

Theorem 2.4 ([1]).A fuzzy subset 1 of a d-algebra X is a fuzzy d-subalgebra (d-ideal, resp.) of X ifand only if, for every A € [0, 1],
;. = {x € X|u(x) > A} is a d-subalgebra (d-ideal, resp.) of X, where u; # @.

3. Trends and probability functions

Let X be a non-empty setand let 7: X x X — [0, 1] be a mapping. We say r (x, y) that “x is less than or equal to y. Among
the rules 7 may be expected to obey the following:
(@) x*y =0implies7(x,y) = 1;
(b) x*xy # Oimplies T (x,y) + 7 (y,x) = 1;
(c) y*z =0implies 7 (x,y) < 7 (x, 2);
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(d) w(x,2) < w(x*Y,2);
(e) m(x,y*x2z) <m(x,¥)
foranyx,y,z € X.
Let (X, *) be any groupoid. We say 7 is a trend on X if it satisfies (a) and (b). A trend r on X is said to be a probability
function on X if it satisfies (c).

Proposition 3.1. (i) Let (X, *) be a groupoid with axiom (I). If 7 is a trend on X, then  (x, x) = 1 for any x € X.

(ii) Let (X, *) be a groupoid with axiom (Il). If 7 is a trend on X, then 7w (0, x) = 1 forany x € X.

(iii) If (X, *, 0) is a d-algebra and 7 is a trend on X, then 7 (x, 0) = 0 for any x € X — {0}.

(iv) If m;(i = 1, 2) are trends on a groupoid (X, *,0) and0 < « < 1,then m = amwy + (1 — a)m; is also a trend on (X, *, 0).

Proof. (i). Givenx € X, x*x = 0.Since 7 is a trend, we have 7 (x, x) = 1.(ii). Since Oxx = 0,7 (0, x) = 1.(iii). Let (X, *, 0) be
ad-algebra. We claim that xx0 # 0 forany x € X —{0}. Assume that there is an x in X — {0} such that xx0 = 0. Since Oxx = 0,
by (III) we obtain x = 0, a contradiction. Since 7 is a trend, 1 = 7 (x, 0) + 7 (0, x) = 7 (x, 0) + 1 and hence 7 (x, 0) = O for
any x € X — {0}.(iv). If x x y = 0, then 7;(x, ¥y) = 1 and hence (am; + (1 — @)m)(x,y) = ami(x,y) + (1 —a)ma(x,y) =
o+ (1—a)=1.Ifxxy # 0, then ;(x, y) + m;(y, x) = 1and hence (o + (1 — @)m2)(x,y) + (e + (1 — @)7m2) (¥, X) =
afmi(x,y) + 1@, 01+ (1 —a)lm®y) + @, 0)]l=1 O

Proposition 3.2. Let (X, %, 0) be a d-algebra. If T(X) :={ w | mwisatrend on X }, then T(X) # (.
Proof. Define a map 7o : X*> — [0, 1] by

0 ifyxx=0,y#Kx,
1 ifxxy=0,
1

5 ifxxy#0#yx*xx.

Then it is easy to see that mgisatrendon X. O

mo(x,y) ==

Let (X, *, 0) be a d-algebra and let P(X) := {m | & is a probability function on X }. Then the trend 7y need not be a
probability function on X. See the following example.

Example 3.3. Consider a d-algebra X := {0, a, b, ¢} with the following table:

Since bxc = 0, axc = a, cxa = ¢, axb = 0, bxa = b,we have my(a, c) = 1/2, mp(a, b) = 1,i.e.,mo(a, b) > 1/2 = mp(a, c)
proving that 7y & P(X).

Given a d-algebra (X, *, 0), we classify 3 cases: (i) P(X) = @; (ii) P(X) # 0, o & P(X); (iii) 7o € P(X).

A d-algebra (X, *, 0) is said to be d-transitive [9] if x x y = 0 = y * z impliesx x z = 0.
Theorem 3.4. If (X, %, 0) is a d-transitive d-algebra, then g € P(X).

Proof. Assume that 7y is not a probability function on X. Then there exist x, y, z € X such thaty x z = 0, but 7o (x,y) >
mo(x, z). Case 1: mo(x,y) = 1,m9(x,z) = 1/2.Thenxxy = 0,x %z # 0 % z % x. Sincey x z = 0, we obtainx xz = 0, a
contradiction. Case 2: my(x,y) = 1, mp(x,z) = 0. Thenx x*y = 0 = z * x, and hence z x* y = 0. Since y *x z = 0, we obtain
y = z, a contradiction. Case 3: mo(x,y) = 1/2, mo(x,z) = 0.Thenx*xy # 0 # y * x,z * x = 0. Since y * z = 0, we obtain
y*x = 0, acontradiction. O

Corollary 3.5. Let (X, *, 0) be a BCK-algebra. Then 7y € P(X), i.e., mq is a probability function on X.
Proof. By Theorem 2.1-(i), every BCK-algebra is a d-transitive d-algebra. O

Proposition 3.6. Let v be a trend on a BCK -algebra (X, =, 0). Then

) xxy=0 impliesm(z*xy,z*x)=1.
Proof. Ifxxy = 0, then by Theorem 2.1-(ii), (z xy) * (z*x) = 0.Since w isa trend on X, we obtain 7 (z xy,z*x) = 1. O

Proposition 3.7. Let r be a trend on a BCK-algebra (X, *, 0). Then
(g x*xy=0 impliesm(x*xz,y*xz)=1.

Proof. If x xy = 0, then by Theorem 2.1-(iii), (x xz) * (y *z) = 0.Since 7 isa trend on X, we obtain 7 (x xz,y*z) = 1. O
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Fig. 4.

Proposition 3.8. Let (X, x, 0) be a d-algebra. If 7 is a probability function on X, then
(hxxy=0=yx*xz impliesmw(x,z) = 1.

Proof. Since 7 is a probability functionon X, ifx *y = 0=y *z,then1 = 7w (x,y) < w(x,z),provingw(x,z) = 1. O

Proposition 3.9. Let (X, %, 0) be a standard BCK -algebra. Then the trend mq satisfies condition (d).

Proof. If x x y = x, then mo(x * y,z) = mo(x, z). If x x y = 0, then by Proposition 3.1-(ii), mo(x * y,z) = m(0,2) = 1 >
]To(X, Z). O

Let X be a non-empty set and let 7: X x X — [0, 1] be a mapping. We have additional rules as follows:

() Tx*xy,2) > x(x,2) + (¥, 2)];
K)rx*xy, z) > n(y,2).
Condition (j) is a special case of the condition (j,):
(Ju) T(xxy,2) = an(x,2) + (1 — )7 (¥, 2)
where 0 < o < 1. Note thatifo = 1, then (j;) = (d), and if @ = 1/2, then (j1,2) = (j).

Lemma 3.10. Let (X, *, 0) be a standard BCK -algebra associated with a poset (X, <) with minimal element 0, and let 7y be a
trend on X with condition (j). Then the poset (X, <) is (C; + 1)-free.

Proof. Assume that (X, <) has a full subposet (G, 4 1), i.e,, there exist x, y, z € X such that we obtain the diagram in Fig. 2.
Thenx x y = x and mo(x x y,z) = mo(x,z) = 1/2. Since my(y,z) = 1, we have mo(x x y,z) = 1/2 < 3/4 =
%[ﬂo (x, z) + 7o (y, z)], which shows that 77y does not satisfy condition (j), a contradiction. O

Lemma 3.11. Let (X, *, 0) be a standard BCK -algebra associated with a poset (X, <) with minimal element 0, and let 7y be a
trend on X with condition (j). Then the poset (X, <) is Cs-free.

Proof. Assume that (X, <) has a full subposet Cs, i.e., there exist x, y, z € X such that we obtain the diagram in Fig. 3.
Then x * y = x and hence mo(x *x y,z) = mo(x,z) = 0. Since mo(y,z) = 1, we obtain mp(x xy,z) = 0 < 1/2 =
%[no (x, z) 4+ mo(y, z)], which shows that 7y does not satisfy the condition (j), a contradiction. O

Lemma 3.12. Let (X, %, 0) be a standard BCK-algebra associated with a poset (X, <) with minimal element 0, and let wy be a
trend on X with condition (j). Then the poset (X, <) is 2 @ 1-free.

Proof. Assume that (X, <) has a full subposet 2 & 1, i.e., there exist x, y, z € X such that we obtain the diagram in Fig. 4.
Then x * y = x and hence wo(x * y,z) = mo(x,z) = 0. Since mo(y,z) = 1/2, we obtain 7y(x x y,z) = 0 < 1/2 =
%[no(x, z) 4+ m (y, z)], which shows that 77y does not satisfy condition (j), a contradiction. O

Theorem 3.13. Let (X, *, 0) be a standard BCK -algebra associated with a poset (X, <) with minimal element 0, and let o be a
trend on X with condition (j). Then the poset (X, <) is free of (C; +1),C3and2 & 1.

Proof. It follows from Lemmas 3.10-3.12 O
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It is natural to have a question. Is the converse of Theorem 3.13 also true ? The answer is yes.

Theorem 3.14. Let (X, *, 0) be a standard BCK -algebra associated with a poset (X, <) with minimal element 0 which is free of
(G, + 1), C3 and 2 & 1. Then the trend g satisfies condition (j).

Proof. Assume the trend ry does not satisfy condition (j). Then there exist x, y, z € X such that

NO(XV Z) + 7700’, Z)
To(Xx*xYy,2) < SRR (%)

Case 1. mo(x x ¥, z) = 1/2: By the above inequality (x*) we obtain my(x,z) = 1 = mo(y,z) and hencexxz = 0 = y % z.
Since (x xy) xz % 0 # z % (x x y) and (X, %, 0) is a standard BCK-algebra, we obtain x x y = x. In fact, if x x y = 0, then
0 # (x*xy) xz = 0, a contradiction. Hence 0 = x %z = (x % y) * z # 0, a contradiction. Case 2. mo(x x y,z) = 0, i.e,,
zx (x*xy) = 0,z # x *y: To satisfy the inequality (), at least one of my(x, z) or mo(y, z) should not be zero. Subcase
(2.1). mo(x, z) # 0: We obtain either x x z = 0 or x * z £ 0 # z % x. Subcase (2.1.1) x x z = 0: We claim thatx xy = 0.
In fact,ifx x y = x,then 0 = z * (x *x y) = z * x, since mo(x * y,z) = 0. By assumption x * z = 0, we obtain x = z,
which leads to z # x x y = x, a contradiction, proving the claim. Hence0 = z % (x xy) = z%0 =2z Zx*xy = 0,a
contradiction. Hence the subcase (2.1.1) cannot happen. Subcase (2.1.2). x x z # 0 # z * x: This means that x and z are
incomparable. Since wy(x * y,z) = 0, we have z % (x *y) = 0,z # x % y. We claim that x x y = x.In fact, ifx xy = 0,
then0 =z (xxy) =z%0 =2z # x*xy = 0, a contradiction. Hence 0 = z % (x x ¥) = z % x # 0, a contradiction. Hence
this case cannot happen. Subcase (2.2). wo(y, z) # 0: Then we have eithery xz = 0 ory x z # 0 # z % y. Subcase (2.2.1).
y*z = 0: Since mo(x x y,z) = 0, we have z x (x xy) = 0,z # x xy. We claim that x * y = x. In fact, if x x y = 0, then
0=zx(xxy)=z+0=2z5#xxy =0, acontradiction. Hence 0 = z * (x % y) = z * x. Thus we have as a subposet (Fig. 5),
a contradiction. Subcase (2.2.2). y x z # 0 # z % y: This means that y and z are incomparable. We claim that x * y = x.In
fact,ifxxy = 0,then0 =z * (x*y) =z 0 =z # xxy = 0, a contradiction. Hence z x x = z % (x xy) = 0,1.e,,z < x.
Since (X, %, 0) is a standard BCK-algebra, we have

_ )y ify>xory]|«x,
y*"'—{o ify <x.

In any case, we have one of the diagrams in Fig. 6, which is a contradiction, proving the theorem. O

Example 3.15. Let (X, *, 0) be a standard BCK-algebra associated with a poset 1 @ A, where A is an antichain (see Fig. 7).
Then the trend g satisfies condition (j).

4. Fuzzy right ideals and fuzzy co-right ideals

Let (X, *, 0) be a d-algebra and @ # I C X. [ is called a right ideal of X if it satisfies conditions (Dg) and (D).

Example 4.1. In Example 3.3, if we let ] := {0, a, c}, then ] is a right ideal of X, but not a d/BCK-ideal, sincebxc = 0 €
J,ce],butb &].

We fuzzify the notion of right ideals in d-algebras as follows. Let X be a d-algebra. A fuzzy subset u of X is said to be a
fuzzy right ideal of X if it satisfies conditions (Fy) and (F,). Then we obtain the following proposition. The proof is similar to
Theorem 2.4, and we omit it.
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Proposition 4.2. A fuzzy subset j of a d-algebra X is a fuzzy right ideal of X if and only if, for every A € [0, 1], u, = {x €
X|wu(x) > A}is aright ideal of X, where w; # (0.

Note that every fuzzy right ideals of a d-algebra (X, *, 0) is a fuzzy d-subalgebra of X.

Proposition 4.3. Let (X, %, 0) be a d-algebra. If 1 is a fuzzy d-ideal of X, then it is a fuzzy right ideal of X.
Proof. It follows immediately from the definitions of fuzzy d/right-ideals and Lemma 2.3. O

Note that the converse of Proposition 4.3 need not be true in general.

Example 4.4. Consider a d-algebra (X, %, 0) [1] with the following table:

Define a map u: X — [0, 1] by w(a) = t1, u(0) = u(b) = u(c) = tp, t; < to. Then it is a fuzzy right ideal of X, but not
a fuzzy d-ideal of X, since w(a) = t; < t; = min{u(b), u(c)} = min{u(a * c), u(c)}.

Proposition 4.5. Let (X, *, 0) be a d-algebra with |X| = n. Let w: X?> — [0, 1] be a trend on X with condition (d). If we define
amap iy (x) == % Zyex 7 (x,y), then it is a fuzzy right ideal of X.
Proof. Givenx, y € X, we have

1
Halxxy) = ) mwxxy,2)

zeX

> %Zn(x,z)

zeX
= Uz (X),
proving the proposition. O

The map u, discussed in Proposition 4.5 is also a fuzzy d-algebra of X. We discuss the map w, in the case that 7 has
condition (j).

Proposition 4.6. Let (X, x, 0) be a d-algebra with |X| = n. Let w:X? — [0, 1] be a trend on X with condition (j). If we define
amap ur (x) == % Zyex 7 (x,y), then it is a fuzzy d-subalgebra of X.

Proof. Lett € [0, 1] with (i) # @ and letx,y € (4 );. Then

1
Hrxxy) = ) mwx*y,2)

zeX
1 Z T(x,z)+ 7wy, 2)
n zeX 2
[z () + 1z ()]1/2
t,

v

%

proving that x * y € (4 )¢. By Theorem 2.4, we proved that u is a fuzzy d-subalgebra of X. O

Let (X, %, 0) be a d-algebra with |[X| = n. Let & be a trend on X and ¢:X — (0, 0c0) be a map. Define a map
ue:X — [0, 1] by uf(x) :== Y, w(x,2)¢(z). The map ¢ is said to be a fuzzy co-d-subalgebra (fuzzy co-right ideal, resp.)
of X if u¥ is a fuzzy d-subalgebra (fuzzy right ideal, resp.) of X. In continuous cases, we define the map u?:X — [0, 1] by
pex) = [ 7 (x, 2)p()dz.

Proposition 4.7. Let (X, *, 0) be a d-algebra with |X| = n. Let w be a trend on X with condition (d). Then the map ¢: X —
(0, 00) is a fuzzy co-right ideal of X.

Proof. Assume that 7 has condition (d). Since ¢(z) > 0, w(x * y,2)p(z) > m(x,z)p(z) and hence uf(x *xy) =
Dex TX*y, 2)0@) = ), X 2D9@) = pui(x). O
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Theorem 4.8. Let X := [0, 00). Define a binary operation “x” on X by

_ |0 ifx=<y,
Xxy = {x —y otherwise.

If we define a map w: X?> — [0, 1] by

_ )1 ifx =<y,
T, y) = {O otherwise,

then any map ¢: X — (0, 1) with fooo ¢(x)dx < oo is a fuzzy co-right ideal of X.

Proof. It is easy to see that i is a trend and also a probability function on X. Given x € X, we have

wrew = | " 92z
0

[e 0]
= / ¢(z)dz.
X
Using Leibniz’s rule, we obtain [uf (x)] = £ [* ¢(2)dz = —¢(x). Letx, y € [0, 00) withy < x. Then
Wy (x *y) 2/ ¢(2)dz

x—y

= / ¢(z)dz +/ ¢(2)dz
x—y X

> /oo ¢(2)dz = uf (x).

Letx,y € [0, o0) withx < y.Then

WL Gk y) = / @)z + / o(2)dz
0 X
> u?(x).

Hence 1% is a fuzzy right ideal of X for any positive map ¢ with f0°° ¢(2)dz < oo, proving the theorem. O

Corollary 4.9. Let F: [0, co) — [0, 1] be a map with g—i = —@(x), where ¢(x) is a positive function. If lim,_, o, F(x) = 0, then
it is a fuzzy right ideal of ([0, 00), *, 0) as defined in Theorem 4.8.

Proof. For any o with x < o, we have [ ¢(z2)dz = [-F(2)]2 = F(x) — F(). Since lim,_,o F(z) = 0, obtain
F(x) = [° @(z)dz = p?(x) is a fuzzy right ideal by Theorem 4.8. O

X
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