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a b s t r a c t

In this paper, we introduce the notion of a trend (probability function) on a d-algebra, and
obtain an equivalent condition defining a trend π0 with condition (j) on a standard BCK -
algebra. We obtain an example of d-algebra such that any function ϕ : X → (0, 1) with

∞

0 ϕ(z)dz < ∞ is a fuzzy co-right ideal.
© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Imai and Iséki introduced two classes of abstract algebras: BCK -algebras and BCI-algebras [1,2]. Dvurečenskij and
Graziano [3], Hoo [4] and Font et al. [5] have discussed BCK -algebras in connection with the areas of lattice ordered
groups,MV -algebras and Wajsberg algebras. Mundici [6] proved thatMV -algebras are categorically equivalent to bounded
commutative BCK -algebras, and Meng [7] proved that implicative commutative semigroups are equivalent to a class of
BCK -algebras. Georgescu and Iorgulescu [8] introduced the notion of pseudo-BCK algebras as an extension of BCK -algebras.
Neggers and Kim introduced the notion of d-algebras which is another useful generalization of BCK -algebras, and then
investigated several relations between d-algebras and BCK -algebras as well as several other relations between d-algebras
and oriented digraphs [9]. After that several further aspects were studied [10–12,9]. Recently, Han et al. [13] defined several
special varieties of d-algebras, such as strong d-algebras, (weakly) selective d-algebras and others, and they dealt with a
generalization of d-algebras such as pre-d-algebras. Much of their discussion involved the associative groupoid product
(X, �) = (X, ∗)�(X, ◦) where x�y = (x ∗ y) ◦ (y ∗ x). One assertion is that the squared algebra (X, �, 0) of a pre-d-algebra
(X, ∗, 0) is a strong d-algebra if and only if (X, ∗, 0) is strong.

In this paper, we introduce the notion of a trend (probability function) on a d-algebra, and obtain an equivalent condition
for a trend π0 with condition (j) on a standard BCK -algebra, and we obtain an example of a d-algebra such that any function
ϕ: X → (0, 1) with


∞

0 ϕ(z)dz < ∞ is a fuzzy co-right ideal.

2. Preliminaries

A d-algebra [9] is a non-empty set X with a constant 0 and a binary operation ‘‘∗’’ satisfying the following axioms:
(I) x ∗ x = 0,
(II) 0 ∗ x = 0,
(III) x ∗ y = 0 and y ∗ x = 0 imply x = y for all x, y ∈ X .

∗ Corresponding author. Tel.: +82 2 2220 0897; fax: +82 2 2291 0019.
E-mail addresses: kjcha@hanyang.ac.kr (K.J. Cha), heekim@hanyang.ac.kr (H.S. Kim), jneggers@as.ua.edu (J. Neggers).

0898-1221/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2011.08.005

http://dx.doi.org/10.1016/j.camwa.2011.08.005
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:kjcha@hanyang.ac.kr
mailto:heekim@hanyang.ac.kr
mailto:jneggers@as.ua.edu
http://dx.doi.org/10.1016/j.camwa.2011.08.005


K.J. Cha et al. / Computers and Mathematics with Applications 62 (2011) 2988–2994 2989

Fig. 1.

For brevity we also call X a d-algebra. In X we can define a binary relation ‘‘≤’’ by x ≤ y if and only if x ∗ y = 0.
A BCK -algebra is a d-algebra X satisfying the following additional axioms:
(IV) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(V) (x ∗ (x ∗ y)) ∗ y = 0 for all x, y, z ∈ X .

Let (X, ≤) be a poset with minimal element 0. Define a binary operation ‘‘∗’’ on X by

x ∗ y :=


0 ifx ≤ y,
x otherwise.

Then (X, ∗, 0) is a BCK -algebra, called a standard BCK -algebra.

Theorem 2.1 ([11]). Let (X, ∗, 0) be a BCK-algebra.
(i) if x ∗ y = 0 = y ∗ z, then x ∗ z = 0,
(ii) if x ∗ y = 0, then (z ∗ y) ∗ (z ∗ x) = 0,
(iii) if x ∗ y = 0, then (x ∗ z) ∗ (y ∗ z) = 0.

Definition 2.2 ([14]). Let (X, ∗, 0) be a d-algebra and ∅ ≠ I ⊆ X . I is called a d-subalgebra of X if x ∗ y ∈ I whenever x ∈ I
and y ∈ I . I is called a BCK-ideal of X if it satisfies:
(D0) 0 ∈ I ,
(D1) x ∗ y ∈ I and y ∈ I imply x ∈ I .

I is called a d-ideal of X if it satisfies (D1) and
(D2) x ∈ I and y ∈ X imply x ∗ y ∈ I , i.e., I ∗ X ⊆ I .

It is known that, in a d-algebra X , a BCK -ideal need not be a d-subalgebra, and also a d-subalgebra need not be a BCK -ideal.
Moreover, {0} is a d-subalgebra of any d-algebra X and every d-ideal of X is a d-subalgebra, but the converse need not be
true. Note that every d-ideal of a d-algebra is a BCK -ideal, but the converse need not be true [14].

Given a poset P(≤) it is A-free if there is no full-subposet X(≤) of P(≤) which is order isomorphic to the poset A(≤). If Cn
denotes a chain of length n and if n denotes an antichain of cardinal number n, while + denotes the disjoint union of posets,
then the poset (C2 + 1) (or C2 + C1) has the Hasse-diagram (Fig. 1), and may be represented as {p ≤ q, p‖r, q‖r}, where
a ‖ b denotes the relation of not being comparable (i.e., a ‖ b if and only if a ≤ b and b ≤ a are both false) (see [15]).

Let µ be a fuzzy set in a d-algebra X . Then a fuzzy set µ is called a fuzzy d-subalgebra [1] of X if

µ(x ∗ y) ≥ min{µ(x), µ(y)}

for all x, y ∈ X . A fuzzy set µ is called a fuzzy BCK-ideal of X [16] if
(F0) µ(0) ≥ µ(x),
(F1) µ(x) ≥ min{µ(x ∗ y), µ(y)},

for all x, y ∈ X . A fuzzy set µ is called a fuzzy d-ideal [1] of X if it satisfies (F1) and
(F2) µ(x ∗ y) ≥ µ(x) for all x, y ∈ X .

It is known that, in a d-algebra, a fuzzy BCK -ideal need not be a fuzzy d-subalgebra, and also a fuzzy d-subalgebra need
not be a fuzzy BCK -ideal. Moreover, every fuzzy d-ideal of a d-algebra X is a fuzzy d-subalgebra, but the converse need not
be true. Note that every fuzzy d-ideal of a d-algebra is a fuzzy BCK -ideal, but the converse need not be true.

Lemma 2.3 ([1]). If µ is a fuzzy d-ideal of a d-algebra X, then µ(0) ≥ µ(x) for all x ∈ X.

Theorem 2.4 ([1]).A fuzzy subset µ of a d-algebra X is a fuzzy d-subalgebra (d-ideal, resp.) of X if and only if, for everyλ ∈ [0, 1],
µλ = {x ∈ X |µ(x) ≥ λ} is a d-subalgebra (d-ideal, resp.) of X, where µλ ≠ ∅.

3. Trends and probability functions

Let X be a non-empty set and let π : X × X → [0, 1] be a mapping. We say π(x, y) that ‘‘x is less than or equal to y. Among
the rules π may be expected to obey the following:
(a) x ∗ y = 0 implies π(x, y) = 1;
(b) x ∗ y ≠ 0 implies π(x, y) + π(y, x) = 1;
(c) y ∗ z = 0 implies π(x, y) ≤ π(x, z);
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(d) π(x, z) ≤ π(x ∗ y, z);
(e) π(x, y ∗ z) ≤ π(x, y)

for any x, y, z ∈ X .
Let (X, ∗) be any groupoid. We say π is a trend on X if it satisfies (a) and (b). A trend π on X is said to be a probability

function on X if it satisfies (c).

Proposition 3.1. (i) Let (X, ∗) be a groupoid with axiom (I). If π is a trend on X, then π(x, x) = 1 for any x ∈ X.
(ii) Let (X, ∗) be a groupoid with axiom (II). If π is a trend on X, then π(0, x) = 1 for any x ∈ X.
(iii) If (X, ∗, 0) is a d-algebra and π is a trend on X, then π(x, 0) = 0 for any x ∈ X − {0}.
(iv) If πi(i = 1, 2) are trends on a groupoid (X, ∗, 0) and 0 ≤ α ≤ 1, then π = απ1 + (1 − α)π2 is also a trend on (X, ∗, 0).

Proof. (i). Given x ∈ X , x∗x = 0. Sinceπ is a trend,we haveπ(x, x) = 1. (ii). Since 0∗x = 0,π(0, x) = 1. (iii). Let (X, ∗, 0) be
a d-algebra.We claim that x∗0 ≠ 0 for any x ∈ X−{0}. Assume that there is an x in X−{0} such that x∗0 = 0. Since 0∗x = 0,
by (III) we obtain x = 0, a contradiction. Since π is a trend, 1 = π(x, 0) + π(0, x) = π(x, 0) + 1 and hence π(x, 0) = 0 for
any x ∈ X − {0}. (iv). If x ∗ y = 0, then πi(x, y) = 1 and hence (απ1 + (1 − α)π2)(x, y) = απ1(x, y) + (1 − α)π2(x, y) =

α + (1− α) = 1. If x ∗ y ≠ 0, then πi(x, y) + πi(y, x) = 1 and hence (απ1 + (1− α)π2)(x, y) + (απ1 + (1− α)π2)(y, x) =

α[π1(x, y) + π1(y, x)] + (1 − α)[π2(x, y) + π2(y, x)] = 1. �

Proposition 3.2. Let (X, ∗, 0) be a d-algebra. If T (X) := { π | π is a trend on X }, then T (X) ≠ ∅.

Proof. Define a map π0 : X2
→ [0, 1] by

π0(x, y) :=


0 if y ∗ x = 0, y ≠ x,
1 if x ∗ y = 0,
1
2

if x ∗ y ≠ 0 ≠ y ∗ x.

Then it is easy to see that π0 is a trend on X . �

Let (X, ∗, 0) be a d-algebra and let P(X) := {π | π is a probability function on X }. Then the trend π0 need not be a
probability function on X . See the following example.

Example 3.3. Consider a d-algebra X := {0, a, b, c} with the following table:

∗ 0 a b c
0 0 0 0 0
a a 0 0 a
b b b 0 0
c c c a 0

Since b∗c = 0, a∗c = a, c∗a = c, a∗b = 0, b∗a = b, we haveπ0(a, c) = 1/2, π0(a, b) = 1, i.e.,π0(a, b) > 1/2 = π0(a, c)
proving that π0 ∉ P(X).

Given a d-algebra (X, ∗, 0), we classify 3 cases: (i) P(X) = ∅; (ii) P(X) ≠ ∅, π0 ∉ P(X); (iii) π0 ∈ P(X).
A d-algebra (X, ∗, 0) is said to be d-transitive [9] if x ∗ y = 0 = y ∗ z implies x ∗ z = 0.

Theorem 3.4. If (X, ∗, 0) is a d-transitive d-algebra, then π0 ∈ P(X).

Proof. Assume that π0 is not a probability function on X . Then there exist x, y, z ∈ X such that y ∗ z = 0, but π0(x, y) >
π0(x, z). Case 1: π0(x, y) = 1, π0(x, z) = 1/2. Then x ∗ y = 0, x ∗ z ≠ 0 ≠ z ∗ x. Since y ∗ z = 0, we obtain x ∗ z = 0, a
contradiction. Case 2: π0(x, y) = 1, π0(x, z) = 0. Then x ∗ y = 0 = z ∗ x, and hence z ∗ y = 0. Since y ∗ z = 0, we obtain
y = z, a contradiction. Case 3: π0(x, y) = 1/2, π0(x, z) = 0. Then x ∗ y ≠ 0 ≠ y ∗ x, z ∗ x = 0. Since y ∗ z = 0, we obtain
y ∗ x = 0, a contradiction. �

Corollary 3.5. Let (X, ∗, 0) be a BCK-algebra. Then π0 ∈ P(X), i.e., π0 is a probability function on X.

Proof. By Theorem 2.1-(i), every BCK -algebra is a d-transitive d-algebra. �

Proposition 3.6. Let π be a trend on a BCK-algebra (X, ∗, 0). Then

(f) x ∗ y = 0 implies π(z ∗ y, z ∗ x) = 1.

Proof. If x ∗ y = 0, then by Theorem 2.1-(ii), (z ∗ y) ∗ (z ∗ x) = 0. Since π is a trend on X , we obtain π(z ∗ y, z ∗ x) = 1. �

Proposition 3.7. Let π be a trend on a BCK-algebra (X, ∗, 0). Then

(g) x ∗ y = 0 implies π(x ∗ z, y ∗ z) = 1.

Proof. If x∗ y = 0, then by Theorem 2.1-(iii), (x ∗ z)∗ (y∗ z) = 0. Since π is a trend on X , we obtain π(x∗ z, y∗ z) = 1. �
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Fig. 2.

Fig. 3.

Fig. 4.

Proposition 3.8. Let (X, ∗, 0) be a d-algebra. If π is a probability function on X, then

(h) x ∗ y = 0 = y ∗ z implies π(x, z) = 1.

Proof. Since π is a probability function on X , if x ∗ y = 0 = y ∗ z, then 1 = π(x, y) ≤ π(x, z), proving π(x, z) = 1. �

Proposition 3.9. Let (X, ∗, 0) be a standard BCK-algebra. Then the trend π0 satisfies condition (d).

Proof. If x ∗ y = x, then π0(x ∗ y, z) = π0(x, z). If x ∗ y = 0, then by Proposition 3.1-(ii), π0(x ∗ y, z) = π0(0, z) = 1 ≥

π0(x, z). �

Let X be a non-empty set and let π : X × X → [0, 1] be a mapping. We have additional rules as follows:

(j) π(x ∗ y, z) ≥
1
2 [π(x, z) + π(y, z)];

(k) π(x ∗ y, z) ≥ π(y, z).

Condition (j) is a special case of the condition (jα):

(jα) π(x ∗ y, z) ≥ απ(x, z) + (1 − α)π(y, z)

where 0 ≤ α ≤ 1. Note that if α = 1, then (j1) = (d), and if α = 1/2, then (j1/2) = (j).

Lemma 3.10. Let (X, ∗, 0) be a standard BCK-algebra associated with a poset (X, ≤) with minimal element 0, and let π0 be a
trend on X with condition (j). Then the poset (X, ≤) is (C2 + 1)-free.

Proof. Assume that (X, ≤) has a full subposet (C2 + 1), i.e., there exist x, y, z ∈ X such that we obtain the diagram in Fig. 2.
Then x ∗ y = x and π0(x ∗ y, z) = π0(x, z) = 1/2. Since π0(y, z) = 1, we have π0(x ∗ y, z) = 1/2 < 3/4 =

1
2 [π0(x, z) + π0(y, z)], which shows that π0 does not satisfy condition (j), a contradiction. �

Lemma 3.11. Let (X, ∗, 0) be a standard BCK-algebra associated with a poset (X, ≤) with minimal element 0, and let π0 be a
trend on X with condition (j). Then the poset (X, ≤) is C3-free.

Proof. Assume that (X, ≤) has a full subposet C3, i.e., there exist x, y, z ∈ X such that we obtain the diagram in Fig. 3.
Then x ∗ y = x and hence π0(x ∗ y, z) = π0(x, z) = 0. Since π0(y, z) = 1, we obtain π0(x ∗ y, z) = 0 < 1/2 =

1
2 [π0(x, z) + π0(y, z)], which shows that π0 does not satisfy the condition (j), a contradiction. �

Lemma 3.12. Let (X, ∗, 0) be a standard BCK-algebra associated with a poset (X, ≤) with minimal element 0, and let π0 be a
trend on X with condition (j). Then the poset (X, ≤) is 2 ⊕ 1-free.

Proof. Assume that (X, ≤) has a full subposet 2 ⊕ 1, i.e., there exist x, y, z ∈ X such that we obtain the diagram in Fig. 4.
Then x ∗ y = x and hence π0(x ∗ y, z) = π0(x, z) = 0. Since π0(y, z) = 1/2, we obtain π0(x ∗ y, z) = 0 < 1/2 =

1
2 [π0(x, z) + π(y, z)], which shows that π0 does not satisfy condition (j), a contradiction. �

Theorem 3.13. Let (X, ∗, 0) be a standard BCK-algebra associated with a poset (X, ≤) with minimal element 0, and let π0 be a
trend on X with condition (j). Then the poset (X, ≤) is free of (C2 + 1), C3 and 2 ⊕ 1.

Proof. It follows from Lemmas 3.10–3.12 �
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Fig. 5.

Fig. 6.

Fig. 7.

It is natural to have a question. Is the converse of Theorem 3.13 also true ? The answer is yes.

Theorem 3.14. Let (X, ∗, 0) be a standard BCK-algebra associated with a poset (X, ≤) with minimal element 0 which is free of
(C2 + 1), C3 and 2 ⊕ 1. Then the trend π0 satisfies condition (j).

Proof. Assume the trend π0 does not satisfy condition (j). Then there exist x, y, z ∈ X such that

π0(x ∗ y, z) <
π0(x, z) + π0(y, z)

2
· · · · · · (∗∗)

Case 1. π0(x ∗ y, z) = 1/2: By the above inequality (∗∗) we obtain π0(x, z) = 1 = π0(y, z) and hence x ∗ z = 0 = y ∗ z.
Since (x ∗ y) ∗ z ≠ 0 ≠ z ∗ (x ∗ y) and (X, ∗, 0) is a standard BCK -algebra, we obtain x ∗ y = x. In fact, if x ∗ y = 0, then
0 ≠ (x ∗ y) ∗ z = 0, a contradiction. Hence 0 = x ∗ z = (x ∗ y) ∗ z ≠ 0, a contradiction. Case 2. π0(x ∗ y, z) = 0, i.e.,
z ∗ (x ∗ y) = 0, z ≠ x ∗ y: To satisfy the inequality (∗∗), at least one of π0(x, z) or π0(y, z) should not be zero. Subcase
(2.1). π0(x, z) ≠ 0: We obtain either x ∗ z = 0 or x ∗ z ≠ 0 ≠ z ∗ x. Subcase (2.1.1) x ∗ z = 0: We claim that x ∗ y = 0.
In fact, if x ∗ y = x, then 0 = z ∗ (x ∗ y) = z ∗ x, since π0(x ∗ y, z) = 0. By assumption x ∗ z = 0, we obtain x = z,
which leads to z ≠ x ∗ y = x, a contradiction, proving the claim. Hence 0 = z ∗ (x ∗ y) = z ∗ 0 = z ≠ x ∗ y = 0, a
contradiction. Hence the subcase (2.1.1) cannot happen. Subcase (2.1.2). x ∗ z ≠ 0 ≠ z ∗ x: This means that x and z are
incomparable. Since π0(x ∗ y, z) = 0, we have z ∗ (x ∗ y) = 0, z ≠ x ∗ y. We claim that x ∗ y = x. In fact, if x ∗ y = 0,
then 0 = z ∗ (x ∗ y) = z ∗ 0 = z ≠ x ∗ y = 0, a contradiction. Hence 0 = z ∗ (x ∗ y) = z ∗ x ≠ 0, a contradiction. Hence
this case cannot happen. Subcase (2.2). π0(y, z) ≠ 0: Then we have either y ∗ z = 0 or y ∗ z ≠ 0 ≠ z ∗ y. Subcase (2.2.1).
y ∗ z = 0: Since π0(x ∗ y, z) = 0, we have z ∗ (x ∗ y) = 0, z ≠ x ∗ y. We claim that x ∗ y = x. In fact, if x ∗ y = 0, then
0 = z ∗ (x ∗ y) = z ∗ 0 = z ≠ x ∗ y = 0, a contradiction. Hence 0 = z ∗ (x ∗ y) = z ∗ x. Thus we have as a subposet (Fig. 5),
a contradiction. Subcase (2.2.2). y ∗ z ≠ 0 ≠ z ∗ y: This means that y and z are incomparable. We claim that x ∗ y = x. In
fact, if x ∗ y = 0, then 0 = z ∗ (x ∗ y) = z ∗ 0 = z ≠ x ∗ y = 0, a contradiction. Hence z ∗ x = z ∗ (x ∗ y) = 0, i.e., z ≤ x.
Since (X, ∗, 0) is a standard BCK -algebra, we have

y ∗ x :=


y if y > x or y ‖ x,
0 if y ≤ x.

In any case, we have one of the diagrams in Fig. 6, which is a contradiction, proving the theorem. �

Example 3.15. Let (X, ∗, 0) be a standard BCK -algebra associated with a poset 1 ⊕ A, where A is an antichain (see Fig. 7).
Then the trend π0 satisfies condition (j).

4. Fuzzy right ideals and fuzzy co-right ideals

Let (X, ∗, 0) be a d-algebra and ∅ ≠ I ⊆ X . I is called a right ideal of X if it satisfies conditions (D0) and (D2).

Example 4.1. In Example 3.3, if we let J := {0, a, c}, then J is a right ideal of X , but not a d/BCK -ideal, since b ∗ c = 0 ∈

J, c ∈ J , but b ∉ J .
We fuzzify the notion of right ideals in d-algebras as follows. Let X be a d-algebra. A fuzzy subset µ of X is said to be a

fuzzy right ideal of X if it satisfies conditions (F0) and (F2). Then we obtain the following proposition. The proof is similar to
Theorem 2.4, and we omit it.
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Proposition 4.2. A fuzzy subset µ of a d-algebra X is a fuzzy right ideal of X if and only if, for every λ ∈ [0, 1], µλ = {x ∈

X |µ(x) ≥ λ} is a right ideal of X, where µλ ≠ ∅.

Note that every fuzzy right ideals of a d-algebra (X, ∗, 0) is a fuzzy d-subalgebra of X .

Proposition 4.3. Let (X, ∗, 0) be a d-algebra. If µ is a fuzzy d-ideal of X, then it is a fuzzy right ideal of X.

Proof. It follows immediately from the definitions of fuzzy d/right-ideals and Lemma 2.3. �

Note that the converse of Proposition 4.3 need not be true in general.

Example 4.4. Consider a d-algebra (X, ∗, 0) [1] with the following table:

∗ 0 a b c
0 0 0 0 0
a a 0 0 b
b b b 0 0
c c c c 0

Define a map µ: X → [0, 1] by µ(a) = t1, µ(0) = µ(b) = µ(c) = t2, t1 < t2. Then it is a fuzzy right ideal of X , but not
a fuzzy d-ideal of X , since µ(a) = t1 < t2 = min{µ(b), µ(c)} = min{µ(a ∗ c), µ(c)}.

Proposition 4.5. Let (X, ∗, 0) be a d-algebra with |X | = n. Let π : X2
→ [0, 1] be a trend on X with condition (d). If we define

a map µπ (x) :=
1
n

∑
y∈X π(x, y), then it is a fuzzy right ideal of X.

Proof. Given x, y ∈ X , we have

µπ (x ∗ y) =
1
n

−
z∈X

π(x ∗ y, z)

≥
1
n

−
z∈X

π(x, z)

= µπ (x),

proving the proposition. �

The map µπ discussed in Proposition 4.5 is also a fuzzy d-algebra of X . We discuss the map µπ in the case that π has
condition (j).

Proposition 4.6. Let (X, ∗, 0) be a d-algebra with |X | = n. Let π : X2
→ [0, 1] be a trend on X with condition (j). If we define

a map µπ (x) :=
1
n

∑
y∈X π(x, y), then it is a fuzzy d-subalgebra of X.

Proof. Let t ∈ [0, 1] with (µπ )t ≠ ∅ and let x, y ∈ (µπ )t . Then

µπ (x ∗ y) =
1
n

−
z∈X

π(x ∗ y, z)

≥
1
n

−
z∈X

π(x, z) + π(y, z)
2

= [µπ (x) + µπ (y)]/2
≥ t,

proving that x ∗ y ∈ (µπ )t . By Theorem 2.4, we proved that µπ is a fuzzy d-subalgebra of X . �

Let (X, ∗, 0) be a d-algebra with |X | = n. Let π be a trend on X and ϕ: X → (0, ∞) be a map. Define a map
µϕ

π : X → [0, 1] by µϕ
π (x) :=

∑
z∈X π(x, z)ϕ(z). The map ϕ is said to be a fuzzy co-d-subalgebra (fuzzy co-right ideal, resp.)

of X if µϕ
π is a fuzzy d-subalgebra (fuzzy right ideal, resp.) of X . In continuous cases, we define the map µϕ

π : X → [0, 1] by
µϕ

π (x) :=


∞

0 π(x, z)ϕ(z)dz.

Proposition 4.7. Let (X, ∗, 0) be a d-algebra with |X | = n. Let π be a trend on X with condition (d). Then the map ϕ: X →

(0, ∞) is a fuzzy co-right ideal of X.

Proof. Assume that π has condition (d). Since ϕ(z) > 0, π(x ∗ y, z)ϕ(z) ≥ π(x, z)ϕ(z) and hence µϕ
π (x ∗ y) =∑

z∈X π(x ∗ y, z)ϕ(z) ≥
∑

z∈X π(x, z)ϕ(z) = µϕ
π (x). �
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Theorem 4.8. Let X := [0, ∞). Define a binary operation ‘‘∗’’ on X by

x ∗ y :=


0 if x ≤ y,
x − y otherwise.

If we define a map π : X2
→ [0, 1] by

π(x, y) :=


1 if x ≤ y,
0 otherwise,

then any map ϕ: X → (0, 1) with


∞

0 ϕ(x)dx < ∞ is a fuzzy co-right ideal of X.

Proof. It is easy to see that π is a trend and also a probability function on X . Given x ∈ X , we have

µϕ
π (x) =

∫
∞

0
π(x, z)ϕ(z)dz

=

∫
∞

x
ϕ(z)dz.

Using Leibniz’s rule, we obtain d
dx [µ

ϕ
π (x)] =

d
dx


∞

x ϕ(z)dz = −ϕ(x). Let x, y ∈ [0, ∞) with y < x. Then

µϕ
π (x ∗ y) =

∫
∞

x−y
ϕ(z)dz

=

∫ x

x−y
ϕ(z)dz +

∫
∞

x
ϕ(z)dz

≥

∫
∞

x
ϕ(z)dz = µϕ

π (x).

Let x, y ∈ [0, ∞) with x ≤ y. Then

µϕ
π (x ∗ y) =

∫ x

0
ϕ(z)dz +

∫
∞

x
ϕ(z)dz

≥ µϕ
π (x).

Hence µϕ
π is a fuzzy right ideal of X for any positive map ϕ with


∞

0 ϕ(z)dz < ∞, proving the theorem. �

Corollary 4.9. Let F : [0, ∞) → [0, 1] be a map with dF
dx = −ϕ(x), where ϕ(x) is a positive function. If limx→∞ F(x) = 0, then

it is a fuzzy right ideal of ([0, ∞), ∗, 0) as defined in Theorem 4.8.

Proof. For any α with x ≤ α, we have
 α

x ϕ(z)dz = [−F(z)]αx = F(x) − F(α). Since limz→∞ F(z) = 0, obtain
F(x) =


∞

x ϕ(z)dz = µϕ
π (x) is a fuzzy right ideal by Theorem 4.8. �
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