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Ago2/miRISC-mediated inhibition of CBP80/20-dependent translation
and thereby abrogation of nonsense-mediated mRNA decay require
the cap-associating activity of Ago2
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a b s t r a c t

Nuclear cap-binding protein (CBP) 80/20-dependent translation (CT) is one of the targets for
miRNA-mediated gene silencing. Here, we provide evidence that human argonaute 2 (Ago2) com-
petes with CBP80/20 for cap-association, inhibiting CT and thus nonsense-mediated mRNA decay
(NMD), which is tightly coupled to CT. Tethering of Ago2, but not of Ago2F2V2 which lacks cap
-association activity, to the 30UTR of PTC-containing mRNA abrogates NMD. Immunoprecipitation
using CBP80 antibody reveals that Ago2, but not Ago2F2V2, inhibits the binding of CBP80/20 to cap
structure. Our observations provide molecular insight into the cross-talk between miRNA-mediated
gene silencing, CT, and NMD.

Structured summary of protein interactions:
AGO2 physically interacts with GW182 by anti tag coimmunoprecipitation (View interaction)

� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction 40S, directing multiple rounds of translation called ‘‘steady-state
Eukaryotic mRNA translation is mediated by two distinct cap-
binding proteins: (i) the nuclear cap-binding protein (CBP) complex
(CBC), a heterodimer of CBP80 and CBP20, and (ii) the cytoplasmic
cap-binding protein, eukaryotic translation initiation factor 4E
(eIF4E), each of which has the ability to recruit ribosome(s) to initi-
ate translation [1,2]. The cap structure at the 50-end of premature
mRNAs (pre-mRNAs) is recognized by CBP80/20 in the nucleus.
Mature messenger ribonucleoproteins (mRNPs) harboring CBP80/
20 are exported from the nucleus to the cytoplasm via the nuclear
pore complex (NPC) [1,3,4]. During mRNP export, CBP80/20 recruits
a ribosome to the 50-end of the mRNA, probably via its interaction
with CBP80/20-dependent translation initiation factor (CTIF),
which is localized to the cytoplasmic side of the nuclear envelope
and interacts with eIF3 [5]. This round of translation is called the
‘‘first (or pioneer) round of translation’’ or, to specify the cap-bind-
ing protein, ‘‘CBP80/20-dependent translation (CT)’’ [1,5]. It should
be noted that CT is tightly coupled to the mRNA surveillance mech-
anism, nonsense-mediated mRNA decay (NMD), by which prema-
ture termination codon (PTC)-containing mRNAs are selectively
recognized and eliminated before expression of truncated proteins
[3,4]. After CT, CBP80/20 is replaced by eIF4E. A series of protein
interactions of eIF4E-eIF4GI/II-eIF3 trigger efficient recruitment of
chemical Societies. Published by E
translation’’ or ‘‘eIF4E-dependent translation (ET)’’ [2].
MicroRNAs (miRNAs) are small noncoding RNAs that post-

transcriptionally regulate gene expression of target mRNAs by
base-pairing with 30-untranslated region (30UTR) [6,7]. Mature
miRNAs are complexed with Argonaute family proteins, forming
the so-called ‘‘miRNA-induced silencing complex (miRISC)’’.
MiRISC is loaded onto the 30UTR of target mRNAs and functions
to inhibit translation of target mRNA in various ways [6,7].

Previously, our group found that human Ago2 is loaded onto
CBP80/20-bound mRNAs and that artificial tethering or loading
of Ago2/miRISC onto 30UTR of PTC-containing mRNAs inhibits CT
efficiency and thus NMD [8]. However, the exact steps in the inhi-
bition of CBP80/20-dependent translation mediated by Ago2/miR-
ISC need to be elucidated in future studies. In this study, we show
that Ago2/miRISC-mediated NMD inhibition is dependent on the
ability of Ago2 to associate with the cap structure. Our observa-
tions provide molecular insight into novel cross-talk between
miRNA-mediated gene silencing, CT, and NMD.

2. Materials and methods

2.1. Cell culture, plasmid transfection, semi-quantitative RT-PCR and
quantitative real-time PCR

The details are provided in the Supplementary materials.
lsevier B.V. All rights reserved.
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Fig. 1. Artificial tethering of human Ago2, but not Ago2F2V2, at the 30UTR abrogates NMD. (A) Schematic representations of the tethering NMD reporter constructs. Tethering
NMD reporter plasmid phRL-Gl-5BoxB Norm or Ter contains, in sequence: Renilla luciferase (RLuc) cDNA without translation termination codon (open box), b-globin (Gl) gene
(the grey boxes) either Norm or 39Ter (which harbors the PTC at the 39th residue), a normal translation termination codon, and five tandem repeats of 19-nucleotide binding
site (5boxB) of the k bateriophage antiterminator protein N (kN). (B–E) HeLa cells were transiently co-transfected with 1 lg of the indicated effector plasmid, 0.1 lg of
tethering NMD reporter construct, and 0.1 lg of pCI-F. (B) Western blotting of kN-HA-Ago2, kN-HA-Ago2F2V2. (C) Semi-quantitative (sq) RT-PCR of RL-Gl-5BoxB mRNAs and
FLuc mRNAs. The levels of RL-Gl-5BoxB mRNAs were normalized to the levels of FLuc mRNA. The normalized level of RL-Gl-5BoxB Norm mRNA in the presence of kN-HA was
set to 100% (upper numbers). Alternatively, normalized levels of RL-Gl-5BoxB Norm mRNA in the presence of each effector were set to 100% (lower numbers). (D) Real-time
RT-PCR of RL-Gl-5BoxB mRNAs and FLuc mRNAs. As in (C), except that total RNAs were analyzed by real-time PCR. (D) Translational efficiency of RL-Gl-5BoxB mRNAs. The
relative RLuc activity (RLuc activity/FLuc activity) was normalized to the relative amount of RL-Gl-5BoxB mRNA (RL-Gl-5BoxB Norm/FLuc mRNA). Normalized translation
efficiency of RL-Gl-5BoxB Norm mRNA in the presence of kN-HA was set to 100%.
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2.2. Immunoprecipitation and Western Blotting

Immunoprecipitation (IP) was performed as described previ-
ously [5,8,9]. Cell extracts or immunopurified proteins were
electrophoresed in SDS-polyacrylamide (6–12%) and transferred
to HyBond ECL nitrocellulose (Amersham). The following anti-
bodies were used: HA (Roche), eIF4E (BD biosciences), CBP80
[8], GW182 (a gift from Dr. Marvin J. Fritzler), and b-actin
(Sigma).
2.3. Dual luciferase assay

Dual luciferase assays were performed according to the manu-
facturer’s protocol (Promega) and detected with a Glomax 20/20
Luminometer (Promega).

2.4. Cap-association assay using m7GTP-sepharose

The details are provided in the Supplementary materials.
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Fig. 2. F2V2 substitutions affect the cap-associating activity of Ago2 without significantly affecting its interaction with GW182 and P-bodies localization. (A) Cap-association
assay of kN-HA-Ago2 and kN-HA-Ago2F2V2. The total-cell extracts (Input) and the cap-bound protein samples were analyzed by Western blotting using the indicated
antibodies. (B) Western blotting of endogenous GW182 in IPs of kN-HA-Ago2 and kN-HA-Ago2F2V2. (C–E) HeLa cells were transiently transfected with 2 lg of plasmid
expressing kN-HA (C), kN-HA-Ago2 (D), or kN-HA-Ago2F2V2 (E) and then stained with a-HA antibody and a-Dcp1a antibody. Dcp1a served as the positive control for P-
bodies localization.
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3. Results

3.1. NMD is abrogated by tethering of Ago2, but not Ago2F2V2, to the
30UTR of PTC-containing mRNA

Previously, our group found that artificial tethering of Ago2 to
30UTR of the NMD reporter RL-Gl-5BoxB Norm or Ter mRNAs with
the kN/boxB system [10] inhibits the NMD of RL-Gl-5BoxB Ter
mRNA [8]. Using the same system, we tested which step is targeted
in Ago2/miRNA-mediated NMD inhibition. To this end, we
employed the Ago2F2V2 mutant, in which two phenylalanines in
the MC domain are substituted to valines and which lacks cap
-associating activity [10]. HeLa cells were transiently co-transfected
with three plasmids: (i) an effector plasmid expressing kN-HA,
kN-HA-Ago2, or kN-HA-Ago2F2V2, (ii) a tethering NMD reporter
plasmid expressing either RL-Gl-5BoxB Norm or Ter mRNA, and
(iii) a reference plasmid expressing firefly luciferase (FLuc) mRNA
(Fig. 1A). Two days after transfection, total-cell RNAs and proteins
were harvested and analyzed by Western blotting (Fig. 1B), semi-
quantitative RT-PCR (sqRT-PCR) using specific oligonucleotides
and a-[32P]-dATP (Fig. 1C), and quantitative real-time PCR (Fig. 1D).

The results revealed that, even if comparable amounts of
kN-HA-Ago2 and kN-HA-Ago2F2V2 were expressed (Fig. 1B), teth-
ering of kN-HA-Ago2, but not of kN-HA-Ago2F2V2, abrogated
NMD of RL-Gl-5BoxB mRNA by 2-fold (Fig. 1C). The sqRT-PCRs in
Fig. 1C were further confirmed by quantitative real-time PCR
(Fig. 1D). The quantitative real-time PCR results were very similar
to those obtained by sqRT-PCR, demonstrating that our methodol-
ogy is sufficiently quantitative to detect the differences. Consistent
with a previous report [10], tethering of kN-HA-Ago2 repressed
overall translation of RL-Gl-5BoxB Norm mRNA to 34% compared
to that obtained from tethering of kN-HA (Fig. 1E), without signifi-
cantly changing the mRNA level (Fig. 1C), suggesting that transla-
tional repression by tethered Ago2 was efficient under these
conditions. On the other hand, tethering of kN-HA-Ago2F2V2 mar-
ginally affected the overall translation of RL-Gl-5BoxB Norm mRNA



Fig. 3. Competition between Ago2 loaded onto 30UTR and CBP80/20 for cap-association. Cos-7 cells were transiently co-transfected with (i) plasmid expressing kN-HA, kN-
HA-Ago2, or kN-HA-Ago2F2V2, (ii) phRL-Gl-5BoxB Norm, and (iii) reference plasmid pCI-F. Total-cell proteins and RNAs before or after IP with a-CBP80 antibody were
analyzed by Western blotting (A, upper), sqRT-PCR (A, lower), and quantitative real-time PCR (B), respectively. Each level of RL-Gl-5BoxB mRNA was normalized to the level of
FLuc mRNA. The normalized co-immunopurified RL-Gl-5BoxB mRNA level was then normalized to the level of the normalized RL-Gl-5BoxB mRNA before IP. The normalized
level of co-immunopurified RL-Gl-5BoxB mRNA obtained in IP of kN-HA was set to 100%.
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(Fig. 1E). All of these results suggest that Ago2/miRISC-mediated CT
and NMD inhibition involves the cap-associating activity of Ago2.

3.2. Introduction of F2V2 substitutions abolishes cap-associating
activity of Ago2 without affecting its binding to GW182 and its
localization to processing bodies

We examined the molecular features of Ago2 and Ago2F2V2,
because the cap-associating activity of Ago2 and subsequent gene
silencing remain controversial [10–15]. First, transiently expressed
kN-HA-Ago2 wild-type, endogenous CBP80, and eIF4E, but not kN-
HA-Ago2F2V2, were significantly associated with m7GTP-Sephar-
ose resin (Fig. 2A) even after RNase A treatment, suggesting that
(i) Ago2 has extrinsic or intrinsic cap-associating activity and (ii)
F2V2 substitutions affect the cap-associating activity of Ago2. Sec-
ond, comparable amounts of endogenous GW182 were detected in
the IP of kN-HA-Ago2 and kN-HA-Ago2F2V2 (Fig. 2B), suggesting
that (i) F2V2 substitutions do not significantly affect the interac-
tion between Ago2 and GW182 and (ii) Ago2F2V2 is inactive in
silencing CT and NMD due to the lack of cap-associating activity,
but not due to the loss of binding to GW182 under these condi-
tions. Third, the localization of Ago2 into processing bodies (P-
bodies), where translationally silenced mRNAs or mRNAs that are
destined to be degraded are localized, was not affected by F2V2
substitutions (Fig. 2C–E). All these results suggest that the intro-
duction of F2V2 substitutions into Ago2 abolishes the cap-associat-
ing activity of Ago2 without affecting other molecular features.

3.3. Ago2 inhibits the binding of CBP80/20 to the cap structure

The above observations led us to hypothesize that Ago2/miRISC
loaded onto 30UTR may compete with CBP80/20 for cap-association,
because Ago2 has the ability to associate with the cap structure
(Fig. 2). This hypothesis was clearly demonstrated by analyzing
the abundance of mRNAs co-purified with endogenous CBP80 un-
der conditions in which Ago2 or Ago2F2V2 was tethered at the
30UTR of the mRNA. If tethered Ago2 at the 30UTR competed with
CBP80/20 for cap-association, less co-immunopurified mRNAs
would be detected in the IP of CBP80. The results showed that,
although comparable amounts of kN-HA-Ago2 and kN-HA-
Ago2F2V2 were expressed and although comparable levels of
endogenous CBP80 were immunopurified (Fig. 3A, upper), tethering
of kN-HA-Ago2, but not kN-HA-Ago2F2V2, inhibited the co-immu-
nopurification of RL-Gl-5BoxB mRNA by 3-fold (Fig. 3A, lower). The
sqRT-PCRs in Fig. 3A were further confirmed by quantitative real-
time PCR (Fig. 3B). All of these results indicate that Ago2/miRISC
loaded onto 30UTR associates with the cap structure directly or indi-
rectly and thus competes with CBP80/20 for cap-association.

4. Discussion

Here we provide evidence that Ago2/miRISC associates with the
cap structure, competing out CBP80/20 from the cap structure and
consequently inhibiting CT and NMD. Based on our results, we pro-
pose possible models in which Ago2/miRISC regulates the CT effi-
ciency and NMD (Fig. 4). First, if an mRNA had no miRNA-binding
sites and no PTC, it would undergo both CT and ET (Fig. 4A). Second,
if an mRNA had miRNA-binding sites but no PTC, its expression
would be silenced at both CT and ET (Fig. 4B). Third, if an mRNA
had no miRNA-binding sites but contained a PTC, it would be tar-
geted for NMD and hence downregulated in abundance (Fig. 4C). Fi-
nally, if an mRNA had both miRNA-binding sites and a PTC, the CT of
the mRNA would be silenced through the competition for cap-asso-
ciation between Ago2/miRISC loaded onto the 30UTR and CBP80/20.
NMD would consequently be silenced. Even if CBP80/20 is replaced
by eIF4E, the ET of the mRNA would still be silenced through the
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Fig. 4. Models illustrating cross-talk between Ago2/miRISC-mediated gene silencing, CT, ET, and NMD in mammalian cells. The details are described in the discussion.
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competition between Ago2/miRISC and eIF4E for cap-association
(Fig. 4D).

In our study, we found that, although Ago2F2V2 fails to associate
with cap structure (Fig. 2A and 3) and to inhibit translation of RL-
Gl-5BoxB Norm mRNA (Fig. 1E), Ago2F2V2 associates with
GW182 and is localized to P-bodies (Fig. 2E), similar to Ago2. These
results suggest that the localization of Ago2 into P-bodies is irrele-
vant for Ago2-mediated translational silencing. This is reminiscent
of mRNA decay in P-bodies. The enrichment of many mRNA-
degrading enzymes in P-bodies may help mRNAs to be degraded
more quickly. However, NMD and microRNA-mediated mRNA
decay are not affected by the removal of microscopically visible
P-bodies using siRNA against factors critical for the formation of
P-bodies [16–18], suggesting that the formation of microscopically
visible P-bodies is not sufficient for efficient mRNA decay and is a
consequence of mRNA degradation. Similarly, it is possible that
the formation of microscopically visible P-bodies is dispensable
for Ago2-mediated translational silencing.

Considering previous reports and our study, it seems that the
molecular behaviors of mammalian Ago2 and Drosophila melano-
gaster (dm) Ago1, a functional homologue of human Ago2, are dif-
ferent, probably due to differences in the intrinsic properties of
human Ago2 and dmAgo1 or due to the different binding partners.
Several lines of evidence support this idea. First, GW182 binding-
domain of dmAgo1 and human Ago2 reside in PIWI domain
[19,20]. The mutated regions of F2V2 reside in the Mid domain
[10,11]. Therefore, it is possible that introduction of F2V2 into
the Mid domain causes structural changes in dmAgo1 and thereby
abolishes its interaction with GW182. On the other hand, it seems
that the structure of hAgo2 is unaffected by these mutations and
thereby Ago2F2V2 still associates with GW182 (Fig. 2B). Second,
the cellular localizations of dmAgo1 and human Ago2 are different.
DmAgo1 is localized in cytoplasm [21]. The ubiquitin associated-
like domain (UBA) of GW182 is important for dmAgo1 localization
to P-bodies [21], and overexpression of GW182 causes dmAgo1 to
be localized in P-bodies [21]. In addition, several groups have
shown that dmAgo1F2V2 mutant does not interact with GW182
and therefore it is not localized to P-bodies [11,21,22]. In contrast,
human Ago2 is mainly localized to P-bodies [16,20,23–26], and the
PAZ domain of hAgo2 is important for this localization [23]. It
should be noted that mutations in the PAZ domain of dmAgo1 do
not affect its P-body localization [22].

Recently, a merged model for mammalian NMD was proposed
in which the termination codon is recognized as PTC by a compe-
tition between 30UTR-associated factors, such as PABPC1, and EJC
downstream of PTC [27–29]. EJC triggers the recruitment of NMD
machinery to the terminating ribosome, whereas PABPC1 antago-
nizes the recruitment of NMD machinery, blocking the interaction
between Upf1 and eRF3 [27–29]. In general, mRNAs harboring PTC
generated by nonsense mutation have an extended 30UTR com-
pared to PTC-free mRNAs. According to the merged model, these
mRNAs with long 30UTRs would be subject to more efficient
NMD. In addition, aberrant mRNAs with artificially extended
30UTR are degraded by NMD [27,28,30–32]. However, numerous
mRNAs with naturally occurring long 30UTR escape NMD
[27,32,33]. Although looping of the 30UTR can shorten the spatial
distance between the PABP-bound poly(A) tail and the terminating
ribosome [28], mRNAs with long 30UTR may contain a larger num-
ber of miRNA-binding sites at the 30UTR. When Ago2/miRISC is
loaded onto these miRNA-binding sites, these mRNAs would
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escape NMD and instead would be silenced at the CT and ET steps
by competition for cap-association between Ago2/miRISC and
CBP80 and between Ago2/miRISC and eIF4E, respectively.
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