Hyers-Ulam stability of additive set-valued functional equations

Gang Lu ${ }^{\text {a }}$, Choonkil Park ${ }^{\mathrm{b}, *, 1}$
${ }^{\text {a }}$ Department of Mathematics, Chungnam National University, Daejeon 305-764, South Korea
${ }^{\mathrm{b}}$ Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea

A R T I C LE INFO

Article history:

Received 8 September 2010
Received in revised form 21 February 2011
Accepted 23 February 2011

Keywords:

Hyers-Ulam stability
Additive set-valued functional equation
Closed and convex subset Cone

A B S TRACT

In this paper, we define the following additive set-valued functional equations

$$
\begin{align*}
& f(\alpha x+\beta y)=r f(x)+s f(y) \tag{1}\\
& f(x+y+z)=2 f\left(\frac{x+y}{2}\right)+f(z) \tag{2}
\end{align*}
$$

for some real numbers $\alpha>0, \beta>0, r, s \in \mathbb{R}$ with $\alpha+\beta=r+s \neq 1$, and prove the Hyers-Ulam stability of the above additive set-valued functional equations.
© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Set-valued functions in Banach spaces have been developed in the past decades. The pioneering papers by Aumann [1] and Debreu [2] were inspired by problems arising in Control Theory and Mathematical Economics. We can refer to the papers by Arrow and Debreu [3], McKenzie [4], the monographs by Hindenbrand [5], Aubin and Frankow [6], Castaing and Valadier [7], Klein and Thompson [8] and the survey by Hess [9].

The stability problem of functional equations originated from a question of Ulam [10] concerning the stability of group homomorphisms. Hyers [11] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [12] for additive mappings and by Rassias [13] for linear mappings by considering an unbounded Cauchy difference. The paper of Th.M. Rassias [13] has provided a lot of influence in the development of what we call Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations. A generalization of the Rassias theorem was obtained by Găvruta [14] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach (see [15-24]).

It is easy to show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a solution of the inequality

$$
\begin{equation*}
|f(\alpha x+\beta y)-r f(x)-s f(y)|<\varepsilon \tag{1.1}
\end{equation*}
$$

for some $\varepsilon>0$ then there exists a linear function $g(x)=m x, m \in \mathbb{R}$, such that $|f(x)-g(x)|<\varepsilon$ for all $x \in \mathbb{R}$.
The inequality (1.1) can be written in the form

$$
f(\alpha x+\beta y)-r f(x)-s f(y) \in B(0, \varepsilon),
$$

where $B(0, \varepsilon):=(-\varepsilon, \varepsilon)$. Hence we have

$$
f(\alpha x+\beta y)+B(0, \varepsilon) \subseteq r f(x)+B(0, \varepsilon)+s f(y)+B(0, \varepsilon)
$$

[^0]and denoting by $F(x)=f(x)+B(0, \varepsilon), x \in \mathbb{R}$, we get
$$
F(\alpha x+\beta y) \subseteq r F(x)+s F(y), \quad x, y \in \mathbb{R}(\text { if } r, s \geq 1)
$$
and
$$
g(x) \in F(x)
$$

Let Y be a real normed space. The family of all closed and convex subsets, containing 0 , of Y will be denoted by $c c z(Y)$. Let A, B be nonempty subsets of a real vector space X and λ a real number. We define

$$
\begin{aligned}
& A+B=\{x \in X: x=a+b, a \in A, b \in B\} \\
& \lambda A=\{x \in X: x=\lambda a, a \in A\}
\end{aligned}
$$

Lemma 1.1 ([25]). Let λ and μ be real numbers. If A and B are nonempty subset of a real vector space X, then

$$
\begin{aligned}
& \lambda(A+B)=\lambda A+\lambda B \\
& (\lambda+\mu) A \subseteq \lambda A+\mu B
\end{aligned}
$$

Moreover, if A is a convex set and $\lambda \mu \geq 0$, then we have

$$
(\lambda+\mu) A=\lambda A+\mu A
$$

A subset $A \subseteq X$ is said to be a cone if $A+A \subseteq A$ and $\lambda A \subseteq A$ for all $\lambda>0$. If the zero vector in X belongs to A, then we say that A is a cone with zero.

Set-valued functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [26-29]).

2. Stability of the set-valued functional equation (1)

In this section, let X be a real vector space, $A \subseteq X$ a cone with zero and Y a Banach space.
The following theorem is similar to the results of $[30,31]$.
Theorem 2.1. If $F: A \rightarrow c c z(Y)$ is a set-valued map satisfying

$$
\begin{equation*}
F(\alpha x+\beta y) \subseteq r F(x)+s F(y) \tag{2.1}
\end{equation*}
$$

and

$$
\sup \{\operatorname{diam} F(x): x \in A\}<+\infty
$$

for all $x, y \in A$ and some $\alpha>0, \beta>0, r, s \in \mathbb{R}$ with $\alpha+\beta=r+s \neq 1$, then there exists a unique additive map $g: A \rightarrow Y$ such that $g(x) \in F(x)$ for all $x \in A$.
Proof. For $x \in A$, replacing y by x in (2.1), we get

$$
\begin{equation*}
F((\alpha+\beta) x) \subseteq r F(x)+s F(x)=(r+s) F(x) \tag{2.2}
\end{equation*}
$$

and if we replace x by $(\alpha+\beta)^{n} x, n \in \mathbb{N}$, in (2.2), then we obtain

$$
F\left((\alpha+\beta)^{n+1} x\right) \subseteq(r+s) F\left((\alpha+\beta)^{n} x\right)
$$

and

$$
\frac{F\left((\alpha+\beta)^{n+1} x\right)}{(\alpha+\beta)^{n+1}} \subseteq \frac{(r+s)}{(\alpha+\beta)} \frac{F\left((\alpha+\beta)^{n} x\right)}{(\alpha+\beta)^{n}}
$$

Thus we get

$$
\frac{F\left((\alpha+\beta)^{n+1} x\right)}{(\alpha+\beta)^{n+1}} \subseteq \frac{F\left((\alpha+\beta)^{n} x\right)}{(\alpha+\beta)^{n}}
$$

Case 1. Let $\alpha+\beta>1$.
Denoting by $F_{n}(x)=\frac{F\left((\alpha+\beta)^{n} x\right)}{(\alpha+\beta)^{n}}, x \in A, n \in \mathbb{N}$, we obtain that $\left(F_{n}(x)\right)_{n \geq 0}$ is a decreasing sequence of closed subsets of the Banach space Y. We have also

$$
\operatorname{diam} F_{n}(x)=\frac{1}{(\alpha+\beta)^{n}} \operatorname{diam} F\left((\alpha+\beta)^{n} x\right)
$$

Since $\alpha+\beta>1$ and $\sup \{\operatorname{diam}(F(x)): x \in A\}<\infty$, we get that $\lim _{n \rightarrow+\infty} \operatorname{diam}\left(F_{n}(x)\right)=0$ for all $x \in A$.

Using the Cantor theorem for the sequence $\left(F_{n}(x)\right)_{n \geq 0}$, we obtain that the intersection $\bigcap_{n \geq 0} F_{n}(x)$ is a singleton set and we denote this intersection by $g(x)$ for all $x \in A$. Thus we obtain a map $g: A \rightarrow Y$. Then $g(x) \in F_{0}(x)=F(x)$ for all $x \in A$.

Now we show that g is additive. We have

$$
\begin{aligned}
F_{n}(\alpha x+\beta y) & =\frac{F\left((\alpha+\beta)^{n}(\alpha x+\beta y)\right)}{(\alpha+\beta)^{n}}=\frac{F\left(\alpha(\alpha+\beta)^{n} x+\beta(\alpha+\beta)^{n} y\right)}{(\alpha+\beta)^{n}} \\
& \subseteq \frac{r F\left((\alpha+\beta)^{n} x\right)+s F\left((\alpha+\beta)^{n} y\right)}{(\alpha+\beta)^{n}}=r \frac{F\left((\alpha+\beta)^{n} x\right)}{(\alpha+\beta)^{n}}+s \frac{F\left((\alpha+\beta)^{n} y\right)}{(\alpha+\beta)^{n}} \\
& =r F_{n}(x)+s F_{n}(y)
\end{aligned}
$$

By definition of g, we can get for all $x, y \in A$,

$$
\begin{equation*}
g(\alpha x+\beta y)=\bigcap_{n=0}^{\infty} F_{n}(\alpha x+\beta y) \subseteq \bigcap_{n=0}^{\infty}\left(r F_{n}(x)+s F_{n}(y)\right) . \tag{2.3}
\end{equation*}
$$

On the other hand, it is easy to show that, for all $x, y \in A$,

$$
\begin{equation*}
r g(x)+\operatorname{sg}(y) \in r F_{n}(x)+s F_{n}(y) \tag{2.4}
\end{equation*}
$$

Now, we fix $n \in \mathbb{N}$ and $x, y \in A$. Then it follows from (2.3) and (2.4) that
there exist $a_{1} \in F_{n}(x)$ and $b_{1} \in F_{n}(y)$ such that $g(\alpha x+\beta y)=r a_{1}+s b_{1}$,
there exist $a_{2} \in F_{n}(x)$ and $b_{2} \in F_{n}(y)$ such that $r g(x)+s g(y)=r a_{2}+s b_{2}$.
Thus we obtain

$$
g(\alpha x+\beta y)-(r g(x)+s g(y))=r\left(a_{1}-a_{2}\right)+s\left(b_{1}-b_{2}\right)
$$

We know that $r a_{1}, r a_{2} \in r F_{n}(x)$ and $s b_{1}, s b_{2} \in s F_{n}(y)$. So we get

$$
\begin{aligned}
\|g(\alpha x+\beta y)-(r g(x)+s g(y))\| & \leq\left\|r\left(a_{1}-a_{2}\right)\right\|+\left\|s\left(b_{1}-b_{2}\right)\right\| \\
& \leq r \cdot \operatorname{diam} F_{n}(x)+s \cdot \operatorname{diam} F_{n}(y)
\end{aligned}
$$

which tends to zero as n tends to ∞. Thus

$$
\begin{equation*}
g(\alpha x+\beta y)=r g(x)+\operatorname{sg}(y) \tag{2.5}
\end{equation*}
$$

Let $x=y=0$ in (2.5). Then we get $g(0)=(r+s) g(0)$. So $g(0)=0$. Letting $y=0$ and $x=0$ in (2.5), respectively, we obtain

$$
\begin{equation*}
g(\alpha x)=\operatorname{rg}(x) \quad \text { and } \quad g(\beta y)=\operatorname{sg}(y) \tag{2.6}
\end{equation*}
$$

Replacing x by $\frac{x}{\alpha}$ and y by $\frac{y}{\beta}$ in (2.6), respectively, we get $g(x)=\operatorname{rg}\left(\frac{x}{\alpha}\right)$ and $g(y)=\operatorname{sg}\left(\frac{y}{\beta}\right)$ for all $x, y \in A$. By (2.5),

$$
g(x+y)=g\left(\alpha \cdot \frac{x}{\alpha}+\beta \cdot \frac{y}{\beta}\right)=r g\left(\frac{x}{\alpha}\right)+s g\left(\frac{y}{\beta}\right)=g(x)+g(y)
$$

for all $x, y \in A$. Thus g is additive.
Case 2. Let $0<\alpha+\beta<1$.
Replacing x in (2.2) by $\frac{x}{(\alpha+\beta)^{n+1}}, n \in \mathbb{N}$, and multiplying the resulting relation by $(\alpha+\beta)^{n}$, we obtain

$$
(\alpha+\beta)^{n} F\left(\frac{x}{(\alpha+\beta)^{n}}\right) \subseteq \frac{r+s}{\alpha+\beta}(\alpha+\beta)^{n+1} F\left(\frac{x}{(\alpha+\beta)^{n+1}}\right)
$$

Since $\frac{r+s}{\alpha+\beta}>0$, we get

$$
(\alpha+\beta)^{n} F\left(\frac{x}{(\alpha+\beta)^{n}}\right) \subseteq(\alpha+\beta)^{n+1} F\left(\frac{x}{(\alpha+\beta)^{n+1}}\right)
$$

Let

$$
F_{n}^{\prime}(x)=(\alpha+\beta)^{n} F\left(\frac{x}{(\alpha+\beta)^{n}}\right)
$$

The sequence $\left(F_{n}^{\prime}(x)\right)_{n \geq 0}$ is increasing and the sequence of positive numbers (diam $\left.F_{n}^{\prime}(x)\right)_{n \geq 0}$ is increasing, too. Hence we have

$$
\operatorname{diam} F_{n}^{\prime}(x)=(\alpha+\beta)^{n} \operatorname{diam} F\left(\frac{x}{(\alpha+\beta)^{n}}\right)
$$

and so

$$
\lim _{n \rightarrow \infty} \operatorname{diam} F_{n}^{\prime}(x)=0
$$

Thus $F_{n}^{\prime}(x)$ is single valued for all $x \in A$. The set-valued map F is single valued and

$$
F(\alpha x+\beta y)=r F(x)+s F(y)
$$

for all $x, y \in A$. Using the same method as in Case 1 , we can show the additivity of F.
Therefore, we conclude that there exists an additive map $g: A \rightarrow Y$ such that $g(x) \in F(x)$ for all $x \in A$.
Next, let us prove the uniqueness of g.
Suppose that F have two additive selections $g_{1}, g_{2}: A \rightarrow Y$. We have

$$
n g_{i}(x)=g_{i}(n x) \in F(n x)
$$

for all $n \in \mathbb{N}, x \in A, i \in\{1,2\}$. Then we get

$$
n\left\|g_{1}(x)-g_{2}(x)\right\|=\left\|n g_{1}(x)-n g_{2}(x)\right\|=\left\|g_{1}(n x)-g_{2}(n x)\right\| \leq \operatorname{diam} F(n x)
$$

for all $x \in A, n \in \mathbb{N}$. It follows from $\sup \{\operatorname{diam} F(x): x \in A\}<\infty$ that $g_{1}(x)=g_{2}(x)$ for all $x \in A$, as desired.

Remark 2.2. The stability problem for a singled-valued functional equation is whether, for a map satisfying almost a given functional equation, there exists an exact solution of the functional equation near the given almost map. On the other hand, the stability problem for a set-valued functional equation is whether, for a set-valued map satisfying almost a given setvalued functional equation, there exists an exact solution, in the set related to the set-valued functional equation, of a functional equation related to the set-valued functional equation.

3. Stability of the set-valued functional equation (2)

In this section, let X be a real vector space, $A \subseteq X$ a cone with zero and Y a Banach space.
Theorem 3.1. If $F: A \rightarrow c c z(Y)$ is a set-valued map satisfying

$$
\begin{equation*}
F(x+y+z) \subseteq 2 F\left(\frac{x+y}{2}\right)+F(z) \tag{3.1}
\end{equation*}
$$

and

$$
\sup \{\operatorname{diam} F(x): x \in A\}<+\infty
$$

for all $x, y, z \in A$, then there exists a unique additive map $g: A \rightarrow Y$ such that $g(x) \in F(x)$ for all $x \in A$.
Proof. Letting $x=y=z$ in (3.1), we get

$$
\begin{equation*}
F(3 x) \subseteq 3 F(x) \tag{3.2}
\end{equation*}
$$

Replacing x by $3^{n} x, n \in \mathbb{N}$, in (3.2), we obtain

$$
F\left(3 \cdot 3^{n} x\right) \subseteq 3 F\left(3^{n} x\right)
$$

and

$$
\frac{F\left(3^{n+1} x\right)}{3^{n+1}} \subseteq \frac{F\left(3^{n} x\right)}{3^{n}}
$$

Denoting by $F_{n}(x)=\frac{F\left(3^{n} x\right)}{3^{n}}, x \in A, n \in \mathbb{N}$, we obtain that $\left(F_{n}(x)\right)_{n \geq 0}$ is a decreasing sequence of closed subsets of the Banach space Y. We have also

$$
\operatorname{diam} F_{n}(x)=\frac{1}{3^{n}} \operatorname{diam} F\left(3^{n} x\right)
$$

Taking account of $\sup \{\operatorname{diam} F(x): x \in A\}<+\infty$, we get

$$
\lim _{n \rightarrow \infty} \operatorname{diam} F_{n}(x)=0
$$

Using the Cantor theorem for the sequence $\left(F_{n}(x)\right)_{n \geq 0}$, we obtain that the intersection $\cap_{n \geq 0} F_{n}(x)$ is a singleton set and we denote this intersection by $g(x)$ for all $x \in A$. Thus we get a map $g: A \rightarrow Y$ and $g(x) \in F_{0}(x)=F(x)$ for all $x \in A$.

We now show that g is additive. For all $x, y, z \in A$ and $n \in \mathbb{N}$,

$$
\begin{aligned}
F_{n}(x+y+z) & =\frac{F\left(3^{n}(x+y+z)\right)}{3^{n}}=\frac{F\left(3^{n} x+3^{n} y+3^{n} z\right)}{3^{n}} \\
& \subseteq \frac{2 F\left(\frac{3^{n} x+3^{n} y}{2}\right)}{3^{n}}+\frac{F\left(3^{n} z\right)}{3^{n}}=2 F_{n}\left(\frac{x+y}{2}\right)+F_{n}(z)
\end{aligned}
$$

By definition of g, we obtain

$$
g(x+y+z)=\bigcap_{n=0}^{\infty} F_{n}(x+y+z) \subseteq \bigcap_{n=0}^{\infty}\left(2 F_{n}\left(\frac{x+y}{2}\right)+F_{n}(z)\right)
$$

$g\left(\frac{x+y}{2}\right) \in F_{n}\left(\frac{x+y}{2}\right)$ and $g(z) \in F_{n}(z)$. Thus we get

$$
\left\|g(x+y+z)-2 g\left(\frac{x+y}{2}\right)-g(z)\right\| \leq 2 \cdot \operatorname{diam} F_{n}\left(\frac{x+y}{2}\right)+\operatorname{diam} F_{n}(z)
$$

which tends to zero as n tends to ∞. Thus

$$
\begin{equation*}
g(x+y+z)=2 g\left(\frac{x+y}{2}\right)+g(z) \tag{3.3}
\end{equation*}
$$

Letting $x=y=z=0$ in (3.3), we have $g(0)=2 g(0)+g(0)$. Thus $g(0)=0$. Letting $y=z=0$ and $x=z=0$ in (3.3), respectively, we obtain

$$
g(x)=2 g\left(\frac{x}{2}\right) \quad \text { and } \quad g(y)=2 g\left(\frac{y}{2}\right)
$$

for all $x, y \in A$. So we get

$$
\|g(x+y+z)-g(x)-g(y)-g(z)\|=\left\|2 g\left(\frac{x+y}{2}\right)-2 g\left(\frac{x}{2}\right)-2 g\left(\frac{y}{2}\right)\right\|=0
$$

for all $x, y, z \in A$. Thus g is additive.
The rest of the proof is similar to the proof of Theorem 2.1.

References

[1] R.J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965) 1-12.
[2] G. Debreu, Integration of correspondences, in: Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. II, part. I, 1966, pp. 351-372.
[3] K.J. Arrow, G. Debreu, Existence of an equilibrium for a competitive economy, Econometrica 22 (1954) 265-290.
[4] L.W. McKenzie, On the existence of general equilibrium for a competitive market, Econometrica 27 (1959) 54-71.
[5] W. Hindenbrand, Core and Equilibria of a Large Economy, Princeton Univ. Press, Princeton, 1974.
[6] J.P. Aubin, H. Frankow, Set-Valued Analysis, Birkhäuser, Boston, 1990.
[7] C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, in: Lect. Notes in Math., vol. 580, Springer, Berlin, 1977.
[8] E. Klein, A. Thompson, Theory of Correspondence, Wiley, New York, 1984.
[9] C. Hess, Set-valued integration and set-valued probability theory: an overview, in: Handbook of Measure Theory, vol. I-II, North-Holland, Amsterdam, 2002.
[10] S.M. Ulam, Problems in Modern Mathematics, science ed., Wiley, New York, 1940, Chapter VI.
11] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941) 222-224.
12] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950) 64-66.
[13] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297-300.
[14] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994) $431-436$.
[15] J. Aczel, J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, Cambridge, 1989.
[16] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984) 76-86.
[17] P. Gǎvruta, L. Gǎvruta, A new method for the generalized Hyers-Ulam-Rassias stability, Internat. J. Nonlinear Anal. Appl. 1 (2010) 11-18.
[18] M.E. Gordji, M.B. Savadkouhi, Stability of a mixed type cubic-quartic functional equation in non-Archimedean spaces, Appl. Math. Lett. 23 (2010) 1198-1202.
[19] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[20] G. Isac, Th.M. Rassias, On the Hyers-Ulam stability of ψ-additive mappings, J. Approx. Theory 72 (1993) 131-137.
[21] H. Khodaei, Th.M. Rassias, Approximately generalized additive functions in several variables, Internat. J. Nonlinear Anal. Appl. 1(2010) $22-41$.
[22] Th.M. Rassias (Ed.), Functional Equations and Inequalities, Kluwer Academic, Dordrecht, 2000.
[23] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000) 264-284.
24] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000) 23-130.
[25] K. Nikodem, K-convex and K-concave set-valued functions, Z. K. Nr. 559 (1989) Lodz.
[26] T. Cardinali, K. Nikodem, F. Papalini, Some results on stability and characterization of K-convexity of set-valued functions, Ann. Polon. Math. 58 (1993) 185-192.
[27] K. Nikodem, On quadratic set-valued functions, Publ. Math. Debrecen 30 (1984) 297-301.
[28] K. Nikodem, On Jensen's functional equation for set-valued functions, Rad. Mat. 3 (1987) 23-33.
[29] K. Nikodem, Set-valued solutions of the Pexider functional equation, Funkcial. Ekvac. 31 (1988) 227-231.
[30] Y.J. Piao, The existence and uniqueness of additive selection for (α, β) $-(\beta, \alpha$) type subadditive set-valued maps, Journal of Northeast Normal University 41 (2009) 38-40.
[31] D. Popa, Additive selections of (α, β)-subadditive set-valued maps, Glas. Mat. Ser. III 36 (56) (2001) 11-16.

[^0]: * Corresponding author. Tel.: +82 22220 0892; fax: +82 222810019.

 E-mail addresses: lvgang1234@hanmail.net (G. Lu), baak@hanyang.ac.kr (C. Park).
 ${ }^{1}$ The second author was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2009-0070788).

