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a b s t r a c t

In this paper, we define the following additive set-valued functional equations

f (αx + βy) = rf (x)+ sf (y), (1)

f (x + y + z) = 2f

x + y
2


+ f (z) (2)

for some real numbers α > 0, β > 0, r, s ∈ R with α + β = r + s ≠ 1, and prove the
Hyers–Ulam stability of the above additive set-valued functional equations.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Set-valued functions in Banach spaces have been developed in the past decades. The pioneering papers by Aumann [1]
and Debreu [2] were inspired by problems arising in Control Theory and Mathematical Economics. We can refer to the
papers by Arrow and Debreu [3], McKenzie [4], the monographs by Hindenbrand [5], Aubin and Frankow [6], Castaing and
Valadier [7], Klein and Thompson [8] and the survey by Hess [9].

The stability problem of functional equations originated from a question of Ulam [10] concerning the stability of group
homomorphisms. Hyers [11] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’
Theorem was generalized by Aoki [12] for additive mappings and by Rassias [13] for linear mappings by considering an
unbounded Cauchy difference. The paper of Th.M. Rassias [13] has provided a lot of influence in the development of what
we call Hyers–Ulam stability or Hyers–Ulam–Rassias stability of functional equations. A generalization of the Rassias theorem
was obtained by Găvruta [14] by replacing the unbounded Cauchy difference by a general control function in the spirit of
Rassias’ approach (see [15–24]).

It is easy to show that if f : R → R is a solution of the inequality

|f (αx + βy)− rf (x)− sf (y)| < ε (1.1)

for some ε > 0 then there exists a linear function g(x) = mx,m ∈ R, such that |f (x)− g(x)| < ε for all x ∈ R.
The inequality (1.1) can be written in the form

f (αx + βy)− rf (x)− sf (y) ∈ B(0, ε),

where B(0, ε) := (−ε, ε). Hence we have

f (αx + βy)+ B(0, ε) ⊆ rf (x)+ B(0, ε)+ sf (y)+ B(0, ε)
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and denoting by F(x) = f (x)+ B(0, ε), x ∈ R, we get

F(αx + βy) ⊆ rF(x)+ sF(y), x, y ∈ R (if r, s ≥ 1)

and

g(x) ∈ F(x).

Let Y be a real normed space. The family of all closed and convex subsets, containing 0, of Y will be denoted by ccz(Y ).
Let A, B be nonempty subsets of a real vector space X and λ a real number. We define

A + B = {x ∈ X : x = a + b, a ∈ A, b ∈ B},
λA = {x ∈ X : x = λa, a ∈ A}.

Lemma 1.1 ([25]). Let λ and µ be real numbers. If A and B are nonempty subset of a real vector space X, then

λ(A + B) = λA + λB,
(λ+ µ)A ⊆ λA + µB.

Moreover, if A is a convex set and λµ ≥ 0, then we have

(λ+ µ)A = λA + µA.

A subset A ⊆ X is said to be a cone if A+ A ⊆ A and λA ⊆ A for all λ > 0. If the zero vector in X belongs to A, then we say
that A is a cone with zero.

Set-valued functional equations have been extensively investigated by a number of authors and there are many
interesting results concerning this problem (see [26–29]).

2. Stability of the set-valued functional equation (1)

In this section, let X be a real vector space, A ⊆ X a cone with zero and Y a Banach space.
The following theorem is similar to the results of [30,31].

Theorem 2.1. If F : A → ccz(Y ) is a set-valued map satisfying

F(αx + βy) ⊆ rF(x)+ sF(y) (2.1)

and

sup{diamF(x) : x ∈ A} < +∞

for all x, y ∈ A and some α > 0, β > 0, r, s ∈ R with α + β = r + s ≠ 1, then there exists a unique additive map g : A → Y
such that g(x) ∈ F(x) for all x ∈ A.

Proof. For x ∈ A, replacing y by x in (2.1), we get

F((α + β)x) ⊆ rF(x)+ sF(x) = (r + s)F(x) (2.2)

and if we replace x by (α + β)nx, n ∈ N, in (2.2), then we obtain

F((α + β)n+1x) ⊆ (r + s)F((α + β)nx)

and

F((α + β)n+1x)
(α + β)n+1

⊆
(r + s)
(α + β)

F((α + β)nx)
(α + β)n

.

Thus we get

F((α + β)n+1x)
(α + β)n+1

⊆
F((α + β)nx)
(α + β)n

.

Case 1. Let α + β > 1.
Denoting by Fn(x) =

F((α+β)nx)
(α+β)n , x ∈ A, n ∈ N, we obtain that (Fn(x))n≥0 is a decreasing sequence of closed subsets of the

Banach space Y . We have also

diamFn(x) =
1

(α + β)n
diamF((α + β)nx).

Since α + β > 1 and sup{diam(F(x)) : x ∈ A} < ∞, we get that limn→+∞ diam(Fn(x)) = 0 for all x ∈ A.
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Using the Cantor theorem for the sequence (Fn(x))n≥0, we obtain that the intersection


n≥0 Fn(x) is a singleton set and
we denote this intersection by g(x) for all x ∈ A. Thus we obtain a map g : A → Y . Then g(x) ∈ F0(x) = F(x) for all x ∈ A.

Now we show that g is additive. We have

Fn(αx + βy) =
F((α + β)n(αx + βy))

(α + β)n
=

F(α(α + β)nx + β(α + β)ny)
(α + β)n

⊆
rF((α + β)nx)+ sF((α + β)ny)

(α + β)n
= r

F((α + β)nx)
(α + β)n

+ s
F((α + β)ny)
(α + β)n

= rFn(x)+ sFn(y).

By definition of g , we can get for all x, y ∈ A,

g(αx + βy) =

∞
n=0

Fn(αx + βy) ⊆

∞
n=0

(rFn(x)+ sFn(y)) . (2.3)

On the other hand, it is easy to show that, for all x, y ∈ A,

rg(x)+ sg(y) ∈ rFn(x)+ sFn(y). (2.4)

Now, we fix n ∈ N and x, y ∈ A. Then it follows from (2.3) and (2.4) that

there exist a1 ∈ Fn(x) and b1 ∈ Fn(y) such that g(αx + βy) = ra1 + sb1,
there exist a2 ∈ Fn(x) and b2 ∈ Fn(y) such that rg(x)+ sg(y) = ra2 + sb2.

Thus we obtain

g(αx + βy)− (rg(x)+ sg(y)) = r(a1 − a2)+ s(b1 − b2).

We know that ra1, ra2 ∈ rFn(x) and sb1, sb2 ∈ sFn(y). So we get

‖g(αx + βy)− (rg(x)+ sg(y))‖ ≤ ‖r(a1 − a2)‖ + ‖s(b1 − b2)‖
≤ r · diamFn(x)+ s · diamFn(y),

which tends to zero as n tends to ∞. Thus

g(αx + βy) = rg(x)+ sg(y). (2.5)

Let x = y = 0 in (2.5). Then we get g(0) = (r + s)g(0). So g(0) = 0. Letting y = 0 and x = 0 in (2.5), respectively, we
obtain

g(αx) = rg(x) and g(βy) = sg(y). (2.6)

Replacing x by x
α
and y by y

β
in (2.6), respectively, we get g(x) = rg

 x
α


and g(y) = sg


y
β


for all x, y ∈ A. By (2.5),

g(x + y) = g

α ·

x
α

+ β ·
y
β


= rg

 x
α


+ sg


y
β


= g(x)+ g(y)

for all x, y ∈ A. Thus g is additive.
Case 2. Let 0 < α + β < 1.
Replacing x in (2.2) by x

(α+β)n+1 , n ∈ N, and multiplying the resulting relation by (α + β)n, we obtain

(α + β)nF


x
(α + β)n


⊆

r + s
α + β

(α + β)n+1F


x
(α + β)n+1


.

Since r+s
α+β

> 0, we get

(α + β)nF


x
(α + β)n


⊆ (α + β)n+1F


x

(α + β)n+1


.

Let

F ′

n(x) = (α + β)nF


x
(α + β)n


.

The sequence (F ′
n(x))n≥0 is increasing and the sequence of positive numbers (diamF ′

n(x))n≥0 is increasing, too. Hence we
have

diamF ′

n(x) = (α + β)ndiamF


x
(α + β)n


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and so

lim
n→∞

diamF ′

n(x) = 0.

Thus F ′
n(x) is single valued for all x ∈ A. The set-valued map F is single valued and

F(αx + βy) = rF(x)+ sF(y)

for all x, y ∈ A. Using the same method as in Case 1, we can show the additivity of F .
Therefore, we conclude that there exists an additive map g : A → Y such that g(x) ∈ F(x) for all x ∈ A.
Next, let us prove the uniqueness of g .
Suppose that F have two additive selections g1, g2 : A → Y . We have

ngi(x) = gi(nx) ∈ F(nx)

for all n ∈ N, x ∈ A, i ∈ {1, 2}. Then we get

n‖g1(x)− g2(x)‖ = ‖ng1(x)− ng2(x)‖ = ‖g1(nx)− g2(nx)‖ ≤ diamF(nx)

for all x ∈ A, n ∈ N. It follows from sup{diamF(x) : x ∈ A} < ∞ that g1(x) = g2(x) for all x ∈ A, as desired. �

Remark 2.2. The stability problem for a singled-valued functional equation is whether, for a map satisfying almost a given
functional equation, there exists an exact solution of the functional equation near the given almost map. On the other hand,
the stability problem for a set-valued functional equation is whether, for a set-valued map satisfying almost a given set-
valued functional equation, there exists an exact solution, in the set related to the set-valued functional equation, of a
functional equation related to the set-valued functional equation.

3. Stability of the set-valued functional equation (2)

In this section, let X be a real vector space, A ⊆ X a cone with zero and Y a Banach space.

Theorem 3.1. If F : A → ccz(Y ) is a set-valued map satisfying

F(x + y + z) ⊆ 2F

x + y
2


+ F(z) (3.1)

and

sup{diamF(x) : x ∈ A} < +∞

for all x, y, z ∈ A, then there exists a unique additive map g : A → Y such that g(x) ∈ F(x) for all x ∈ A.

Proof. Letting x = y = z in (3.1), we get

F(3x) ⊆ 3F(x). (3.2)

Replacing x by 3nx, n ∈ N, in (3.2), we obtain

F(3 · 3nx) ⊆ 3F(3nx)

and

F(3n+1x)
3n+1

⊆
F(3nx)
3n

.

Denoting by Fn(x) =
F(3nx)
3n , x ∈ A, n ∈ N, we obtain that (Fn(x))n≥0 is a decreasing sequence of closed subsets of the

Banach space Y . We have also

diamFn(x) =
1
3n

diamF(3nx).

Taking account of sup{diamF(x) : x ∈ A} < +∞, we get

lim
n→∞

diamFn(x) = 0.

Using the Cantor theorem for the sequence (Fn(x))n≥0, we obtain that the intersection ∩n≥0 Fn(x) is a singleton set and we
denote this intersection by g(x) for all x ∈ A. Thus we get a map g : A → Y and g(x) ∈ F0(x) = F(x) for all x ∈ A.
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We now show that g is additive. For all x, y, z ∈ A and n ∈ N,

Fn(x + y + z) =
F(3n(x + y + z))

3n
=

F(3nx + 3ny + 3nz)
3n

⊆

2F


3nx+3ny
2


3n

+
F(3nz)
3n

= 2Fn


x + y
2


+ Fn(z).

By definition of g , we obtain

g(x + y + z) =

∞
n=0

Fn(x + y + z) ⊆

∞
n=0


2Fn


x + y
2


+ Fn(z)


,

g
 x+y

2


∈ Fn

 x+y
2


and g(z) ∈ Fn(z). Thus we getg(x + y + z)− 2g


x + y
2


− g(z)

 ≤ 2 · diamFn


x + y
2


+ diamFn(z),

which tends to zero as n tends to ∞. Thus

g(x + y + z) = 2g

x + y
2


+ g(z). (3.3)

Letting x = y = z = 0 in (3.3), we have g(0) = 2g(0)+ g(0). Thus g(0) = 0. Letting y = z = 0 and x = z = 0 in (3.3),
respectively, we obtain

g(x) = 2g
 x
2


and g(y) = 2g

 y
2


for all x, y ∈ A. So we get

‖g(x + y + z)− g(x)− g(y)− g(z)‖ =

2g 
x + y
2


− 2g

 x
2


− 2g

 y
2

 = 0

for all x, y, z ∈ A. Thus g is additive.
The rest of the proof is similar to the proof of Theorem 2.1. �
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[17] P. Gǎvruta, L. Gǎvruta, A new method for the generalized Hyers–Ulam–Rassias stability, Internat. J. Nonlinear Anal. Appl. 1 (2010) 11–18.
[18] M.E. Gordji, M.B. Savadkouhi, Stability of a mixed type cubic–quartic functional equation in non-Archimedean spaces, Appl. Math. Lett. 23 (2010)

1198–1202.
[19] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[20] G. Isac, Th.M. Rassias, On the Hyers–Ulam stability of ψ-additive mappings, J. Approx. Theory 72 (1993) 131–137.
[21] H. Khodaei, Th.M. Rassias, Approximately generalized additive functions in several variables, Internat. J. Nonlinear Anal. Appl. 1 (2010) 22–41.
[22] Th.M. Rassias (Ed.), Functional Equations and Inequalities, Kluwer Academic, Dordrecht, 2000.
[23] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000) 264–284.
[24] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000) 23–130.
[25] K. Nikodem, K -convex and K -concave set-valued functions, Z. K. Nr. 559 (1989) Lodz.
[26] T. Cardinali, K. Nikodem, F. Papalini, Some results on stability and characterization of K -convexity of set-valued functions, Ann. Polon. Math. 58 (1993)

185–192.
[27] K. Nikodem, On quadratic set-valued functions, Publ. Math. Debrecen 30 (1984) 297–301.
[28] K. Nikodem, On Jensen’s functional equation for set-valued functions, Rad. Mat. 3 (1987) 23–33.
[29] K. Nikodem, Set-valued solutions of the Pexider functional equation, Funkcial. Ekvac. 31 (1988) 227–231.
[30] Y.J. Piao, The existence and uniqueness of additive selection for (α, β)–(β, α) type subadditive set-valued maps, Journal of Northeast Normal

University 41 (2009) 38–40.
[31] D. Popa, Additive selections of (α, β)-subadditive set-valued maps, Glas. Mat. Ser. III 36 (56) (2001) 11–16.


	Hyers--Ulam stability of additive set-valued functional equations
	Introduction and preliminaries
	Stability of the set-valued functional equation (1)
	Stability of the set-valued functional equation (2)
	References


