
Bull. Korean Math. Soc. 48 (2011), No. 4, pp. 853–871

DOI 10.4134/BKMS.2011.48.4.853

STABILITY OF AN ADDITIVE FUNCTIONAL INEQUALITY

IN PROPER CQ∗-ALGEBRAS

Jung Rye Lee, Choonkil Park, and Dong Yun Shin

Abstract. In this paper, we prove the Hyers–Ulam–Rassias stability of
the following additive functional inequality:

∥f(2x) + f(2y) + 2f(z)∥ ≤ ∥2f(x+ y + z)∥.(0.1)

We investigate homomorphisms in proper CQ∗-algebras and derivations
on proper CQ∗-algebras associated with the additive functional inequality

(0.1).

1. Introduction and preliminaries

Ulam [36] gave a talk before the Mathematics Club of the University of
Wisconsin in which he discussed a number of unsolved problems. Among these
was the following question concerning the stability of homomorphisms.

We are given a group G and a metric group G′ with metric ρ(·, ·). Given ϵ >
0, does there exist a δ > 0 such that if f : G→ G′ satisfies ρ(f(xy), f(x)f(y)) <
δ for all x, y ∈ G, then a homomorphism h : G→ G′ exists with ρ(f(x), h(x)) <
ϵ for all x ∈ G?

By now an affirmative answer has been given in several cases, and some
interesting variations of the problem have also been investigated.

Hyers [13] considered the case of approximately additive mappings f : E →
E′, where E and E′ are Banach spaces and f satisfies Hyers inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ

for all x, y ∈ E. It was shown that the limit

L(x) = lim
n→∞

f(2nx)

2n

exists for all x ∈ E and that L : E → E′ is the unique additive mapping
satisfying

∥f(x)− L(x)∥ ≤ ϵ.
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Th. M. Rassias [25] provided a generalization of Hyers’ Theorem which allows
the Cauchy difference to be unbounded.

Theorem 1.1 (Th. M. Rassias). Let f : E → E′ be a mapping from a normed
vector space E into a Banach space E′ subject to the inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ θ(∥x∥p + ∥y∥p)(1.1)

for all x, y ∈ E, where θ and p are positive real numbers with p < 1. Then the
limit

L(x) = lim
n→∞

f(2nx)

2n

exists for all x ∈ E and L : E → E′ is the unique additive mapping which
satisfies

∥f(x)− L(x)∥ ≤ 2θ

2− 2p
∥x∥p

for all x ∈ E. Also, if for each x ∈ E the function f(tx) is continuous in t ∈ R,
then L is R-linear.

Th. M. Rassias [26] during the 27th International Symposium on Functional
Equations asked the question whether such a theorem can also be proved for
p ≥ 1. Gajda [11] following the same approach as in Th. M. Rassias [25], gave
an affirmative solution to this question for p > 1. It was shown by Gajda [11],
as well as by Th. M. Rassias and Šemrl [31] that one cannot prove a Th. M.
Rassias’ type theorem when p = 1. The counterexamples of Gajda [11], as well
as of Th. M. Rassias and Šemrl [31] have stimulated several mathematicians to
invent new definitions of approximately additive or approximately linear map-
pings, cf. P. Găvruta [12], who among others studied the Hyers–Ulam–Rassias
stability of functional equations. The inequality (1.1) that was introduced for
the first time by Th. M. Rassias [25] provided a lot of influence in the de-
velopment of a generalization of the Hyers–Ulam stability concept. This new
concept is known as Hyers–Ulam–Rassias stability of functional equations (cf.
the books of P. Czerwik [9, 10], D. H. Hyers, G. Isac and Th. M. Rassias [14]).

Beginning around the year 1980, the topic of approximate homomorphisms
and their stability theory in the field of functional equations and inequalities
was taken up by several mathematicians (cf. D. H. Hyers and Th. M. Rassias
[15], Th. M. Rassias [29] and the references therein).

J. M. Rassias [23] following the spirit of the innovative approach of Th. M.
Rassias [25] for the unbounded Cauchy difference proved a similar stability
theorem in which he replaced the factor ∥x∥p+ ∥y∥p by ∥x∥p · ∥y∥q for p, q ∈ R
with p+ q ̸= 1 (see also [24] for a number of other new results).

Theorem 1.2 ([22, 23, 24]). Let X be a real normed linear space and Y a real
complete normed linear space. Assume that f : X → Y is an approximately
additive mapping for which there exist constants θ ≥ 0 and p ∈ R −{1} such
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that f satisfies inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ θ · ||x||
p
2 · ||y||

p
2

for all x, y ∈ X. Then there exists a unique additive mapping L : X → Y
satisfying

∥f(x)− L(x)∥ ≤ θ

|2p − 2|
||x||p

for all x ∈ X. If, in addition, f : X → Y is a mapping such that the trans-
formation t→ f(tx) is continuous in t ∈ R for each fixed x ∈ X, then L is an
R-linear mapping.

Several mathematicians have contributed to this subject (see [16]–[20], [27]–
[30], [32]).

In this paper, we prove the Hyers–Ulam–Rassias stability of the following
additive functional equation:

∥f(2x) + f(2y) + 2f(z)∥ ≤ ∥2f(x+ y + z)∥.

In a series of papers [1]–[8] and [33]–[35], many authors have considered a
special class of quasi ∗-algebras, called proper CQ∗-algebras, which arise as
completions of C∗-algebras. They can be introduced in the following way:

Let A be a Banach module over the C∗-algebra A0 with involution ∗ and
C∗-norm ∥ · ∥0 such that A0 ⊂ A. We say that (A,A0) is a proper CQ∗-algebra
if

(i) A0 is dense in A with respect to its norm ∥ · ∥;
(ii) an involution ∗, which extends the involution of A0, is defined in A with

the property (xy)∗ = y∗x∗ for all x, y ∈ A whenever multiplications xy and
y∗x∗ are defined;

(iii) ∥y∥0 = supx∈A,∥x∥≤1 ∥xy∥ for all y ∈ A0.

Definition 1.3. Let (A,A0) and (B,B0) be proper CQ∗-algebras.
(i) A C-linear mapping h : A → B is called a proper CQ∗-algebra homo-

morphism if h(xy) = h(x)h(y) for all x, y ∈ A whenever multiplications xy
and h(x)h(y) are defined. In this case, we say that h(xy) = h(x)h(y) for all
x, y ∈ A whenever the multiplication is defined.

(ii) A C-linear mapping δ : A → A is called a derivation on A if δ(xy) =
δ(x)y+xδ(y) for all x, y ∈ A whenever multiplications xy, δ(x)y, and xδ(y) are
defined. In this case we say δ(xy) = δ(x)y + xδ(y) for all x, y ∈ A whenever
the multiplication is defined.

The purpose of this paper is to investigate the stability of homomorphisms
in proper CQ∗-algebras and of derivations on proper CQ∗-algebras associated
with the additive functional inequality (0.1). In this paper, we use only the
property that a CQ∗-algebra is a Banach space with a partially defined mul-
tiplication. Therefore our results are generalized to a Banach space with a
partially defined multiplication.
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This paper is organized as follows: In Section 2, we prove the stability of
C-linear mappings in Banach spaces.

In Section 3, we prove the stability of homomorphisms in proper CQ∗-
algebras.

In Section 4, we prove the stability of derivations on proper CQ∗-algebras.
Throughout this paper, we assume that (A,A0) is a proper CQ

∗-algebra with
C∗-norm ∥ · ∥A0 and norm ∥ · ∥A, and that (B,B0) is a proper CQ∗-algebra
with C∗-norm ∥ ·∥B0 and norm ∥ ·∥B . We denote that T1 := {λ ∈ C | |λ| = 1}.

2. Stability of C-linear mappings in Banach spaces

We investigate the Hyers–Ulam–Rassias stability of C-linear mappings in
Banach spaces associated with the additive functional inequality. In this sec-
tion, we assume that X,Y are Banach spaces.

Lemma 2.1. Let f : X → Y be a mapping satisfying

∥f(2x) + f(2y) + 2f(z)∥Y ≤ ∥2f(x+ y + z)∥Y(2.1)

for all x, y, z ∈ X. Then f is additive.

Proof. Letting x = y = z = 0 in (2.1), we get ∥4f(0)∥Y ≤ ∥2f(0)∥Y and so
f(0) = 0.

Letting z = 0 and replacing y by −x in (2.1), we get

∥f(2x) + f(−2x)∥Y ≤ ∥2f(0)∥Y = 0

for all x ∈ X. Hence f(−2x) = −f(2x) and so f(−x) = −f(x) for all x ∈ X.
Letting y = 0 and replacing z by −x in (2.1), we get

∥f(2x) + 2f(−x)∥Y ≤ ∥2f(0)∥Y = 0

for all x ∈ X. Thus we have f(2x) = 2f(x) for all x ∈ X.
Letting replacing z by −x− y in (2.1), we get

∥f(2x) + f(2y)− 2f(x+ y)∥Y ≤ ∥2f(0)∥Y = 0

for all x, y ∈ X. Thus we have

f(2x+ 2y) = f(2x) + f(2y)

and so

f(x+ y) = f(x) + f(y)

for all x, y ∈ X, as desired. □

Theorem 2.2. Let f : X → Y be a mapping with f(0) = 0. If there exists a
function φ : X3 → [0,∞) satisfying

∥f(2x) + f(2y) + 2f(z)∥Y ≤ ∥2f(x+ y + z)∥Y + φ(x, y, z),(2.2)

φ̃(x, y, z) :=

∞∑
j=0

1

2j
φ
(
(−2)jx, (−2)jy, (−2)jz

)
<∞(2.3)
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for all x, y, z ∈ X, then there exists a unique additive mapping L : X → Y
satisfying

(2.4) ∥f(x)− L(x)∥Y ≤ 1

2
φ̃(0,−x, x)

for all x ∈ X.

Proof. Replacing x, y, z by 0,−(−2)nx, (−2)nx, respectively, and dividing by
2n+1 in (2.2), since f(0) = 0, we get∥∥∥∥f((−2)n+1x)

(−2)n+1
− f((−2)nx)

(−2)n

∥∥∥∥
Y

≤ 1

2n+1
φ(0,−(−2)nx, (−2)nx)

for all x ∈ X. From the above inequality, we have∥∥∥∥f((−2)nx)

(−2)n
− f((−2)qx)

(−2)q

∥∥∥∥
Y

≤
n−1∑
j=q

∥∥∥∥f((−2)j+1x)

(−2)j+1
− f((−2)jx)

(−2)j

∥∥∥∥
Y

≤
n−1∑
j=q

1

2j+1
φ(0,−(−2)jx, (−2)jx)

for all x ∈ X and all non negative integers q, n with q < n. From (2.3), the

sequence { f((−2)nx)
(−2)n } is a Cauchy sequence for all x ∈ X. Since Y is complete,

the sequence { f((−2)nx)
(−2)n } converges for all x ∈ X. So we can define a mapping

L : X → Y by

L(x) := lim
n→∞

f((−2)nx)

(−2)n

for all x ∈ X.
In order to prove that L satisfies (2.4), if we put q = 0 and let n → ∞ in

the above inequality then we obtain

∥f(x)− L(x)∥Y ≤
∞∑
j=0

1

2j+1
φ(0,−(−2)jx, (−2)jx) =

1

2
φ̃(0,−x, x)

for all x ∈ X.
Replacing x, y, z by (−2)nx, (−2)ny, (−2)nz, respectively, and dividing by

2n in (2.2), we get∥∥∥∥f((−2)n2x)

(−2)n
+
f((−2)n2y)

(−2)n
+

2f((−2)nz)

(−2)n

∥∥∥∥
Y

≤
∥∥∥∥2f((−2)n(x+ y + z))

(−2)n

∥∥∥∥
Y

+
1

2n
φ((−2)nx, (−2)ny, (−2)nz)

for all x, y, z ∈ X. Since (2.3) gives that

lim
n→∞

1

2n
φ((−2)nx, (−2)ny, (−2)nz) = 0
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for all x, y, z ∈ X, if we let n→ ∞ in the above inequality, then we get

∥L(2x) + L(2y) + 2L(z)∥Y ≤ ∥2L(x+ y + z)∥Y ,
and so L is additive by Lemma 2.1.

Now to prove the uniqueness of L, let L′ : X → Y be another additive
mapping satisfying (2.4). Since both L and L′ are additive, we have

∥L(x)− L′(x)∥Y =
1

2n
∥L(2nx)− L′(2nx)∥Y

≤ 1

2n
(∥L(2nx)− f(2nx)∥Y + ∥L′(2nx)− f(2nx)∥Y )

≤ 1

2n
· 2φ̃(0,−2nx, 2nx)

= 2
∞∑
j=0

1

2n+j
φ(0, (−2)j+nx, (−2)j+nx)

which goes to zero as n → ∞ for all x ∈ X by (2.3). Consequently, L is a
unique additive mapping satisfying (2.4), as desired. □

Corollary 2.3. Let f : X → Y be a mapping. If there exists a function
φ : X3 → [0,∞) satisfying (2.2) and

φ̃(x, y, z) :=

∞∑
i=1

2iφ

(
x

(−2)i
,

y

(−2)i
,

z

(−2)i

)
<∞(2.5)

for all x, y, z ∈ X, then there exists a unique additive mapping L : X → Y
satisfying

(2.6) ∥f(x)− L(x)∥Y ≤ 1

2
φ̃(0,−x, x)

for all x ∈ X.

Proof. Since φ̃(0, 0, 0) < ∞ in (2.5), we have φ(0, 0, 0) = 0 and so f(0) = 0.
Replacing x, y, z by 0,− x

(−2)n ,
x

(−2)n , respectively, and multiplying by 2n−1 in

(2.2), we get∥∥∥∥(−2)n−1f

(
x

(−2)n−1

)
− (−2)nf

(
x

(−2)n

)∥∥∥∥
Y

≤ 2n−1φ

(
0,− x

(−2)n
,

x

(−2)n

)
for all x ∈ X. From the above inequality, we have∥∥∥∥(−2)nf

(
x

(−2)n

)
− (−2)qf

(
x

(−2)q

)∥∥∥∥
Y

≤
n∑

i=q+1

∥∥∥∥(−2)if

(
x

(−2)i

)
− (−2)i−1f

(
x

(−2)i−1

)∥∥∥∥
Y

≤
n∑

i=q+1

2i−1φ

(
0,− x

(−2)i
,

x

(−2)i

)
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for all x ∈ X and all non negative integers q, n with q < n. From (2.5), the

sequence {(−2)nf
(

x
(−2)n

)
} is a Cauchy sequence for all x ∈ X. Since Y is

complete, the sequence {(−2)nf
(

x
(−2)n

)
} converges for all x ∈ X. So we can

define a mapping L : X → Y by

L(x) := lim
n→∞

(−2)nf

(
x

(−2)n

)
for all x ∈ X.

In order to prove that L satisfies (2.6), if we put q = 0 and let n → ∞ in
the above inequality, then we obtain

∥f(x)− L(x)∥Y ≤
∞∑
i=1

2i−1φ

(
0,− x

(−2)i
,

x

(−2)i

)
=

1

2
φ̃(0,−x, x)

for all x ∈ X.
Replacing x, y, z by x

(−2)n ,
y

(−2)n ,
z

(−2)n , respectively, and multiplying by 2n

in (2.2), we get∥∥∥∥(−2)nf

(
2x

(−2)n

)
+ (−2)nf

(
2y

(−2)n

)
+ 2 · (−2)nf

(
z

(−2)n

)∥∥∥∥
Y

≤
∥∥∥∥2 · (−2)nf

(
x+ y + z

(−2)n

)∥∥∥∥
Y

+ 2nφ

(
x

(−2)n
,

y

(−2)n
,

z

(−2)n

)
for all x, y, z ∈ X. Since (2.5) gives that

lim
n→∞

2nφ

(
x

(−2)n
,

y

(−2)n
,

z

(−2)n

)
= 0

for all x, y, z ∈ X, if we let n→ ∞ in the above inequality, then we get

∥L(2x) + L(2y) + 2L(z)∥Y ≤ ∥2L(x+ y + z)∥Y

and so L is additive by Lemma 2.1.
The rest of the proof is the same as in the corresponding part of the proof

of Theorem 2.2, as desired. □

Lemma 2.4. Let f : X → Y be a mapping satisfying

∥f(2x) + µf(2y) + 2f(z)∥Y ≤ ∥2f(x+ µy + z)∥Y(2.7)

for all µ ∈ T1 and all x, y, z ∈ X. Then f is C-linear.

Proof. If we put µ = 1 in (2.7), then f is additive by Lemma 2.1.
Replacing x, y, z by µx,−x, 0, respectively, we get f(2µx) + µf(−2x) = 0

and so f(µx) = µf(x) for all µ ∈ T1 and all x ∈ X. Thus we have f(µx +
µ̄x) = f(µx) + f(µ̄x) = µf(x) + µ̄f(x) for all µ ∈ T1 and all x ∈ X, and so
f(tx) = tf(x) for any real number t with |t| ≤ 1 and all x ∈ X.
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On the other hand, since f(2x) = 2f(x), we get f(2nx) = 2nf(x) for all
n ∈ N. Since, for any real number t, there is a natural number n with |t| ≤ 2n,
we have

f(tx) = f

(
2n · t

2n
x

)
= 2nf

(
t

2n
x

)
= 2n · t

2n
f(x) = tf(x).

Now we consider any α ∈ C with α = t + si for some real numbers t, s. Since
f(ix) = if(x) holds, we have

f(αx) = f(tx) + f(six) = tf(x) + sf(ix) = tf(x) + sif(x) = αf(x)

and so f is C-linear, as desired. □

Theorem 2.5. Let f : X → Y be a mapping with f(0) = 0. If there exists a
function φ : X3 → [0,∞) satisfying (2.3) and

∥f(2x) + µf(2y) + 2f(z)∥Y ≤ ∥2f(x+ µy + z)∥Y + φ(x, y, z)(2.8)

for all µ ∈ T1 and all x, y, z ∈ X, then there exists a unique C-linear mapping
L : X → Y satisfying (2.4).

Proof. If we put µ = 1 in (2.8), then by Theorem 2.2 there exists a unique
additive mapping L : X → Y defined by

L(x) := lim
n→∞

f((−2)nx)

(−2)n

for all x ∈ X which satisfies (2.4). By a similar method to the corresponding
part of the proof of Theorem 2.2, L satisfies

∥L(2x) + µL(2y) + 2L(z)∥Y ≤ ∥2L(x+ µy + z)∥Y

for all µ ∈ T1 and all x, y, z ∈ X. Thus Lemma 2.4 gives that L is C-linear. □

Corollary 2.6. Let f : X → Y be a mapping. If there exists a function
φ : X3 → [0,∞) satisfying (2.5) and (2.8), then there exists a unique C-linear
mapping L : X → Y satisfying (2.6).

Proof. If we put µ = 1 in (2.8), then by Corollary 2.3, there exists a unique
additive mapping L : X → Y defined by

L(x) := lim
n→∞

(−2)nf

(
x

(−2)n

)
for all x ∈ X which satisfies (2.6).

The rest of the proof is the same as in the corresponding part of the proof
of Theorem 2.5, as desired. □
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3. Stability of homomorphisms in proper CQ∗-algebras

We investigate the Hyers–Ulam–Rassias stability of isomorphisms in proper
CQ∗-algebras associated with the additive functional inequality. From now on,
we suppose that (A,A0) and (B,B0) are proper CQ∗-algebras.

Theorem 3.1. Let f : A → B be a mapping with f(0) = 0. If there exists a
function φ : A3 → [0,∞) satisfying

∥f(2x) + µf(2y) + 2f(z)∥B ≤ ∥2f(x+ µy + z)∥B + φ(x, y, z),(3.1)

φ̃(x, y, z) :=
∞∑
j=0

1

2j
φ
(
(−2)jx, (−2)jy, (−2)jz

)
<∞(3.2)

for all µ ∈ T1 and all x, y, z ∈ A, and, in addition, there exists a function
ϕ : A2 → [0,∞) satisfying

∥f(xy)− f(x)f(y)∥B ≤ ϕ(x, y),(3.3)

lim
n→∞

1

4n
ϕ((−2)nx, (−2)ny) = 0(3.4)

for all x, y ∈ A whenever the multiplication is defined, then there exists a unique
proper CQ∗-algebra homomorphism h : A→ B satisfying

(3.5) ∥f(x)− h(x)∥B ≤ 1

2
φ̃(0,−x, x)

for all x ∈ A.

Proof. By Theorem 2.5, we have a unique C-linear mapping h : A→ B defined
by

h(x) := lim
n→∞

f((−2)nx)

(−2)n

for all x ∈ A which satisfies (3.5).
Now we show that h(xy) = h(x)h(y) for all x, y ∈ A whenever the multipli-

cation is defined.
Replacing x, y by (−2)nx, (−2)ny, respectively, and dividing by 4n in (3.3),

we get∥∥∥∥ 1

4n
[f((−2)nx(−2)ny)− f((−2)nx)f((−2)ny)]

∥∥∥∥
B

≤ 1

4n
ϕ((−2)nx, (−2)ny)

for all x, y ∈ A whenever the multiplication is defined. We have

lim
n→∞

1

4n
f((−2)nx(−2)ny) = lim

n→∞

f((−2)2nxy)

(−2)2n
= h(xy)

lim
n→∞

1

4n
f((−2)nx)f((−2)ny) = lim

n→∞

f((−2)nx)

(−2)n
· lim
n→∞

f((−2)nx)

(−2)n
= h(x)h(y)

for all x, y ∈ A whenever the multiplication is defined. If we let n→ ∞ in the
above inequality, then (3.4) gives h(xy) = h(x)h(y) for all x, y ∈ A whenever
the multiplication is defined. □
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Corollary 3.2. Let θ, p be nonnegative real numbers with p < 1 and let f :
A→ B a mapping satisfying

∥f(2x) + µf(2y) + 2f(z)∥B ≤ ∥2f(x+ µy + z)∥B + θ(∥x∥pA + ∥y∥pA + ∥z∥pA),

∥f(xy)− f(x)f(y)∥B ≤ θ(∥x∥2pA + ∥y∥2pA )

for all µ ∈ T1 and all x, y, z ∈ A whenever the multiplication is defined. Then
there exists a unique proper CQ∗-algebra homomorphism h : A→ B satisfying

∥f(x)− h(x)∥B ≤ 2θ

2− 2p
∥x∥pA

for all x ∈ A.

Proof. Let φ : A3 → [0,∞) be φ(x, y, z) = θ(∥x∥pA + ∥y∥pA + ∥z∥pA). When
p < 1, we get

φ̃(x, y, z) : =
∞∑
j=0

1

2j
φ
(
(−2)jx, (−2)jy, (−2)jz

)
=

∞∑
j=0

2pj

2j
θ(∥x∥pA + ∥y∥pA + ∥z∥pA)

=
2θ

2− 2p
(∥x∥pA + ∥y∥pA + ∥z∥pA).

In addition, let ϕ : A2 → [0,∞) be ϕ(x, y) = θ(∥x∥2pA + ∥y∥2pA ). When p < 1,
we have

lim
n→∞

1

4n
ϕ((−2)nx, (−2)ny) = lim

n→∞

22pn

4n
θ(∥x∥2pA + ∥y∥2pA ) = 0

for all x, y ∈ A. By applying Theorem 3.1, there exists a unique proper CQ∗-
algebra homomorphism h : A→ B such that

∥f(x)− h(x)∥B ≤ 1

2
φ̃(0,−x, x) = 2θ

2− 2p
∥x∥pA

for all x ∈ A. □

Corollary 3.3. Let θ, p be nonnegative real numbers with p < 1 and let f :
A→ B a mapping satisfying

∥f(2x) + µf(2y) + 2f(z)∥B ≤ ∥2f(x+ µy + z)∥B + θ(∥x∥pA + ∥y∥pA + ∥z∥pA),
∥f(xy)− f(x)f(y)∥B ≤ θ · ∥x∥pA · ∥y∥pA

for all x, y, z ∈ A whenever the multiplication is defined. Then there exists a
unique proper CQ∗-algebra homomorphism h : A→ B satisfying

∥f(x)− h(x)∥B ≤ 2θ

2− 2p
∥x∥pA

for all x ∈ A.
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Proof. Let φ : A3 → [0,∞) be φ(x, y, z) = θ(∥x∥pA + ∥y∥pA + ∥z∥pA) and let
ϕ : A2 → [0,∞) be ϕ(x, y) = θ·∥x∥pA·∥y∥

p
A. When p < 1, we have φ̃(x, y, z) <∞

and

lim
n→∞

1

4n
ϕ((−2)nx, (−2)ny) = lim

n→∞

22pn

4n
· θ · ∥x∥pA · ∥y∥pA = 0

for all x, y, z ∈ A.
By applying Theorem 3.1, there exists a unique proper CQ∗-algebra homo-

morphism h : A→ B such that

∥f(x)− h(x)∥B ≤ 1

2
φ̃(0,−x, x) = 2θ

2− 2p
∥x∥pA

for all x ∈ A. □

Theorem 3.4. Let f : A → B be a mapping. If there exists a function
φ : A3 → [0,∞) satisfying (3.1) and

φ̃(x, y, z) :=

∞∑
i=1

2iφ

(
x

(−2)i
,

y

(−2)i
,

z

(−2)i

)
<∞(3.6)

for all x, y, z ∈ A, and, in addition, there exists a function ϕ : A2 → [0,∞)
satisfying (3.3) and

lim
n→∞

4nϕ

(
x

(−2)n
,

y

(−2)n

)
= 0(3.7)

for all x, y ∈ A whenever the multiplication is defined, then there exists a unique
proper CQ∗-algebra homomorphism h : A→ B satisfying

(3.8) ∥f(x)− h(x)∥B ≤ 1

2
φ̃(0,−x, x)

for all x ∈ A.

Proof. By Corollary 2.6, we have a unique C-linear mapping h : A→ B defined
by

h(x) := lim
n→∞

(−2)nf

(
x

(−2)n

)
for all x ∈ A which satisfies (3.8).

Now replacing x, y by x
(−2)n ,

y
(−2)n , respectively, and multiplying by 4n in

(3.3), we get∥∥∥∥4n [f ( x

(−2)n
· y

(−2)n

)
− f

(
x

(−2)n

)
f

(
y

(−2)n

)]∥∥∥∥
B

≤ 4nϕ

(
x

(−2)n
,

y

(−2)n

)
for all x, y ∈ A whenever the multiplication is defined. Since

lim
n→∞

4nf

(
x

(−2)n
· y

(−2)n

)
= lim

n→∞
(−2)2nf

(
xy

(−2)2n

)
= h(xy)
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lim
n→∞

4nf

(
x

(−2)n

)
f

(
y

(−2)n

)
= lim

n→∞
(−2)nf

(
x

(−2)n

)
· lim
n→∞

(−2)nf

(
y

(−2)n

)
= h(x)h(y)

for all x, y ∈ A whenever the multiplication is defined. If we let n→ ∞ in the
above inequality, then (3.7) gives h(xy) = h(x)h(y) for all x, y ∈ A whenever
the multiplication is defined. □

Corollary 3.5. Let θ, p be nonnegative real numbers with p > 1 and let f :
A→ B a mapping satisfying

∥f(2x) + µf(2y) + 2f(z)∥B ≤ ∥2f(x+ µy + z)∥B + θ(∥x∥pA + ∥y∥pA + ∥z∥pA),

∥f(xy)− f(x)f(y)∥B ≤ θ(∥x∥2pA + ∥y∥2pA )

for all µ ∈ T1 and all x, y, z ∈ A whenever the multiplication is defined. Then
there exists a unique proper CQ∗-algebra homomorphism h : A→ B satisfying

∥f(x)− h(x)∥B ≤ 2θ

2p − 2
∥x∥pA

for all x ∈ A.

Proof. Let φ : A3 → [0,∞) be φ(x, y, z) = θ(∥x∥pA + ∥y∥pA + ∥z∥pA). When
p > 1, we get

φ̃(x, y, z) : =
∞∑
i=1

2iφ

(
x

(−2)i
,

y

(−2)i
,

z

(−2)i

)

=
∞∑
i=1

2i

2pi
θ(∥x∥pA + ∥y∥pA + ∥z∥pA)

=
2θ

2p − 2
(∥x∥pA + ∥y∥pA + ∥z∥pA).

In addition, let ϕ : A2 → [0,∞) be ϕ(x, y) = θ(∥x∥2pA + ∥y∥2pA ). When p > 1,
we get

lim
n→∞

4nϕ

(
x

(−2)n
,

y

(−2)n

)
= lim

n→∞

4n

22pn
θ(∥x∥2pA + ∥y∥2pA ) = 0

for all x, y ∈ A.
By applying Theorem 3.4, there exists a unique proper CQ∗-algebra homo-

morphism h : A→ B such that

∥f(x)− h(x)∥B ≤ 1

2
φ̃(0,−x, x) = 2θ

2p − 2
∥x∥pA

for all x ∈ A. □
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Corollary 3.6. Let θ, p be nonnegative real numbers with p > 1 and let f :
A→ B a mapping satisfying

∥f(2x) + µf(2y) + 2f(z)∥B ≤ ∥2f(x+ µy + z)∥B + θ(∥x∥pA + ∥y∥pA + ∥z∥pA),
∥f(xy)− f(x)f(y)∥B ≤ θ · ∥x∥pA · ∥y∥pA

for all µ ∈ T1 and all x, y, z ∈ A whenever the multiplication is defined. Then
there exists a unique proper CQ∗-algebra homomorphism h : A→ B satisfying

∥f(x)− h(x)∥B ≤ 2θ

2p − 2
∥x∥pA

for all x ∈ A.

Proof. Let φ : A3 → [0,∞) be φ(x, y, z) = θ(∥x∥pA + ∥y∥pA + ∥z∥pA) and let
ϕ : A2 → [0,∞) be ϕ(x, y) = θ·∥x∥pA·∥y∥

p
A. When p > 1, we have φ̃(x, y, z) <∞

and

lim
n→∞

4nϕ

(
x

(−2)n
,

y

(−2)n

)
= lim

n→∞

4n

22pn
· θ · ∥x∥pA · ∥y∥pA = 0

for all x, y, z ∈ A. By applying Theorem 3.4, there exists a unique proper
CQ∗-algebra homomorphism h : A→ B such that

∥f(x)− h(x)∥B ≤ 1

2
φ̃(0,−x, x) = 2θ

2p − 2
∥x∥pA

for all x ∈ A. □

4. Stability of derivations on proper CQ∗-algebras

We investigate the Hyers–Ulam–Rassias stability of derivations on proper
CQ∗-algebras associated with the additive functional inequality.

Theorem 4.1. Let f : A → A be a mapping with f(0) = 0. If there exists a
function φ : A3 → [0,∞) satisfying

∥f(2x) + µf(2y) + 2f(z)∥A ≤ ∥2f(x+ µy + z)∥A + φ(x, y, z),(4.1)

φ̃(x, y, z) :=
∞∑
j=0

1

2j
φ
(
(−2)jx, (−2)jy, (−2)jz

)
<∞(4.2)

for all µ ∈ T1 and all x, y, z ∈ A, and, in addition, there exists a function
ψ : A2 → [0,∞) satisfying

∥f(xy)− f(x)y − xf(y)∥A ≤ ψ(x, y),(4.3)

lim
n→∞

1

4n
ψ((−2)nx, (−2)ny) = 0(4.4)

for all x, y ∈ A whenever the multiplication is defined, then there exists a unique
derivation δ on A satisfying

(4.5) ∥f(x)− δ(x)∥A ≤ 1

2
φ̃(0,−x, x)

for all x ∈ A.
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Proof. By Theorem 2.5, we have a unique C-linear mapping δ : A→ A defined
by

δ(x) := lim
n→∞

f((−2)nx)

(−2)n

for all x ∈ A which satisfies (4.5).
Now we show that δ(xy) = δ(x)δ(y) for all x, y ∈ A whenever the multipli-

cation is defined.
Replacing x, y by (−2)nx, (−2)ny, respectively, and dividing by 4n in (4.3),

we get ∥∥∥∥ 1

4n
[f((−2)nx(−2)ny)− f((−2)nx)(−2)ny − (−2)nxf((−2)ny)]

∥∥∥∥
A

≤ 1

4n
ψ((−2)nx, (−2)ny)

for all x, y ∈ A whenever the multiplication is defined. We have

lim
n→∞

1

4n
f((−2)nx(−2)ny) = lim

n→∞

f((−2)2nxy)

(−2)2n
= δ(xy),

lim
n→∞

1

4n
f((−2)nx) · (−2)ny = lim

n→∞

f((−2)nx)

(−2)n
· (−2)ny

(−2)n
= δ(x)y,

lim
n→∞

1

4n
(−2)nx · f((−2)ny) = lim

n→∞

(−2)nx

(−2)n
· (−2)ny

(−2)n
= xδ(y)

for all x, y ∈ A whenever the multiplication is defined. If we let n → ∞ in
the above inequality then (4.4) gives δ(xy) = δ(x)y − xδ(y) for all x, y ∈ A
whenever the multiplication is defined. □

Corollary 4.2. Let θ, p be nonnegative real numbers with p < 1 and let f :
A→ A a mapping satisfying

∥f(2x) + µf(2y) + 2f(z)∥A ≤ ∥2f(x+ µy + z)∥A + θ(∥x∥pA + ∥y∥pA + ∥z∥pA),

∥f(xy)− f(x)y − xf(y)∥A ≤ θ(∥x∥2pA + ∥y∥2pA )

for all µ ∈ T1 and for all x, y, z ∈ A whenever the multiplication is defined.
Then there exists a unique derivation δ on A satisfying

∥f(x)− δ(x)∥A ≤ 2θ

2− 2p
∥x∥pA

for all x ∈ A.

Proof. Let φ : A3 → [0,∞) be φ(x, y, z) = θ(∥x∥pA + ∥y∥pA + ∥z∥pA). When
p < 1, we get

φ̃(x, y, z) : =
∞∑
j=0

1

2j
φ
(
(−2)jx, (−2)jy, (−2)jz

)
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=

∞∑
j=0

2pj

2j
θ(∥x∥pA + ∥y∥pA + ∥z∥pA)

=
2θ

2− 2p
(∥x∥pA + ∥y∥pA + ∥z∥pA).

In addition, let ψ : A2 → [0,∞) be ψ(x, y) = θ(∥x∥2pA + ∥y∥2pA ). When p < 1,
we have

lim
n→∞

1

4n
ψ((−2)nx, (−2)ny) = lim

n→∞

22pn

4n
θ(∥x∥2pA + ∥y∥2pA ) = 0

for all x, y ∈ A. By applying Theorem 4.1, there exists a unique proper CQ∗-
algebra homomorphism h : A→ B such that

∥f(x)− δ(x)∥A ≤ 1

2
φ̃(0,−x, x) = 2θ

2− 2p
∥x∥pA

for all x ∈ A. □

Corollary 4.3. Let θ, p be nonnegative real numbers with p < 1 and let f :
A→ B a mapping satisfying

∥f(2x) + µf(2y) + 2f(z)∥A ≤ ∥2f(x+ µy + z)∥A + θ(∥x∥pA + ∥y∥pA + ∥z∥pA),
∥f(xy)− f(x)y − xf(y)∥A ≤ θ · ∥x∥pA · ∥y∥pA

for all x, y, z ∈ A whenever the multiplication is defined. Then there exists a
unique derivation δ on A satisfying

∥f(x)− δ(x)∥A ≤ 2θ

2− 2p
∥x∥pA

for all x ∈ A.

Proof. Let φ : A3 → [0,∞) be φ(x, y, z) = θ(∥x∥pA + ∥y∥pA + ∥z∥pA) and let ψ :
A2 → [0,∞) be ψ(x, y) = θ · ∥x∥pA · ∥y∥pA. When p < 1, we have φ̃(x, y, z) <∞
and

lim
n→∞

1

4n
ϕ((−2)nx, (−2)ny) = lim

n→∞

22pn

4n
· θ · ∥x∥pA · ∥y∥pA = 0

for all x, y, z ∈ A.
By applying Theorem 4.1, there exists a unique proper CQ∗-algebra homo-

morphism δ : A→ A such that

∥f(x)− δ(x)∥A ≤ 1

2
φ̃(0,−x, x) = 2θ

2− 2p
∥x∥pA

for all x ∈ A. □

Theorem 4.4. Let f : A → A be a mapping. If there exists a function φ :
A3 → [0,∞) satisfying (4.1) and

φ̃(x, y, z) :=
∞∑
i=1

2iφ

(
x

(−2)j
,

y

(−2)j
,

z

(−2)j

)
<∞,(4.6)



868 JUNG RYE LEE, CHOONKIL PARK, AND DONG YUN SHIN

and, in addition, there exists a function ψ : A2 → [0,∞) satisfying (4.3) and

lim
n→∞

4nψ

(
x

(−2)n
,

y

(−2)n

)
= 0(4.7)

for all x, y ∈ A, then there exists a unique derivation δ on A satisfying

(4.8) ∥f(x)− δ(x)∥A ≤ 1

2
φ̃(0,−x, x)

for all x ∈ A.

Proof. By Corollary 2.6, we have a unique C-linear mapping δ : A→ A defined
by

δ(x) := lim
n→∞

(−2)nf

(
x

(−2)n

)
for all x ∈ A which satisfies (4.8).

Now replacing x, y by x
(−2)n ,

y
(−2)n , respectively, and multiplying by 4n in

(4.3), we get∥∥∥∥4n [f ( x

(−2)n
· y

(−2)n

)
− f

(
x

(−2)n

)
f

(
y

(−2)n

)]∥∥∥∥
B

≤ 4nψ

(
x

(−2)n
,

y

(−2)n

)
for all x, y ∈ A whenever the multiplication is defined. We have

lim
n→∞

4nf

(
x

(−2)n
· y

(−2)n

)
= lim

n→∞
(−2)2nf

(
xy

(−2)2n

)
= δ(xy),

lim
n→∞

4nf

(
x

(−2)n

)
· y

(−2)n
= lim

n→∞
(−2)nf

(
x

(−2)n

)
· lim
n→∞

(−2)ny

(−2)n
= δ(x)y,

lim
n→∞

4n
x

(−2)n
· f

(
y

(−2)n

)
= lim

n→∞

(−2)nx

(−2)n
· lim
n→∞

(−2)nf

(
y

(−2)n

)
= xδ(y)

for all x, y ∈ A whenever the multiplication is defined. If we let n → ∞ in
the above inequality, then (4.7) gives δ(xy) = δ(x)y − xδ(y) for all x, y ∈ A
whenever the multiplication is defined. □

Corollary 4.5. Let θ, p be nonnegative real numbers with p > 1 and let f :
A→ A a mapping satisfying

∥f(2x) + µf(2y) + 2f(z)∥B ≤ ∥2f(x+ µy + z)∥A + θ(∥x∥pA + ∥y∥pA + ∥z∥pA),

∥f(xy)− f(x)y − xf(y)∥A ≤ θ(∥x∥2pA + ∥y∥2pA )

for all µ ∈ T1 and all x, y, z ∈ A whenever the multiplication is defined. Then
there exists a unique derivation δ on A satisfying

∥f(x)− δ(x)∥A ≤ 2θ

2p − 2
∥x∥pA

for all x ∈ A.
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Proof. Let φ : A3 → [0,∞) be φ(x, y, z) = θ(∥x∥pA + ∥y∥pA + ∥z∥pA). When
p > 1, we get

φ̃(x, y, z) : =
∞∑
i=1

2iφ

(
x

(−2)i
,

y

(−2)i
,

z

(−2)i

)

=

∞∑
i=1

2i

2pi
θ(∥x∥pA + ∥y∥pA + ∥z∥pA)

=
2θ

2p − 2
(∥x∥pA + ∥y∥pA + ∥z∥pA).

In addition, let ψ : A2 → [0,∞) be ϕ(x, y) = θ(∥x∥2pA + ∥y∥2pA ). When p > 1,
we get

lim
n→∞

4nψ

(
x

(−2)n
,

y

(−2)n

)
= lim

n→∞

4n

22pn
θ(∥x∥2pA + ∥y∥2pA ) = 0

for all x, y ∈ A.
By applying Theorem 4.4, there exists a unique proper CQ∗-algebra homo-

morphism δ : A→ A such that

∥f(x)− δ(x)∥A ≤ 1

2
φ̃(0,−x, x) = 2θ

2p − 2
∥x∥pA

for all x ∈ A. □

Corollary 4.6. Let θ, p be nonnegative real numbers with p > 1 and let f :
A→ B a mapping satisfying

∥f(2x) + µf(2y) + 2f(z)∥A ≤ ∥2f(x+ µy + z)∥A + θ(∥x∥pA + ∥y∥pA + ∥z∥pA),
∥f(xy)− f(x)y − xf(y)∥A ≤ θ · ∥x∥pA · ∥y∥pA

for all µ ∈ T1 and all x, y, z ∈ A whenever the multiplication is defined. Then
there exists a unique derivation δ on A satisfying

∥f(x)− δ(x)∥A ≤ 2θ

2p − 2
∥x∥pA

for all x ∈ A.

Proof. Let φ : A3 → [0,∞) be φ(x, y, z) = θ(∥x∥pA + ∥y∥pA + ∥z∥pA) and let ψ :
A2 → [0,∞) be ψ(x, y) = θ · ∥x∥pA · ∥y∥pA. When p > 1, we have φ̃(x, y, z) <∞
and

lim
n→∞

4nϕ

(
x

(−2)n
,

y

(−2)n

)
= lim

n→∞

4n

22pn
· θ · ∥x∥pA · ∥y∥pA = 0

for all x, y, z ∈ A. By applying Theorem 3.4, there exists a unique proper
CQ∗-algebra homomorphism δ : A→ A such that

∥f(x)− δ(x)∥A ≤ 1

2
φ̃(0,−x, x) = 2θ

2p − 2
∥x∥pA

for all x ∈ A. □
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