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Abstract— This paper presents a low-complexity near-
maximum-likelihood-detection (near-MLD) algorithm called
one-bit sphere decoding for an uplink massive multiple-input
multiple-output system with one-bit analog-to-digital convert-
ers. The idea of the proposed algorithm is to estimate the
transmitted symbol vector sent by uplink users (a codeword
vector) by searching over a sphere, which contains a collection
of codeword vectors close to the received signal vector at
the base station in terms of a weighted Hamming distance.
To reduce the computational complexity for the construction of
the sphere, the proposed algorithm divides the received signal
vector into multiple subvectors each with a reduced dimension.
Then, it generates multiple spheres in parallel, where each sphere
is centered at the subvector and contains a list of subcodeword
vectors. The detection performance of the proposed algorithm is
also analyzed by characterizing the probability that the proposed
algorithm performs worse than the MLD. The analysis shows how
the dimension of each sphere and the size of the subcodeword
list are related to the performance-complexity tradeoff achieved
by the proposed algorithm. Simulation results demonstrate that
the proposed algorithm achieves near-MLD performance, while
reducing the computational complexity compared to the existing
MLD method.

Index Terms— Massive MIMO, one-bit ADC, multiuser detec-
tion, sphere decoding, maximum likelihood detection.

I. INTRODUCTION

W IRELESS systems with ultra low-precision analog-
to-digital converter (ADC) are a power and cost

efficient solution for future cellular networks that support
wide bandwidths and a large number of antennas at the
base station (BS) [2]–[9]. For the multiple-input multiple-
output (MIMO) system with B-bit ADCs, where B > 1,
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finding an optimal data detection method is challenging. The
challenge arises from multiple quantization levels at the ADCs,
which can be differently chosen to minimize the detection
error probability according to an input constellation and the
variance of noise. Numerous sub-optimal data detection and
channel estimation methods have been proposed assuming
fixed quantization levels [10]–[16].

The use of one-bit ADCs in MIMO systems is interesting
from both practical and theoretical perspectives [17]–[21]. One
major implementation advantage is the simplification of the
circuit complexity by removing automatic gain control [6].
In addition, the characterization of the channel capacity
becomes tractable due to a fixed quantization level (e.g., zero-
threshold comparator). For example, some capacity bounds
of the MIMO system with one-bit ADCs were characterized
when employing channel state information at the transmitter
for a noise-free case [17]. Beside a capacity characterization,
it is also possible to analytically derive the maximum like-
lihood detection (MLD) for the MIMO systems with one-bit
ADCs [19], which yields the minimum error probability of
detecting transmit symbols.

The MLD problem for MIMO systems with one-bit ADCs
differs from that for conventional MIMO systems with infinite-
precision ADCs. Under Gaussian noise, the MLD for the con-
ventional systems reduces to the minimum Euclidean distance
detection problem over a finite constellation set [22]–[25].
In contrast, the MLD for the MIMO systems with one-bit
ADCs finds an integer vector that maximizes the product of
Q-functions [19] instead of solving the least-squares problems.
Nevertheless, the computational complexity of both MLD
problems is NP-hard due to the integer constraint on the
feasible set.

Some low-complexity detection methods have been devel-
oped for MIMO systems with one-bit ADCs [18]–[20]. For
instance, a heuristic zero-forcing detection (ZFD) method
using one-bit quantized measurements was introduced in [18].
A drawback of ZFD is that the number of receive antennas
should be much larger than all possible numbers of transmit
symbol vectors to reliably detect the transmitted data symbols.
In other words, for a given number of receive antennas,
the constellation size and/or the number of uplink users
sending the data should be small to achieve a target level of
the data detection performance. A near-MLD method using
a convex relaxation technique was proposed in [11]. This
approach was also extended to devise ML data detection and
channel estimation methods for the MIMO systems employing
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one-bit ADCs [19]. The common idea is to convert the non-
convex optimization problem that finds the optimal integer
vector to a convex-optimization problem, and then to find the
solution using gradient-decent algorithms.

Sphere decoding is a low-complexity detection method for
MIMO systems with infinite-precision ADCs [22]–[27]. The
basic idea of sphere decoding is to search over only integer
input vectors that lie in the sphere with a certain radius d
around an initial estimate of input vector x̂. It diminishes
the computational complexity by reducing the search space,
while achieving near-MLD performance. The sphere decoding
algorithms in [22]–[25] cannot easily be extended to a MIMO
system with one-bit ADCs. This is because they find a set
of integer vectors within the sphere with radius d in terms
of the Euclidean distance between a received vector y and
the product of the channel matrix H and the initial estimate
of transmit vector x̂ [22]–[24]. When employing one-bit
ADCs, the initial estimate of x̂ with one-bit measurements
is inaccurate using ZFD. Furthermore, constructing the sphere
using the Euclidean distance is not optimal when the received
signal at the BS is quantized, as proven in [14] for one-bit
ADCs.

In this paper, a low-complexity detection algorithm inspired
by sphere decoding is presented for an uplink massive MIMO
system with one-bit ADCs. The major contributions of this
paper are summarized as follows.

• We develop a near-optimal detection method for the
uplink of a multi-user MIMO system with one-bit
ADCs. The proposed method is a variant of minimum
weighted-Hamming-distance detection (MWD) that was
originally introduced in [14]. Unlike [14] in which
the weights are defined in an integral form, the pro-
posed MWD exploits closed-form weights when comput-
ing weighted-Hamming-distances by approximating the
Q-function.

• We propose a low-complexity near-MLD algorithm called
one-bit-sphere-decoding (OSD). The key idea of the OSD
is to perform the proposed MWD over a sphere, which is
a reduced set of all possible symbol (codeword) vectors
that are close to the received signal at the BS in terms of
the weighted Hamming distance. To diminish the com-
putational complexity for the construction of codeword
list in the sphere, we divide the received signal vector
into multiple sub-vectors each with a reduced dimension.
Then, we generate multiple spheres in parallel, where
each sphere is centered at the sub-vector and contains a
list of sub-codeword vectors. We compare the detection
complexities between the proposed OSD and the exist-
ing MLD, and show the gains in the deduction of the
complexity for OSD over MLD.

• We quantify the detection performance loss of the pro-
posed OSD compared to the optimal performance. To this
end, we characterize an upper bound of the probability
that the proposed OSD performs worse than the MWD.
In the characterization, we first show that this prob-
ability is upper bounded by the sphere-list-error-
probability (SEP), which is the probability that the index
of the transmitted codeword does not belong to the

Fig. 1. Illustration of a U -user uplink massive MIMO system that operates
with one-bit ADCs.

constructed list in the sphere. We then derive an analytical
expression for the upper bound of the SEP in terms
of the relevant system parameters: 1) the number of
uplink users, 2) the number of receive antennas at the
BS, 3) the size of the codeword list in the sphere, and
4) the dimension of the sub-vector. Our result reveals how
the multi-user detection error behaves with these relevant
parameters.

• Using simulations, we compare the detection performance
of the OSD with those of the MLD and the MWD
for both uncoded and coded MIMO systems with one-
bit ADCs. Simulation results show that for the uncoded
system, the OSD has near-MLD detection performance,
while achieving a significant reduction in the detection
complexity compared to the MLD. For the coded MIMO
system, the OSD is implemented with a soft-output
decoder by applying the technique in [?] and is shown
to achieve a significant frame-error-rate (FER) reduction
compared to a hard-output decoder.

Notation: Upper-case and lower-case boldface letters denote
matrices and column vectors, respectively. E[·] is the statistical
expectation, P(·) is the probability, (·)� is the transpose,
| · | is the absolute value, Re(·) is the real part, Im(·) is
the imaginary part, and �·� is the floor function. 1n is an
n-dimensional vector whose elements are all ones. I(A) is an
indicator function that equals one if an event A is true and
zero otherwise.

II. SYSTEM MODEL

In this section, we present a model for an uplink massive
MIMO system with one-bit ADCs and provide definitions that
will be used in the sequel.

A. System Model

We consider an uplink massive MIMO system in which U
uplink users, each equipped with a single transmit antenna,
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send data symbols to a BS equipped with N receive anten-
nas, as illustrated in Fig. 1. We denote a (data) symbol
vector sent by the uplink users at time slot t as x̄[t] =
[x̄1[t], x̄2[t], · · · , x̄U [t]]�, where each data symbol x̄u[t] is
drawn from a constellation set X̄ with size M , i.e., |X̄ | = M ,
and satisfies E[|x̄u[t]|2] = 1. In other words, the symbol vector
x̄[t] collects the transmitted signals from all users at time slot
t. We define X as a constellation set for real or imaginary part
such that X̄ = {xR+jxI | xR, xI ∈ X} and |X | =

√
M . Then

X 2U represents a symbol vector set that contains all possible
combinations of transmit symbols sent by the U uplink users.

We assume a frequency-flat MIMO channel. Let h̄u ∈
C

N×1 be the channel vector from the u-th uplink user to
the BS. Then, channel-impulse-response (CIR) is given by
a channel matrix H̄ = [h̄1, . . . , h̄U ] ∈ C

N×U . We assume
a block fading model in which the channel is time-invariant
during coherence time interval. We denote Td as the duration
(the number of time slots) for data detection. We also make
two assumptions: 1) perfect synchronization at the BS and
2) perfect power control across all uplink users. Under these
assumptions, the received signal vector at time slot t before
ADC quantization is

r̄[t] = H̄x̄[t] + z̄[t] ∈ C
N , (1)

where z̄[t] = [z̄1[t], z̄2[t], · · · , z̄N [t]]� has elements indepen-
dently drawn from a complex Gaussian distribution with zero
mean and variance σ2. The complex received signal in (1) can
be equivalently rewritten in a real-form as[
Re(r̄[t])
Im(r̄[t])

]
︸ ︷︷ ︸

r[t]

=
[
Re(H̄) −Im(H̄)
Im(H̄) Re(H̄)

]
︸ ︷︷ ︸

H

[
Re(x̄[t])
Im(x̄[t])

]
︸ ︷︷ ︸

x[t]

+
[

Re(z̄[t])
Im(z̄[t])

]
︸ ︷︷ ︸

z[t]

.

(2)

We consider the use of one-bit ADCs at each receive
antenna, which implies that the real and the imaginary compo-
nents of the received signal are separately quantized to binary
levels. The quantization function is denoted by sign(·) which
maps a positive value to +1 and a negative value to −1. Then
the received signal after the ADCs at time slot t is defined as
y[t] = [y1[t], y2[t], · · · , y2N [t]]�∈{+1,−1}2N with

yi[t] = sign(ri[t]) = sign
(
h�

i x[t] + zi[t]
)
, (3)

for all i ∈ I = {1, 2, . . . , 2N}, where h�
i is the i-th row of

the channel matrix H, and zi[t] is the i-th element of z[t].

B. Definitions

We provide some definitions that will be used in the sequel.
Definition 1 (Codewords and Codebook [14], [15]): We

define ck = sign(Hxk) ∈ {−1, 1}2N as the k-th (binary)
codeword vector corresponding to the k-th symbol vector
xk∈X 2U . For k ∈ K=

{
1, 2, . . . , K = MU

}
, each codeword

vector ck = sign(Hxk) can be interpreted as a noise-free
received signal when a symbol vector xk ∈ X 2U is transmitted
via the channel matrix H. We also define a codebook by a
collection of codeword vectors, i.e., C = {c1, c2, . . . , cK}.
Note that similar notions for the codeword vectors and the
codebook are considered in [14] and [15].

Definition 2 (Weighted Hamming Distance Between Code-
words): Let ck = [ck,1, ck,2, · · · , ck,2N ]� and cj =
[cj,1, cj,2, · · · , cj,2N ]� be binary codeword vectors in a code-
book C. In addition, let w = [w1, w2, · · · , w2N ]� ∈ R

2N

and w̃ = [w̃1, w̃2, · · · , w̃2N ]� ∈ R
2N be weight vectors that

consist of positive elements. The weight vector w is assigned
when measuring the distance between the elements of ck and
cj that have different signs. Whereas, the weight vector w̃ is
assigned when measuring the distance between the elements
of ck and cj that have the same sign. Then, the weighted
Hamming distance between ck and cj with respect to w and
w̃ is defined as

dw(ck, cj ;w, w̃)

=
2N∑
i=1

wi‖ck,i−cj,i‖0 +
2N∑
i=1

w̃i(1 − ‖ck,i−cj,i‖0), (4)

where ‖a‖0 is the zero norm that denotes the number of
nonzero elements in a vector a. Note that when w̃i > 0
for any i, the weighted Hamming distance between two same
codewords can be non-zero.

III. MLD FOR MIMO SYSTEM WITH ONE-BIT ADCS

In this section, we first review MLD for uplink massive
MIMO systems with one-bit ADCs. We then show that the
MLD is equivalent to minimum weighted-Hamming-distance
detection (MWD) by leveraging the weighted Hamming dis-
tance defined in Section II-B. We finally develop a new MWD
method that tightly approximates the MLD by leveraging a
closed-form approximation of the Q-function. The developed
MWD will be used as a baseline for a low-complexity near-
MLD algorithm in Section IV.

A. Maximum-Likelihood Detection (MLD)

We present the MLD for uplink multi-user MIMO systems
with one-bit ADCs that was originally introduced in [19]. Let
p (y[t]|xk) be the likelihood function with the received signal
y[t] when the k-th symbol vector, xk ∈ X 2U , was sent at time
slot t. Then, p (y[t]|xk) is given by [19]

p (y[t]|xk) =
2N∏
i=1

p (yi[t]|xk) =
2N∏
i=1

(
1 − Q

(
yi[t]h�

i xk√
σ2/2

))
,

(5)

where Q(x) =
∫∞

x
1√
2π

e−
t2
2 dt is a standard Q-function.

Using (5), the MLD is represented by the following optimiza-
tion problem:

x̂MLD[t] = argmax
xk∈X 2U

p (y[t]|xk) (6)

= argmax
xk∈X 2U

2N∏
i=1

(
1 − Q

(
yi[t]h�

i xk√
σ2/2

))
. (7)

B. MWD as an Exact MLD

We show that the MLD is equivalent to MWD. To this
end, we demonstrate that the log-likelihood function can be
rewritten in the form of the weighted Hamming distance in (4).
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Let N e
k [t] = {i : yi[t] �= ck,i} be the index set of the received

signal elements that have different signs with the elements of
the k-th codeword vector under the premise that x[t] = xk.
Using this index set, we rewrite the likelihood function in (5)
as

p (y[t]|xk) =
∏

i∈N e
k [t]

Q

(
−yi[t]h�

i xk√
σ2/2

)

×
∏

i/∈N e
k [t]

(
1 − Q

(
yi[t]h�

i xk√
σ2/2

))
, (8)

where the equality is obtained by applying the property of the
Q-function: Q(x) = 1 − Q(−x). Then we take the logarithm
of (8) which yields

ln (p (y[t]|xk))=
∑

i∈N e
k [t]

ln Q

(
−yi[t]h�

i xk√
σ2/2

)

+
∑

i/∈N e
k [t]

ln

(
1 − Q

(
yi[t]h�

i xk√
σ2/2

))
. (9)

To simplify, we define two weights w′
k,i and w̃′

k,i as

w′
k,i � − ln Q

(
−yi[t]h�

i xk√
σ2/2

)
> 0, (10)

and

w̃′
k,i � − ln

(
1 − Q

(
yi[t]h�

i xk√
σ2/2

))
> 0. (11)

Using these weights, the log-likelihood function in (9) can be
expressed as

ln (p (y[t]|xk)) = −
∑

i∈N e
k [t]

w′
k,i −

∑
i/∈N e

k [t]

w̃′
k,i

= −
2N∑
i=1

w′
k,i ‖yi[t] − ck,i‖0 −

2N∑
i=1

w̃′
k,i

× (1 − ‖yi[t] − ck,i‖0), (12)

where the last equality holds because

‖yi[t] − ck,i‖0 =

{
1, i ∈ N e

k [t],
0, i /∈ N e

k [t].

From Definition 2 in Section II-B, the log-likelihood function
is expressed in the form of the weighted Hamming distance:

ln (p (y[t]|xk)) = −dw (y[t], ck;w′
k, w̃′

k) . (13)

By applying the result in (13) to the definition of MLD, we can
show that the MWD is equivalent to the MLD:

x̂MLD[t] = argmax
xk∈X 2U

ln (p (y[t]|xk))

= argmin
xk∈X 2U

dw (y[t], ck;w′
k, w̃′

k) . (14)

C. MWD as a Near MLD

Based on the MLD representation in (14), we develop a
new MWD method that provides a near-MLD solution. The
key idea of the developed MWD is to use closed-form weight
vectors that tightly approximate the weight vectors in (14).
In this approximation, we adopt a Q-function approximation
in [28] which demonstrates that Q̂(x) = 1

2e−0.374x2−0.777x

tightly approximates the Q-function for non-negative x with
the absolute error less than 10−3, i.e.,

|Q(x) − Q̂(x)| ≤ 10−3, for x ≥ 0. (15)

By applying Q(x) ≈ 1
2e−0.374x2−0.777x for x ≥ 0 to both (10)

and (11), we obtain two closed-form weights wk,i and w′
k,i that

approximate the original weights w′
k,i and w̃′

k,i, respectively,
i.e.,

w′
k,i ≈ wk,i � 2a

σ2
|h�

i xk|2 +
b
√

2
σ

|h�
i xk| + ln 2 > 0, (16)

w̃′
k,i ≈ w̃k,i � − ln

(
1 − e−wk,i

)
> 0, (17)

where a = 0.374 and b = 0.777. By defining wk =
[wk,1, · · · , wk,2N ]� and w̃k = [w̃k,1, · · · , w̃k,2N ]�, we also
obtain an approximation of the weighted Hamming distance
in (14) as

dw (y[t], ck;w′
k, w̃′

k) ≈ dw (y[t], ck;wk, w̃k) , (18)

for k ∈ K. By leveraging the above approximation, we develop
the MWD method that has closed-form weights, unlike the
MWD in (14). The detection rule for the developed MWD
method is given by

x̂MWD[t] = argmin
xk∈X 2U

dw (y[t], ck;wk, w̃k) , (19)

where two weight vectors in (19) can be computed at the
BS from (16) and (17) when channel stat information at the
receiver (CSIR) is available. The developed MWD in (19)
is expected to provide a near-MLD solution because the
developed MWD tightly approximates the MWD in (14) which
has been shown to be equivalent to the MLD. The main
advantage of the developed MWD is that it does not require
the Q-function calculation which necessarily relies on a lookup
(mapping) table for the computation in a practical system.

Remark 1 (Comparison to MLD for a Conventional MIMO
system): For a conventional MIMO system where the input-
output relation is linear under Gaussian noise, the optimal
MLD is equivalent to a minimum Euclidean distance detec-
tion. For a MIMO system with one-bit ADCs where the
input-output relation is non-linear, minimizing the weighted
Hamming distance obtains near-MLD performance. Specifi-
cally, in the MIMO system with one-bit ADCs, the weighted
Hamming distance is measured between noisy and quantized
received signal, y[t], and noise-free but quantized received
signal, ck = sign (Hxk) for k ∈ K. When measuring the
distance between the i-th elements of y[t] and ck , different
weights are assigned by taking into account both 1) the sign
eqnarrayment between yi[t] and ck,i and 2) the reliability

information provided by a received SNR |h�
i xk|2
σ2 . More pre-

cisely, if yi[t] �= ck,i, the weight wk,i in (16) is assigned
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which is an increasing function of the received SNR. Whereas,
if yi[t] = ck,i, the weight w̃k,i in (17) is assigned which is a
decreasing function of the received SNR.

Remark 2 (High SNR Regime): When the received SNR
is sufficiently large, w̃k,i approaches zero. This fact implies
that when computing the weighted distance at high SNR,
the receiver can ignore the elements of y[t] and ck that have
the same sign. In this case, the weighted Hamming distance
is computed as

∑2N
i=1 wk,i

∥∥yi[t]− ck,i

∥∥
0
. This motivates us to

further simplify the detection rule for MWD as follows:

x̂MWD[t] ≈ argmin
k∈K

dw (y[t], ck;wk,0)

= argmin
k∈K

2N∑
i=1

wk,i ‖yi[t] − ck,i‖0 . (20)

As can be seen in (20), the computational complexity of
the MWD in (19) can be reduced because the weights are
computed only for the elements corresponding to yi[t] �=
sign(h�

i xk).

IV. ONE-BIT SPHERE DECODING

In this section, based on the MWD in Section III-C,
we propose a low-complexity near-MLD algorithm for uplink
massive MIMO systems with one-bit ADCs, referred to as
one-bit sphere decoding (OSD). We also compare the com-
putational complexity of the proposed OSD with those of the
MLD and the MWD, to show a significant reduction in the
complexity achieved by the proposed OSD.

A. Proposed Algorithm

The key idea of the OSD is to construct a list of codeword
vectors in the sphere for each possible received signal and
then to perform the MWD only over the codeword list in
the sphere. The major differences of the OSD to conventional
sphere decoding algorithms in [22 and [24]–[27] are two folds:

• The list of codeword vectors in the sphere is constructed
using preprocessing based on CSIR. This preprocessing
is only possible when the BS receives the signal vector
in a finite set, as in the case of one-bit ADCs. This
differs from the conventional sphere decoding algorithms
in which the codeword list is constructed during data
detection processing.

• The OSD measures the weighted Hamming distance
when constructing the codeword list. Whereas, the con-
ventional sphere decoding algorithms measure the Euclid-
ean distance when finding the codewords in the sphere.

The OSD consists of two parts: list construction in the
sphere and detection over the sphere. Detailed procedures of
each part are given below.

List Construction in the Sphere: The receiver constructs and
saves a list of codeword vectors in the sphere for each received
signal, using preprocessing based on CSIR. This list contains
the indices of the codeword vectors that are close to the
received signal in terms of the weighted Hamming distance.
If the codeword list is constructed for all possible received
signals, i.e., {y ∈ {−1, +1}2N}, the receiver requires to

construct total 22N codeword lists. Then the complexity of the
list construction could not be affordable in a practical system
when N is large. To resolve this problem, our strategy is to
divide the received signal into G ≥ 1 sub-vectors, each with
dimension of Ns = 2N

G , and then to construct 2Ns possible
sub-lists for each sub-vector y ∈ {−1, +1}Ns in parallel.

Let y(g)
p ∈ {−1, +1}Ns be the p-th possible vector of

the g-th sub-vector, where p ∈ {1, 2, . . . , 2Ns} and g =
{1, 2, . . . , G}. Also, let Ig be the index set for the elements
of the g-th sub-vector, namely,

Ig = {(g−1)Ns + 1, (g−1)Ns + 2, . . . , gNs}, (21)

for g ∈ {1, 2, . . . , G}. Using this index set, the g-th sub-vector
of ck is defined as

c(g)
k =

[
ck,Ig(1), ck,Ig(2), · · · , ck,Ig(Ns)

]�
, (22)

while the weight vectors associated with c(g)
k are defined as

w(g)
k =

[
wk,Ig(1), wk,Ig(2), · · · , wk,Ig(Ns)

]�
, and

w̃(g)
k =

[
w̃k,Ig(1), w̃k,Ig(2), · · · , w̃k,Ig(Ns)

]�
, (23)

respectively. Note that the above weight vectors can be
computed at the receiver from (16) and (17) when CSIR is
available. Let πg(�, p) ∈ K be an index function indicating
that c(g)

πg(�,p) is the �-th closest sub-codeword vector to y(g)
p ,

i.e.,

dw

(
y(g)

p , c(g)
πg(�,p);w

(g)
πg(�,p), w̃

(g)
πg(�,p)

)

≤ dw

(
y(g)

p , c(g)
πg(t,p);w

(g)
πg(t,p), w̃

(g)
πg(t,p)

)
,

for t ∈ {�+1, �+2, . . . , K}. Then the sub-list associated with
y(g)

p is determined as the indices of the sub-codeword vectors
that are the L closest to y(g)

p , that is

Sg

(
y(g)

p , L
)

= {πg(1, p), πg(2, p), . . . , πg(L, p)}, (24)

where p ∈ {1, 2, . . . , 2Ns
}

and g ∈ {1, 2, . . . , G}. The overall
list-construction procedure of the OSD is illustrated in Fig. 2.
Note that this procedure is performed only once during a
channel coherence block.

Detection Over the Sphere: During data detection process-
ing, the receiver estimates the codeword vector (the transmit-
ted symbol vector) by searching over the list in the sphere
generated during the list-construction process. Specifically,
the receiver performs the MWD in (19) over the list, to find
the codeword vector that has the minimum weighted Hamming
distance to the received signal.

When the received signal, y[t], is observed at time
slot t, the receiver divides y[t] into G sub-vectors,
namely

{
y(1)[t],y(2)[t], . . . ,y(G)[t]

}
. Then for each sub-

vector y(g)[t], the receiver obtains the sub-list of the L nearest
sub-codeword vectors, i.e., Sg

(
y(g)[t], L

)
, that is generated

during the list construction process. Using the obtained G sub-
lists, the receiver generates a total list of the codeword vectors
as the union of these G sub-lists, i.e.,

S(y[t]) =
G⋃

g=1

Sg

(
y(g)[t], L

)
. (25)
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Fig. 2. The procedure of the proposed OSD that consists of two parts: 1) list construction in the sphere and 2) detection over the sphere, when N = 6,
Ns = 4, and G = 3.

Note that the cardinality of S(y[t]) is bounded between L and
GL, i.e., L ≤ |S(y[t])| ≤ GL where G and L are chosen to
be GL � K . Using S(y[t]), the receiver finds the index of
the transmitted symbol vector by applying the detection rule
for the MWD in (19) over S(y[t]), i.e.,

k�
OSD[t] = argmin

k∈S(y[t])

dw (ck,y[t];wk, w̃k). (26)

Once the best index is found, the receiver obtains the estimate
of the transmitted symbol vector x̂OSD[t] = xk�

OSD[t]. The
overall detection procedure of the OSD is depicted in Fig. 2.

We present a simple example to illustrate the operation of
the OSD.

Example 1: Suppose a case in which U = 2, N = 2, Ns =
2, L = 1, and BPSK modulation per user is assumed. We also
consider a channel matrix that is given by

H =

⎡
⎢⎢⎣

0.8 0.2
0.1 0.9
−0.7 0.3
0.4 −0.6

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

h�
1

h�
2

h�
3

h�
4

⎤
⎥⎥⎦. (27)

The receiver first constructs the list in the sphere. In this
example, all possible transmit symbol vectors sent by the two
uplink users are

x1 =
[

1
1

]
, x2 =

[
1
−1

]
, x3 =

[−1
1

]
, x4 =

[−1
−1

]
. (28)

Since ck = sign(Hxk) and Ns = 2, the receiver generates
four sub-codeword vectors as follows:

c(1)
1 =

[
1
1

]
, c(1)

2 =
[

1
−1

]
, c(1)

3 =
[−1

1

]
, c(1)

4 =
[−1
−1

]
,

(29)

and

c(2)
1 =

[−1
−1

]
, c(2)

2 =
[−1

1

]
, c(2)

3 =
[

1
−1

]
, c(2)

4 =
[
1
1

]
.

(30)

The receiver also generates four possible sub-vectors for the
received signal:

y(g)
1 =

[
1
1

]
, y(g)

2 =
[

1
−1

]
, y(g)

3 =
[−1

1

]
, y(g)

4 =
[−1
−1

]
,

(31)

where y(g)
p is the p-th possible vector in a finite set

{−1, +1}Ns and g = {1, 2}. Because we consider L = 1
case, the sub-list for y(g)

p contains only one index of the
sub-codeword vector c(g)

π(1,p) that has the minimum weighted

Hamming distance from y(g)
p . Suppose that eight sub-lists are

S1

(
y(1)

1 , 1
)

= {1}, S1

(
y(1)

2 , 1
)

= {2}, S1

(
y(1)

3 , 1
)

= {3},
S1

(
y(1)

4 , 1
)

= {4}, S2

(
y(2)

1 , 1
)

= {4}, S2

(
y(2)

2 , 1
)

= {3},
S2

(
y(2)

3 , 1
)

= {2}, S2

(
y(2)

4 , 1
)

= {1}.
The receiver constructs the codeword list in the sphere once
for a channel coherence block.

Now, the receiver performs the detection over the codeword
list. Suppose that at time slot t, the receiver observes a signal
vector given by y[t] = [1,−1,−1, 1]�. Then two sub-vectors
corresponding to y[t] are y(1)[t] = [1,−1]� and y(2)[t] =
[−1, 1]�. Using these two sub-vectors, the receiver determines
the codeword list in the sphere for y[t] as the union of
S1

(
y(1)[t], 1

)
and S2

(
y(2)[t], 1

)
, i.e.,

S(y[t]) =
G⋃

g=1

Sg

(
y(g)[t], 1

)
= {2, 3} . (32)
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Then the receiver finds the index of the transmitted symbol
vector by applying the detection rule for the MWD in (19)
over the codeword list in S(y[t]):

k�
OSD[t] = argmin

k∈{2,3}
dw (ck,y[t];wk, w̃k) . (33)

Finally, the receiver obtains the estimate of the transmitted
symbol vector as x̂OSD[t] = xk�

OSD[t].
In this example, under the premise that each y[t] ∈

{−1, +1}2N is generated with an equal probability, the aver-
age number of codeword search for the proposed OSD is

1
22N

∑
y[t]∈{−1,+1}2N

|S(y[t])| = 1.75. (34)

Therefore, the OSD achieves a 56% reduction of the compu-
tational complexity compared to the MWD which computes
four different weighted Hamming distances for every y[t] ∈
{−1, +1}2N .

Remark 3 (The Interplay Between Ns and L): The
dimension of sub-vector Ns and the list size L deter-
mine the tradeoff between the detection performance and
the computational complexity of OSD. If we set Ns to be
large, the size of the sub-list, L, can be reduced because
the weighted Hamming distance between y(g)

p and c(g)
π(�,p),

i.e., dw

(
y(g)

p ,c(g)
π(�,p);w

(g)
π(�,p), w̃

(g)
π(�,p)

)
for large Ns provides

enough information to reliably find the best codeword in the
set S(y(g)

p , L) with a small number of L. Whereas, if we set Ns

to be small, the weighted Hamming distance between y(g)
p and

c(g)
π(�,p) does not provide reliable information to correctly find

the best codeword in the set S(y(g)
p , L). Therefore, in this case,

we need to choose a large size of L to improve the detection
performance. Note that one can also modify the algorithm by
choosing a different dimension of Ns per sub-vector to further
optimize the tradeoff between the detection performance and
the computational complexity of the OSD.

Remark 4 (Extension to Multi-Precision ADCs): The pro-
posed OSD can be extended for the case with multi-precision
ADCs. Suppose that a B-bit scalar quantizer is independently
applied to the real and imaginary parts of the received signal,
while Y={q1, q2, . . . , q2B} is the set of all possible outputs of
the quantizer, and SQ : R→Y is the quantization function of
the scalar quantizer. In [13], it is shown that the log-likelihood
function of this system is given by

ln (p (y[t]|xk))

=
2N∑
i=1

ln

(
Q

(
l(yi[t])−h�

i xk√
σ2/2

)
− Q

(
u(yi[t])−h�

i xk√
σ2/2

))
,

(35)

where u(y) and l(y) are the upper and the lower bin bound-
aries associated with the quantized output y ∈ Y . Define
ck = SQ(Hxk) as the k-th codeword vector associating with
the k-th symbol vector. Then, similar to (9), the log-likelihood

function in (35) is expressed as

ln (p (y[t]|xk))

=
∑

i/∈N e
k [t]

ln

(
Q

(
l(ck,i) − h�

i xk√
σ2/2

)
−Q

(
u(ck,i) − h�

i xk

σ/2

))

+
∑

i∈N e
k [t]

ln

(
Q

(
l(yi[t])−h�

i xk√
σ2/2

)
−Q

(
u(yi[t])−h�

i xk

σ/2

))

≤ −
∑

i/∈N e
k [t]

w̃′
k,i −

∑
i∈N e

k [t]

w′
k,i

= − dw (y[t], ck;w′
k, w̃′

k) , (36)

where N e
k [t] = {i : yi[t] �= ck,i}, w′

k = [wk,1, · · · , wk,2N ]�

with

w′
k,i = − max

y∈Y, y �=ck,i

ln
(
Q

(
l(y)−h�

i xk√
σ2/2

)
−Q

(
u(y)−h�

i xk√
σ2/2

))
,

(37)

and w̃′
k = [w̃k,1, w̃k,2, · · · , w̃k,2N ]� with

w̃′
k,i = − ln

(
Q

(
l(ck,i)−h�

i xk√
σ2/2

)
− Q

(
u(ck,i)−h�

i xk√
σ2/2

))
.

(38)

Motivated by the inequality in (36), the MLD of the MIMO
systems with multi-precision ADCs can be approximated as

x̂MLD[t] = argmax
xk∈X 2U

ln (p (y[t]|xk))

≈ argmin
xk∈X 2U

dw (y[t], ck;w′
k, w̃′

k) . (39)

Except for the definition of the weight vectors, the detection
rule in (39) is exactly the same with the detection rule
in (14). Therefore, the proposed OSD can also be extended
to the MIMO systems with multi-precision ADCs, simply
by using the weights in (37) and (38) when computing the
weighted Hamming distance. Note that although the detec-
tion rule in (39) is an approximate MLD, it achieves the
exact MLD as the number of precision bits at the ADCs
decreases.

Remark 5 (Extension to Frequency-Selective Channels):
Although the proposed OSD is developed under the assump-
tion of frequency-flat channels, it can also be applied to
frequency-selective channels with some modifications. Sup-
pose that the number of CIR taps of the channel is given by
Tch ≥ 1. For this channel, consider multiple block transmis-
sions; each consists of Td successive data symbols followed
by Tch − 1 zeros at the end. Then the received signal vector
at time slot t of the b-th block transmission is expressed as

yb[t] = sign

(
Tch−1∑
�=0

H[�]xb[t − �] + zb[t]

)
, (40)

where H[�]∈R
2N×2U is the real-domain channel matrix that

consists of the �-th CIR taps, and xb[t]∈R
2U and zb[t]∈R

2N

are the transmitted symbol and the noise at time slot t of
the b-th block transmission, respectively. By concatenating the
received signals during Td + Tch − 1 time slots, the total
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TABLE I

THE NUMBER OF REAL MULTIPLICATIONS REQUIRED
FOR VARIOUS DETECTION METHODS WHEN N � 1

received signal vector of the b-th block transmission is rep-
resented as in (41) given at the bottom of this page. The
received signal in (41) is equivalent to the received signal
of an uplink MIMO system that has UTd uplink users and
N(Td + Tch − 1) receive antennas at the BS. Therefore,
the proposed OSD is directly applicable to frequency-selective
channels by assuming that there exists UTd uplink users
and N(Td + Tch − 1) receive antennas. Note that the above
extension requires a significant detection complexity when
both U and Td are large, even for the proposed OSD; thereby,
as future work, it would be interesting to develop a lower
complexity method for the use in a practical system with
frequency-selective channels.

B. Computational Complexity Comparison
We compare the computational complexity of three detec-

tion methods: MLD, MWD, and OSD. To this end, we com-
pute the number of real multiplications required for each
method, which is summarized in Table I. Specifically, for the
OSD, we consider the worst case in which the size of the
codeword list in the sphere is maximized, i.e., GL = 2N

Ns
L,

as can be seen from (25). Table I shows that the number of
real multiplications required for the proposed OSD is

(
2NL
NsK

+
2Ns

Td

)
×
(

4U+14
4U+6

)
of that for the MLD and

(
2NL
NsK

+ 2Ns

Td

)
of that for the MWD, even in the worst case. These results
imply that if two design parameters of the OSD, L and Ns,
are properly set, the OSD has a less detection complexity
than both the MLD and the MWD do. Therefore, by setting
L � K and Ns � log2 Td, the proposed OSD achieves a
significant reduction in the detection complexity compared to
both methods. Note that a similar result also holds for the
comparison of the numbers of real additions.

V. DETECTION PERFORMANCE OF ONE-BIT

SPHERE DECODING

In this section, we analyze the detection performance of
the proposed OSD by characterizing an upper bound of the
probability that the proposed OSD performs worse than the
MWD. We first demonstrate that this probability is upper

bounded by the sphere-list-error-probability (SEP), which is
the probability that the index of the transmitted codeword does
not belong to the constructed list in the sphere.

Let Ploss be the probability that the detection error occurs
using the proposed OSD while the detection is correct using
the MWD. Then Ploss is expressed as

Ploss =
K∑

k=1

Pr (x̂MWD[t] = xk, x̂OSD[t] �= xk,x[t] = xk)

=
K∑

k=1

Pr (x̂MWD[t] = xk, x̂OSD[t] �= xk,

k ∈ S(y[t]),x[t] = xk)

+
K∑

k=1

Pr (x̂MWD[t] = xk, x̂OSD[t] �= xk,

k /∈ S(y[t]),x[t] = xk). (42)

By the detection rule for the OSD in (26), if the transmitted
codeword index does not belong to the codeword list inside of
the sphere, the OSD fails to detect the correct symbol vector;
thereby, the error event {k /∈ S(y[t]),x[t] = xk} is a subset
of the event {x̂OSD[t] �= xk,x[t] = xk}. In addition, if the
MWD finds the transmitted symbol index, the OSD also finds
the transmitted symbol index, provided that this index is in the
codeword list in the sphere; thereby, the intersection of two
event sets {x̂MWD[t] = xk} and {x̂OSD[t] �= xk, k ∈ S(y[t])}
is an empty set. Using these facts, we rewrite Ploss in (42) as

Ploss =
K∑

k=1

Pr (x̂MWD[t] = xk, k /∈ S(y[t]),x[t] = xk)

≤
K∑

k=1

Pr (k /∈ S(y[t]),x[t] = xk) = PSEP, (43)

where PSEP is the SEP.
Now, we characterize the upper bound of the SEP using the

following theorem.
Theorem 1: For a fixed channel matrix H ∈ R

2N×2U , SEP
of the proposed OSD is

PSEP =
K∑

k=1

Pr (k /∈ S (y[t]) ,x[t] = xk)

� 1
K

K∑
k=1

2N
Ns∏

g=1

∑
e∈E(g)

k (L)

exp
(
−e�w(g)

k − (1Ns − e)�w̃(g)
k

)
, (44)

where

E(g)
k (L) =

{
e : d

(g)
min,k(e, L) ≤ 1�

Ns
w̃(g)

k , e ∈ {0, 1}Ns

}
.

(45)

⎡
⎢⎢⎢⎢⎢⎣

yb[1]
yb[2]

...
yb[Td + Tch − 2]
yb[Td + Tch − 1]

⎤
⎥⎥⎥⎥⎥⎦

= sign

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

H[0] 0 · · · 0 0

H[1] H[0]
. . .

...
...

. . .
. . .

0 H[Tch − 1] H[Tch − 2]
0 · · · · · · 0 H[Tch − 1]

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

xb[1]
xb[2]

...
xb[Td − 1]

xb[Td]

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

zb[1]
zb[2]

...
zb[Td + Tch − 2]
zb[Td + Tch − 1]

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

. (41)

Authorized licensed use limited to: Hanyang University. Downloaded on June 07,2023 at 10:53:17 UTC from IEEE Xplore.  Restrictions apply. 



JEON et al.: ONE-BIT SPHERE DECODING FOR UPLINK MASSIVE MIMO SYSTEMS 4517

Fig. 3. Comparison of the SEP obtained by simulations with the approximate
upper bound calculated from (44) when U = 2, N = 8, 4-QAM is adopted,
and CSIR is perfect.

In (45), d
(g)
min,k(e, L) is the L-th smallest element of a set{

d
(g)
k,j + e�Δ(g)

k,j

}
j �=k

, where Δ(g)
k,j ∈ R

Ns is a vector and

d
(g)
k,j = dw

(
c(g)

j , c(g)
k ;w(g)

j , w̃(g)
j

)
, whose i-th element is

Δ(g)
k,j,i =

(
w

(g)
j,i − w̃

(g)
j,i

)
ck,icj,i −

(
w

(g)
k,i − w̃

(g)
k,i

)
.

Proof: See Appendix.
From Theorem 1, we can show that the SEP of the proposed

OSD decreases with both the dimension of a sub-vector, Ns,
and the size of a sub-list in the sphere, L. To see this, it should
first be noticed that the upper bound in (44) decreases with
d
(g)
min,k(e, L) because the size of a set E(g)

k (L) is reduced by

increasing d
(g)
min,k(e, L). This parameter can be shown to be

an increasing function of both Ns and L: 1) d
(g)
min,k(e, L) is

defined as the L-th smallest value, so d
(g)
min,k(e, L) increases

with L; and 2) increasing the dimension of each sub-codeword
vector increases the term d

(g)
k,j in the definition of d

(g)
min,k(e, L),

so d
(g)
min,k(e, L) also increases with Ns.

We also present a numerical example to show the
tightness of the approximate upper bound derived in
Theorem 1.

Example 2: In Fig. 3, we compare the SEP obtained by
simulations with the approximate upper bound of the SEP
calculated by (44) when U = 2, N = 8, and 4-QAM is used.
Simulation results are averaged over 5000 random realizations
of channel coefficients that are independently drawn from
a complex Gaussian distribution with zero mean and unit
variance. CSIR is assumed to be perfect. Fig. 3 shows that
the approximate upper bound is very tight to the simulated
SEP regardless of the values of Ns and L; thereby, this
result validates our analysis in Theorem 1. Another important
observation in Fig. 3 is that the SEP of the proposed OSD
decreases with both Ns and L, as we have expected from
Theorem 1. Specifically, it is shown that the SEP obtained
when (Ns, L) = (8, 4) is significantly lower than the SEP
obtained when (Ns, L) = (4, 2), while the computational
complexity of the former case is only 12.5% higher than that of
the latter case when Td = 4096 (see Table I). This observation
implies that the determination of Ns and L has a considerable

Fig. 4. The SER vs. SNR of the proposed OSD, the proposed MWD, and
the conventional MLD for various U , N , and constellation sets with perfect
CSIR.

impact on the tradeoff between the SEP and the computational
complexity when using the proposed OSD.

VI. SIMULATION RESULTS

In this section, using simulations, we evaluate the detection
performance of the proposed OSD for uplink massive MIMO
systems with one-bit ADCs. All simulation results are aver-
aged over 5000 random realizations of channel coefficients
that are independently drawn from a complex Gaussian dis-
tribution with zero mean and unit variance. In simulations,
the SNR of the system is defined as ρ = E[|x̄u[t]|2]

σ2 = 1
σ2

under the assumption of a per-user power constraint given by
E[|x̄u[t]|2] = 1.

A. Uncoded Performance

We evaluate the detection performance of the proposed OSD
for an uncoded system. For a comparison, we also present the
performances of the conventional MLD in (7) and the proposed
MWD in (19).

Fig. 4 compares the symbol-error-rate (SER) of the OSD
with those of the MLD and the MWD when CSIR is perfect.
For the OSD, the dimension of the sub-codeword vector is
set as Ns = 7, 8, 10 for N = 28, 32, 100, respectively.
Fig. 4 shows that the OSD has a negligible SER loss
compared to the MLD regardless of the number of receive
antennas, the number of users, the constellation set, and the
SNR. Meanwhile, the OSD reduces the detection complex-
ity (i.e., the number of real multiplications) of the MLD
by 89%, 88%, 68% when N = 28, 32, 100, respectively (for
Td = 8192 case, see Table I). It is also noticeable that
this complexity reduction further increases as Td increases.
These results show that the proposed OSD provides a
good performance-complexity tradeoff for the uplink massive
MIMO systems with one-bit ADCs. Although the MWD
shows almost the same SER performance to the MLD, it does
not provide any reduction in the detection complexity as seen
in Table I.

Fig. 5 compares the SER of the OSD with those of the MLD
and the MWD when pilot-based channel estimation is applied
with various lengths of pilot signals (i.e., Tt = 20 or 100).
For the channel estimation, we apply a ML-based estimation
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Fig. 5. The SER vs. SNR of the proposed OSD, the proposed MWD, and
the conventional MLD when pilot-based channel estimation is applied with
various lengths of pilot signals for the case of U = 6, N = 32, and 4-QAM
modulation.

Fig. 6. The performance-complexity tradeoff achieved by the proposed OSD
for various Ns and L with U = 6, N = 32, 4-QAM modulation, and perfect
CSIR.

method developed in [19]. Fig. 5 shows that the OSD achieves
a near-optimal SER with a reduced detection complexity,
regardless of the length of pilot signals. This result implies
that the improvement of the performance-complexity tradeoff
achieved by the OSD is also robust to the channel estimation
error.

Fig. 6 plots the performance-complexity tradeoff achieved
by the OSD for various dimensions of a sub-codeword vector,
Ns, and also for various sizes of a sub-list in the sphere, L,
when CSIR is perfect. The relative SER performance in the
y-axis is computed as the ratio of the SER achieved by the
MLD to that achieved by the OSD, while a relative complexity
in the x-axis is computed as the ratio of the number of real
multiplications required by the OSD to that required by the
MLD. Fig. 6 shows that as L increases, both the relative SER
performance and the relative complexity increase; this result
shows the tradeoff relation between the performance and the
complexity when using the OSD. In addition, the detection
performance of the OSD with Ns = 8 is much higher than
that with Ns = 4, which implies that the performance-
complexity tradeoff is very sensitive to the choice of Ns.
Another interesting observation is that the complexity required
to achieve the optimal SER performance reduces as the SNR
increases. Based on this observation, the effectiveness of the
OSD can be improved with the operating SNR of the system.

In all simulations, we consider a scenario that the number of
receive antennas, N , is sufficiently larger than the number of
uplink users, U , to meet a required detection performance in a
practical range of SNRs, as in [13]–[16], [18], and [19]. This
is possible because a detection performance loss due to the
coarse quantization effect can be compensated by employing
a large number of receive antennas that provide additional
observations available at the BS.

B. Coded Performance

We also evaluate the detection performance of the pro-
posed OSD for a coded system. As an underlying channel
code, we adopt a 1/2-rate LDPC code of the blocklength
NB = 672 from the IEEE 802.11ad standardization [29]. For
the conventional MLD, we employ a hard-input bit-flipping
decoder [30] as in [19], because the receiver employing one-
bit ADCs produces a hard-decision output only. It is still
unknown how to extract a soft output for the MLD in the
MIMO system when one-bit ADCs are employed. For both
the MWD and the OSD, besides the hard-decision outputs,
we also derive soft outputs using the technique in [?], which
enables to use a soft-input belief-propagation decoder [31]. For
completeness, we briefly explain how to compute soft outputs
from the hard-decision measurement y[t] for the proposed
OSD. Without loss of generality, we only focus on the u-th
channel decoder to decode the user u’s message. Recall that
S(y[t]) contains the all codewords in the search-space. We first
partition the S(y[t]) into the four subsets which are defined as
Su(y[t]|i) = {k ∈ S(y[t]) : x̄k,u = X̄ (i)} for i ∈ {1, 2, 3, 4},
where x̄k,u denotes the u-th element of the x̄k and X̄ (i)
denotes the i-th element of the 4-QAM constellation set X̄ .
Using this definition, the log-likelihood ratios (LLRs), i.e., the
inputs of the belief-propagation decoder, are computed as

Lu
2n−1(y[t]) = min

k∈Su(y[t]|2)∪Su(y[t]|3)
dw(y[t], ck;wk, w̃k)

− min
k∈Su(y[t]|0)∪Su(y[t]|1)

dw(y[t], ck;wk, w̃k),

Lu
2n(y[t]) = min

k∈Su(y[t]|1)∪Su(y[t]|3)
dw(y[t], ck;wk, w̃k)

− min
k∈Su(y[t]|0)∪Su(y[t]|2)

dw(y[t], ck;wk, w̃k),

for n ∈ {1, . . . , NB}. The resulting 2NB LLRs
{Lu

2n−1(y[t]), Lu
2n(y[t])}NB

n=1 are embedded into the soft
belief-propagation decoder as the soft inputs.

Fig. 7 compares the frame error rate (FER) of the OSD
with those of the MLD and the MWD when CSIR is perfect.
Fig. 7 shows that for both the MWD and the OSD, almost
10-dB FER reduction is achieved by using the soft-input
belief-propagation decoder instead of using the hard-input bit-
flipping decoder. This result implies that the availability of
the soft outputs has a significant impact on the detection
performance when using the one-bit ADCs. In this context,
the MWD and the OSD are suitable for the coded MIMO sys-
tem with one-bit ADCs since soft outputs are available for both
methods. Comparing two methods, the FER gap between them
is less than 1 dB while the OSD reduces the detection com-
plexity of the MWD by 72.6% when Td = NB (see Table I).
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Fig. 7. The FER vs. SNR of the proposed OSD, the proposed MWD, and the
conventional MLD when either a soft detector or a hard detector is applied
with U = 6, N = 32, 4-QAM modulation, and perfect CSIR.

Therefore, the OSD provides a better performance-complexity
tradeoff than the MWD also for the coded system.

VII. CONCLUSION

In this paper, we have proposed a new sphere decoding
method for an uplink massive MIMO system with one-bit
ADCs. One salient observation we found is that the weighted
Hamming distance should be exploited to construct a list of
codewords for sphere decoding due to the discrete nature of
received signals. We have also characterized the performance-
complexity tradeoff achieved by the proposed OSD, in terms of
its design parameters. Using simulations, we have shown that
the proposed OSD effectively reduces the detection complexity
of the MLD, while achieving near-MLD detection performance
for both coded and uncoded systems.

An important direction for future research is to develop
a low-complexity list construction method that may further
reduce the complexity of the proposed algorithm. Another
important extension is to develop a sphere-decoding algo-
rithm that provides affordable computational complexity for
frequency-selective channels, as discussed in Remark 5.
It would also be interesting to study the applicability of the
proposed algorithm for downlink massive MIMO systems with
one-bit digital-to-analog converters (DACs) [32].

APPENDIX

PROOF OF THEOREM 1

In this proof, we omit the index t of time slot for ease
of exposition. Suppose that the channel matrix of the system
is given by H. Then the weight vectors wk and w̃k of the
proposed OSD are deterministic vectors from (16) and (17),
respectively. In this case, the probability that the true symbol
index does not belong to the codeword list in the sphere is
expressed as

K∑
k=1

Pr (k /∈ S(y),x = xk) =
1
K

K∑
k=1

Pr
(
k /∈ S(y)

∣∣x = xk

)
,

(46)

provided that all possible symbol vectors are transmitted with
an equal probability 1

K . By the definition of the codeword list

in the sphere given in (25), the pair-wise probability in (46) is

Pr (k /∈ S(y)|x = xk) = Pr

(
k /∈

G⋃
g=1

Sg

(
y(g), L

)∣∣∣∣∣x = xk

)

=
G∏

g=1

Pr
(
k /∈ Sg

(
y(g), L

)∣∣∣x = xk

)
,

(47)

where the equality in (47) is obtained from the statistical
independence of the noise vector in (3). An event
{k /∈ Sg

(
y(g), L

)} in (47) implies that the maximum weighted
Hamming distance of the sub-codeword vector in Sg

(
y(g), L

)
to y(g) is less than that of the k-th sub-codeword vector.
Using this fact, we rewrite the pair-wise probability in (47) as

Pr
(
k /∈ Sg

(
y(g), L

)∣∣x = xk

)

≤ Pr

{
max

j∈Sg

(
y(g),L

) dw

(
c(g)

j ,y(g);w(g)
j , w̃(g)

j

)

≤ dw

(
c(g)

k ,y(g);w(g)
k , w̃(g)

k

) ∣∣∣∣x = xk

}
, (48)

where the inequality in (48) is due to the equality condition.
We simplify (48) by introducing the notion of an error

vector e = [e1, e2, · · · , e2N ]� ∈ {0, 1}Ns where ei = 1
represents that the sign of the received signal is flipped due to
the noise at the i-th position. Using the error vector, we denote
Ek(e) as an event that the received signal for the g-th sub-
vector is given by

y
(g)
i =

{
−c

(g)
k,i , ei = 1,

c
(g)
k,i , ei = 0,

for i ∈ {1, 2, . . . , Ns}. (49)

Then we can rewrite (48) as (50) given at the top of this page,
where Δ(g)

k,j ∈ R
Ns is a vector whose i-th element is

Δ(g)
k,j,i =

(
w

(g)
j,i − w̃

(g)
j,i

)
ck,icj,i −

(
w

(g)
k,i − w̃

(g)
k,i

)
. (51)

Let Ē(g)
k (L) be a set of all vectors in {0, 1}Ns that satisfy the

inequality condition of the indicator function in (50), i.e.,

Ē(g)
k (L) =

{
e : max

j∈Sg

(
c
(g)
k −2e◦c(g)

k ,L
) d

(g)
k,j

+ e�Δ(g)
k,j ≤ 1�

Ns
w̃(g)

k , e ∈ {0, 1}Ns

}
, (52)

where d
(g)
k,j = dw

(
c(g)

j , c(g)
k ;w(g)

j , w̃(g)
j

)
for all j, k, g. Using

this set, (50) is expressed in a simplified form:

Pr
(
k /∈ Sg

(
y(g), L

)∣∣∣x = xk

)
≤

∑
e∈Ē(g)

k (L)

Pr (Ek(e)) . (53)

We derive the upper bound of (53) by constructing an extended
set E(g)

k (L) which contains the set Ē(g)
k (L) in (53) as a subset,

i.e., Ē(g)
k (L) ⊂ E(g)

k (L). For this, let d
(g)
min,k(e, L) be the L-th

smallest element of a set
{
d
(g)
k,j +e�Δ(g)

k,j , j ∈K\{k}}. Then
because

d
(g)
min,k(e, L) ≤ max

j∈Sg

(
c
(g)
k −2e◦c(g)

k ,L
) d

(g)
k,j + e�Δ(g)

k,j , (54)
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Pr
(
k /∈ Sg

(
y(g), L

)∣∣∣x = xk

)

≤
∑

e∈{0,1}Ns

Pr

{
max

j∈Sg

(
y(g),L

) dw

(
c(g)

j ,y(g);w(g)
j , w̃(g)

j

)
≤ dw

(
c(g)

k ,y(g);w(g)
k , w̃(g)

k

) ∣∣∣∣∣x = xk, Ek(e)

}
Pr (Ek(e))

=
∑

e∈{0,1}Ns

I

{
max

j∈Sg

(
c
(g)
k −2e◦c(g)

k ,L
) dw

(
c(g)

j , c(g)
k ;w(g)

j , w̃(g)
j

)
+

Ns∑
i=1

(
w

(g)
j,i − w̃

(g)
j,i

)
ck,icj,iei

≤
Ns∑
i=1

w
(g)
k,i ei + w̃

(g)
k,i (1 − ei)

∣∣∣∣∣x = xk

}
× Pr (Ek(e))

=
∑

e∈{0,1}Ns

I

{
max

j∈Sg

(
c
(g)
k −2e◦c(g)

k ,L
) dw

(
c(g)

j , c(g)
k ;w(g)

j , w̃(g)
j

)
+ e�Δ(g)

k,j ≤ 1�
Ns

w̃(g)
k

∣∣∣∣∣x = xk

}
Pr (Ek(e)) . (50)

we can construct the extended set E(g)
k (L) of Ē(g)

k (L) as

E(g)
k (L)=

{
e : d

(g)
min,k(e, L)≤1�

Ns
w̃(g)

k , e∈{0, 1}Ns

}
. (55)

Using this extended set, we rewrite (53) as

Pr
(
k /∈ Sg

(
y(g), L

)∣∣∣x = xk

)
≤

∑
e∈E(g)

k (L)

Pr (Ek(e)) . (56)

Now, the remaining term in (56) is the probability of the
event Ek(e). By defining a set I(e) = {i : ei = 1}, this
probability can be represented as

Pr (Ek(e))

=
∏

i∈I(e)

Pr(ck,i �= yi|x = xk)
∏

i/∈I(e)

Pr(ck,i = yi|x = xk)

=
∏

i∈I(e)

Q

(
|h�

i xk|√
σ2/2

) ∏
i/∈I(e)

{
1 − Q

(
|h�

i xk|√
σ2/2

)}
. (57)

From Lemma 1, we can approximate the right-hand-side
of (57) using two weights wk,i and w̃k,i as follows:

Pr (Ek(e)) ≈ exp

⎛
⎝−

∑
i∈I(e)

wk,i −
∑

i/∈I(e)

w̃k,i

⎞
⎠

= exp
(
−e�w(g)

k − (1Ns−e)�w̃(g)
k

)
. (58)

It is noticeable that the approximation used in (58) is tight
because the Q-function approximation in Lemma 1 has a
bounded error less than 10−3. Plugging (58) into (56) and then
applying the result to (47) and (46) yields the approximate
upper bound in (44); this completes the proof.
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