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on the onset of puberty, ovarian weights, and estrous
cycle in female mice
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Objective: Bisphenol A (BPA) is a chemical used extensively to manufacture plastics and epoxy resin liners for food and beverage cans. BPA,
with properties similar to estrogen, has endocrine-disrupting effects. In the present study, we examined the effects of early prepubertal BPA
exposure on the onset of puberty and reproductive parameters such as estrous cycle and reproductive organ weights in female mice.
Methods: Female mice were injected subcutaneously at postnatal day (PND) 8 with BPA (0.1, 1, 10, 100 mg/kg) in sesame oil or with sesame oil
alone. Body weight was measured from PND 10 to 70. Vaginal opening and estrous cycle were monitored from PND 20 to 29. Animals were sa-
crificed at PND 25, 30, and 70, and the ovary and uterus weights were measured.

Results: Early prepubertal exposure to BPA (10 and 100 mg/kg) significantly decreased body weight from PND 18 to 30. BPA treated mice at
testing dose levels showed early opening of the vagina compared to the control group. The number of estrous cycle and days of estrus were
significantly decreased in high dose (100 mg/kg) BPA treated mice. The ovary weight at PND 25 and 30 was significantly decreased in all BPA

treatment groups.

Conclusion: Early prepubertal exposure to BPA accelerated the onset of puberty but decreased reproductive parameters in female mice.
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Introduction

Nowadays, humans are regularly exposed to numerous artificially
synthesized chemicals, and concerns about the safety of these sub-
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stances are on the rise. Recently, it has been reported that some of
the synthetic chemicals worked as endocrine disruptors (EDs), affect-
ing the reproductive endocrine system [1]. Studies on the genotoxici-
ties of EDs have been cause for great concern. In vertebrates, the re-
productive functions are maintained by hormones derived from the
hypothalamic-pituitary (HP) axis and steroids from the gonads, which
are influenced by the HP axis send feedback signals to the HP axis. To
date, many reports have focused on the effects of EDs on sexual ma-
turity and reproductive function [2-6].

Puberty can be divided into two subdivisions, central and the pe-
ripheral puberty. Central puberty consists of the onset of GnRH and
gonadotropin secretions as the HP axis matures, the gonads are sti-
mulated, the HP axis stimulates gonadal secretion of sex steroid hor-
mones, and the steroids send feedback to the HP axis. Peripheral pu-
berty consists of processes other than the activation of the hypotha-
lamic-pituitary-gonadal axis. In the female, it includes secondary sex
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characteristics such as the development of mammary glands, the
vaginal opening, and uterine hypertrophy [7]. Though the onset of
puberty is a genetically driven event [8], it can be changed by envi-
ronmental factors [9], nutritional states, and metabolic status. Even
peripheral puberty has been induced by exogenous estrogenic stim-
ulation [10].

Various exogenous factors such as lead [11], phytoestrogens [12],
polychlorinated biphenyls (PCBs) [13], and pesticides [14] have also
been shown to affect the onset of puberty in the animal model. In
women, it has been postulated that the onset of puberty and the de-
lay of breast development are affected by environmental factors [15-
19]. Since precocious puberty has been linked to breast cancer, insu-
lin resistance, bone development, and cardiovascular diseases [20],
whether sexual maturation and puberty occur earlier after exposure
to EDs is especially important to the field of health sciences. The on-
set of puberty is strongly influenced by environmental factors and
intense psychological stressors [20]. Reports on the relationship be-
tween the time of puberty onset and chemicals including polybro-
minated biphenyls, dichlorodiphenyl dichloroethene, dichlorodiphe-
nyl trichloroethane, and PCBs, have variously reported that menar-
che, pubarche, and breast development are advanced [15,21-24],
conversely, that the onset of puberty is delayed [25-29], or that there
is no clear relationship between them [17,30,31]. There is much de-
bate regarding the relationship between exposure to EDs and the
onset of puberty.

Bisphenol A (BPA) is used as a raw material in most plastics, and are
used in the manufacturing of many food and medication containers,
making exposure to it in modern life [32]. BPA is globally manufac-
tured, is used in large quantities, and a considerable amount of it has
been detected in the environment. In terms of environmental health,
it is considered to be among the most important chemicals that must
be managed [33,34]. BPA has weak estrogenic activity and acts on
estrogen receptors to induce various gene expressions as well as dis-
turb cellular signaling pathways [35,36]. In humans, BPA has been
detected in breast milk [37,38], blood, follicular fluid, and placental
tissues [39,40], and it has been shown to affect sperm quality, dam-
age sperm DNA [41], delay the development of breasts, and trigger
precocious puberty [42]. BPA concentration has been found to be
high in patients with polycystic ovarian syndrome [43]. In rodents,
BPA has been shown to affect indices of reproductive functions such
as abnormal maternal behavior, egg deformation, sperm count re-
duction, fertilization rates, ovary and uterus weights, the distance be-
tween the genital pore and the anus, the time of vaginal opening,
the sex ratio, survival rates, the number of neonates, gestation time,
and the onset of the estrous cycle [44-48]. The relationship between
the exposure to BPA, the onset of puberty, and sexual maturation is
largely unknown. The infantile period is regarded to be a period of
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great vulnerability to exposure to EDs. In mice, exposure to estrogen
10 days after birth has been shown to be very responsive to the en-
docrine regulatory program of the HP axis. It is possible that exposure
to estrogenic EDs in this period, more so than at other times, causes
the most serious endocrine disrupting effects [49].

In the present study, to investigate changes in reproductive functions
caused by EDs, experiments were performed to determine changes
in body, ovary, and uterus weights, the time of vaginal opening, and
the onset of estrous cycle after exposure to BPA in female mice.

Methods

1. Animals

Female mice (ICR strain) received mouse pellets and water ad libi-
tum in a temperature- (22 +3°C) and humidity-controlled (30%)
room with 12/12 hours (light/dark) at the College of Natural Sciences,
Hanyang University (Seoul, Korea). Female mice (postnatal day [PND]
8) were divided into four experimental groups, each of which recei-
ved one of the following solutions, injected subcutaneously at 10 AM:
0.1, 1,10, and 100 mg/kg of BPA solution dissolved in 100 pL of sesa-
me oil (53547; Sigma-Aldrich, St. Louis, MO, USA). The fifth group, the
controls, were injected with only 100 pL of sesame oil. The number of
mice in each group was 15.

2. Measurement of body weight gain

The body weight of five mice from each group were measured to
the nearest 0.1 g at 10 AM from PND 10 to PND 70. And any apparent
toxic effects including mortality, morbidity, and signs of injury were
recorded at least once daily.

3. Examination of puberty onset and estrous cycle

To determine the onset of puberty for nine days from PND 20, the
vaginal opening of five mice in each groups was checked at 10 AM
daily. The estrous cycle was examined daily and identified under a
microscope (X 100) using a vaginal smear flushed with physiological
saline for nine days from vaginal opening. Vaginal epithelial cell stain-
ed using methylene blue. During the nine days of checking the es-
trous cycle, the number of estrous cycles and days of confirmed es-
trus were recorded.

4. Necropsy and tissue weight measurements

The weight of reproductive organs were measured before and after
the onset of puberty at PND 28, at PND 25 and 30, and PND 70 at
adult period. The weights of ovaries and uteri obtained from five mice
were measured in each group at PND 25, 30, and 70, after the mice
were sacrificed by cervical dislocation after CO, anesthesia to the near-
est 0.01 g. Ovarian weight was calculated by averaging the sum of
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two ovarian weights in each animal. The major organs were also in-
spected for abnormalities at that time.

5. Statistical analysis

Numerical values were expressed as the mean = SD. Statistical anal-
ysis was carried out by one-way analysis of variance followed by Tu-
key’s test for multiple comparisons among means. A p-value less than
0.05 was considered statistically significant.

Results

1. Changes of body weight by BPA in female mice

When compared to the control group, the 0.1 mg/kg and 1 mg/kg
of BPA treatment groups showed no significant differences in body
weight; however, in the 10 mg/kg of BPA treatment group, from PND
18 just prior to the time of puberty to PND 30 shortly after puberty,
the body weight was significantly lower than that of controls. In the
100 mg/kg of BPA treatment group, the body weight was significant-
ly reduced from PND 12 to PND 28. After PND 30, there were no sig-
nificant changes in body weight between the treatment and control
groups (Figure 1).

2. Changes in puberty onset according to vaginal opening

To determine the onset of puberty, the vaginal opening time was
checked from PND 25 to PND 30. The first vaginal opening of the con-
trol group occurred on PND 26, and the first vaginal opening of all
BPA treatment groups occurred on PND 25 (Figure 2). The mean days
of the vaginal opening were identified as 27.7+0.61 in the control
group, 26.4+0.43 in the 0.1 mg/kg BPA group, 26.2+0.28 in the 1
mg/kg BPA group, 26.2 +£0.57 in the 10 mg/kg BPA group, and 25.9+
0.56 in the 100 mg/kg BPA group. The vaginal opening times of all
BPA treatment groups were significantly faster than those of the con-
trol group (Table 1).
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3. Changes of estrous cycle after treatment with BPA

After treatment with BPA at PND 8, the number of estrous cycle was
checked for nine days in female mice with a vaginal opening. It was
slightly decreased in the 10 mg/kg and 100 mg/kg BPA treatment
groups compared to the control group, but the differences were not
significant. We checked the estrous cycle for nine days, and it was
found that the number of estrous stages in the 0.1, 1, and 10 mg/kg
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Figure 2. Effects of bisphenol A (BPA) on the onset of vaginal open-
ing in female mice. (A) Vaginal opening of BPA treated mice at testing
dose levels showed early opening of the vagina compared to the con-
trol group. (B) Photograph showing before vaginal opening and (C)
after vaginal opening (n=5 per group).

Figure 1. Changes in body weight after bisphe-
nol A (BPA) treatment in female mice. Early pre-
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BPA treatment groups was reduced when compared to the control, 4. Changes of ovarian and uterine tissue weights after BPA

but the differences were not significant. However, in the 100 mg/kg treatment

BPA treatment group, the number was significantly smaller than the At PND 25, the ovarian tissue weights of all BPA treatment groups
control (Figure 3). were significantly lower than those of the control group, but the uter-

ine weights were not. At PND 30, the ovarian weights in the 1, 10, and
100 mg/kg/day BPA treatment groups and the uterine weight in the
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Figure 3. Changes in the estrous cycle after bisphenol A (BPA) treatment in female mice. (A) Change in the total number of estrous cycles dur-
ing 9 days of vaginal smearing check. Changes in the total number of estrous cycles between the control group and the BPA treated groups were
not statistically different. (B) Changes in the days of estrus during 9 days. Number of estrus days significantly decreased in the BPA 100 mg/kg
treated group. (C) Smeared vaginal epithelial cells in each of the estrous stages (n=5 per group) (magnification x 100). *significantly different
from control group at p < 0.05. Error bars are SD.

Table 1. Mean days of vaginal opening in female mice treated with bisphenol A

Bisphenol A (mg/kg)
0.1 1 10 100

Control

Vaginal opening (postnatal day) 27.7+0.61 264+043° 262+0.28 262+0.57° 25.9+0.56°

Data are mean = SD.
“Significantly different from control by one way ANOVA and Tukey’s as a post-hoc test at p < 0.05 (n=5).

Table 2. Changes in ovary and uterus weights in female mice treated with bisphenol A

Bisphenol A (mg/kg)

Control
0.1 1 10 100

PND25 Ovary (mg) 3.48+0.61 2.83+043° 2.1+0.28° 2.89+0.57° 2.81+0.56°

Uterus (mg) 11.1£234 13.2+£33 10.28+1.51 1242+544 12.6+2.82
PND30 Ovary (mg) 548+14 5.03+0.79 3.58+1.28" 42+1.07° 3.59+1.28°

Uterus (mg) 41.85+12.86 46.21+31.06 30+15.83 39.15+20.1 22.06+15.76
PND70 Ovary (mg) 10.5+3.05 104x2.35 8.58+1.59 11.98+2.18 10.7x2.17

Uterus (mg) 46.43+16.99 70.09+20.21 53.61+£9.56 68.65+28.24 62.93+18.28

Data are mean = SD.
PND, postnatal day.
erSignificantly different from control at p < 0.05 and p < 0.01, respectively (n=5).
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100 mg/kg/day of BPA treatment group were significantly lower than
the control group. At PND 70, the adult stage, the ovarian and uterine
weights in the BPA treatment groups were not significantly different
from the control group (Table 2).

Discussion

A single administration of 10 mg/kg or 100 mg/kg BPA at PND 8 in-
hibited the increase of body weight from the lactiferous phase to just
after puberty (PND 12 to PND 30). However, there was no influence
on body weight at the adult stage (PND 35 to PND 70). Therefore, the
amounts greater than 10 mg/kg BPA used in this experiment may
have the capacity to inhibit growth to puberty. However, the system-
ic toxic effects of BPA in the adult stage are considered to be insignifi-
cant. At concentrations of 0.1 mg/kg or 1 mg/kg, BPA has no effects
on body weight, and it was found that the vagina opened faster in
the BPA treatment group than in the control group. Therefore, it can
be postulated that the administration of estrogenic EDs to PND 8 lac-
tiferous female mice did not induce any systemic effects, but changed
peripheral puberty and consequently induced the early onset of pu-
berty.

It has been reported that the mean concentration of BPA in human
breast milk, blood, follicular fluid, and placental tissue is 0.6-2.4 ng/
mL [39], and that the blood content of BPA is increased when one
consumes canned fruit or drinks [50]. The safe intake limit of BPA al-
lowed by the Korea Food and Drug Administration (KFDA) is 0.6 ppm,
and it is equivalent to 0.01 mg/kg/day based on body weight of 60
kg. The lowest observed adverse effect level of BPA based on vaginal
opening date identified in present study is 0.1 mg/kg and it is in ex-
cess of the safety limits defined by the KFDA. It is possible that repro-
ductive transformation is more likely to happen when infants are ex-
posed to BPA than adults because the susceptibility to reproductive
transformation, such as the early onset of puberty by estrogenic sub-
stances, is high during the period of sexual differentiation of the brain
in the infant stage [49], and since the female’s hypothalamus is more
susceptible to estrogenic stimulation than the male’s. The incidence
of early onset puberty is higher in women than in men [51]. In the
present study, the early onset of puberty in PND 8 female mice was
identified in the treatment group with a single administration of 0.1
mg/kg BPA, strongly suggesting that endocrine functions are likely
to be disturbed by infantile exposure to BPA in humans.

Exposure to BPA in the infantile phase (PND 8) induced the signifi-
cant reduction of ovarian weight in all BPA treatment groups at PND
25. In addition, ovarian weight at PND 30 was significantly reduced
in 1, 10, and 100 mg/kg/day BPA treatment groups compared to the
control group. However, at PND 70 there was no significant differ-
ences among the groups. It may be that the reduction of ovarian wei-
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ght at PND 25 and PND 30 in the BPA treatment groups is due to the
inhibition of follicular growth around puberty by infantile exposure
to BPA. However, it is difficult to determine whether the reduction of
ovarian weight at PND 30 is due to the impact of BPA or not, because
the ovarian weight in the adult stage is different according to the
ovarian follicular developmental stages.

BPA exposure during the infantile phase reduced the number of es-
trous stages and days. It is thought that this is due to the inappropri-
ate development of the ovarian follicle associated with BPA exposure.
It is considered that decrease in reproductive cycle reduced the ovu-
latory period in the fertile female and eventually induced the reduc-
tion of fertility. Similarly, it has been reported that estrogenic EDs such
as BPA caused retardation of growth and reproductive functions, and
this retardation of growth has a strong relationship to sexual maturi-
ty, the onset of puberty, oocyte quality, and fertilization capabilities
in mice [4,52]. Infantile exposure to BPA did not induce changes in
uterine weights at PNDs 25, 30, and 70. In the present study, infantile
short-term exposure to BPA may not have altered uterine weight at
adolescence and at the adult stage, because BPA was administered
only once. On the other hand, it has been reported that cystic endo-
metrial hyperplasia and adenomyosis in rats are induced in neonates
for five days post partum after the pregnant mother receives 18 mon-
ths of subcutaneous administration [53,54]. Therefore, the possibility
that prolonged early lactational exposure to BPA may increase the
various uterine lesions in senility cannot be ruled out.

In conclusion, it can be concluded that exposure to BPA during in-
fancy increases the risk of precocious onset of peripheral puberty and
the reduction of female reproductive fertility after puberty. Further
studies are needed to study changes in central puberty regulated by
the endocrine network in hypothalamic-pituitary-gonadal axis after
exposure to estrogenic EDs, including BPA.
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