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ABSTRACT

In 1991, Negami found an upper bound on the stick number s(K) of a nontrivial
knot K in terms of crossing number c(K) which is s(K) ≤ 2c(K). In this paper we
give a new upper bound in terms of arc index, and improve Negami’s upper bound to
s(K) ≤ 3

2
(c(K)+1). Moreover if K is a nonalternating prime knot, then s(K) ≤ 3

2
c(K).
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1. Introduction

A simple closed curve embedded in Euclidean 3-space is called a knot. Two knots
K and K ′ are said to be equivalent, if there exists an orientation preserving
homeomorphism isotopy of R

3 which sends K to K ′. The equivalence class of K is
called the knot type of K. A knot equivalent to another knot in a plane of 3-space
is said to be trivial.

A stick knot is a knot which consists of finite line segments, called sticks. This
presentation of knots can be considered to be a reasonable mathematical model of
cyclic molecules or molecular chains because such physical objects have rigidity.

Concerning stick knots, one natural problem may be to determine stick numbers.
The stick number s(K) of a knot K is defined to be the minimal number of sticks
required to realize the knot type as a stick knot. This quantity was investigated for
some specific knots including knots with crossing number below 10 [6, 19], torus
knots [13], 2-bridge knots [17] and knots with 1, 2 or 3-integer Conway notation [11]
(see [6, 1.1] for a brief survey). On the other hand Negami’s work is also in need of
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mention [18]. He showed that for any nontrivial knot K with crossing number c(K),

5 +
√

25 + 8(c(K) − 2)
2

≤ s(K) ≤ 2c(K).

Although Negami’s bounds are applicable to all nontrivial knots, they are not likely
to be quite strict. Furthermore, among 53 prime knots with crossing number below
10, the trefoil knot is the only one for which Negami’s upper bound is tight. There-
fore we may raise questions on the tightness of these bounds [1, 11]. To be explicit,

Q1. Is there any knot satisfying 2s(K) = 5 +
√

25 + 8(c(K) − 2) ?
Q2. Is there any knot satisfying s(K) = 2c(K) other than trefoil knot?

Negami’s lower bound was slightly improved by Calvo [5]. And recently Elifai
showed that the answer for Q1 is negative for knots with c(K) ≤ 26 [10].

In this paper we establish a new upper bound on stick number which is described
by arc index (Theorem 2.2), and improve Negami’s upper bound (Theorem 1.1).
Here we remark that question Q2 is answered by our improved bound.

Theorem 1.1. Let K be a nontrivial knot. Then s(K) ≤ 3
2 (c(K) + 1). Moreover

if K is a nonalternating prime knot, then s(K) ≤ 3
2c(K).

Note that c(K) ≥ 3 for any nontrivial knot K. If 3
2 (c(K) + 1) ≥ 2c(K), then

c(K) ≤ 3. It is known that the trefoil knot is the only nontrivial knot with crossing
number 3. And its stick number is exactly 6. Therefore, by Theorem 1.1, we can
conclude that the answer to Q2 is negative.

This theorem follows from the inequality s(K) ≤ 3
2 (a(K) − 1) of Theorem 2.2.

This upper bound of stick number in terms of arc index is sometimes relatively
effective as a general bound. For example, we consider torus knots. It is known
that, for (p, q)-torus knots, arc index is p + q [16], and stick number is 2q when
2 ≤ p < q ≤ 2p [13]. For the best case of this upper bound, (p, 2p − 1)-torus knots
have stick number 4p−2, while Theorem 2.2 yields an upper bound of 4.5p−3. But
for the worst case, (p, p+1)-torus knots have stick number 2p+2, while Theorem 2.2
yields an upper bound of 3p.

Furthermore we discuss the efficacy of this upper bound of stick number in
terms of crossing number. The (p, q)-torus knots with 2 ≤ p < q ≤ 2p have crossing
number (p − 1)q. Thus Theorem 1.1 yields an upper bound of 3

2 (p − 1)q, while
their exact stick number is 2q. So the upper bound provided by Theorem 1.1 grows
quadratically with q because p must be at least half q, whereas the actual value
grows linearly.

2. Arc Index, Stick Number and Crossing Number

In this section, we prove Theorem 1.1 by establishing a new upper bound on stick
number which is described by another minimality invariant, arc index.
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Fig. 1. A stick presentation of right-handed trefoil.

First we consider a specific type of knot diagram which is obtained by drawing
n chords l1, . . . , ln on a 2-dimensional circular disk B according to the following
rules:

(1) The end points of each li lie on the boundary of B.
(2) If li and lj share a crossing in the interior of B and i < j, then li passes under lj .

If a diagram of such a type represents a knot K, it is called an arc presentation
of K. And the arc index a(K) of a knot K is defined to be the minimal number of
chords among all possible arc presentations of its knot type. In fact our definition of
arc presentation is a little modified from the original one, but essentially identical
[4, 7]. The left of Fig. 2 shows an arc presentation of trefoil knot.

Bae and Park established an upper bound on arc index in terms of crossing
number. [3, Corollary 4 and Theorem 9] provide the following:

Theorem 2.1 [3]. Let K be any nontrivial knot. Then a(K) ≤ c(K)+2. Moreover
if K is a nonalternating prime knot, then a(K) ≤ c(K) + 1.

Therefore, if we prove Theorem 2.2, then the proof of our main theorem is
completed.

Theorem 2.2. Let K be any nontrivial knot. Then s(K) ≤ 3
2 (a(K) − 1).

Fig. 2. A stick knot in cylinder constructed from an arc presentation.
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Proof. Let K be a nontrivial knot with a(K) = n and D be an its arc presentation
with n chords l1, . . . , ln. D denotes the projection of D. Let π : R

3 → R
2 be the

map defined by π(x, y, z) = (x, y). From D we construct a stick knot K1 in the
cylinder B× [1, n] so that π(K1) = D. For each integer i ∈ [1, n], put a line segment
hi into B×{i} so that π(hi) = li. If li ∩ lj ∩∂B = {p}, then connect π−1(p)∩hi to
π−1(p) ∩ hj by a vertical line segment vij so that π(vij) = p. Note that we do not
distinguish vij from vji. By adding all such vertical sticks, we obtain a stick knot
K1 with 2n sticks which is equivalent to K. Figure 2 shows an example of a stick
knot constructed from an arc presentation of the right-handed trefoil.

A horizontal stick hi is said be type-I (respectively, type-III ), if the indices of
the two chords adjacent to li in D are greater (respectively, less) than i. If neither
type-I nor type-III, then hi is type-II. Notice that h1 and hn should be type-I and
type-III, respectively. If hn−1 is type-II, then we can modify K1 as illustrated in
Fig. 3(a), so that the number of horizontal sticks is reduced by one, which is con-
tradictory to the minimality of the number of chords. Since K1 is a nontrivial knot,
hn−1 cannot be type-I. Hence hn−1 should be type-III and similarly h2 should be
type-I.

From K1 we construct another stick knot K2 in which the z-coordinate of each
hi may be changed into some integer zi, while its xy-coordinates are preserved.
Concretely, if we denote the ith horizontal stick of K2 by h′

i, then π(hi) = π(h′
i)

and h′
i ⊂ B × {zi} in B × [0,∞). The height zi will be determined in an inductive

manner. Firstly, set z1 = 1 and z2 = 2. For 3 ≤ i ≤ n, if hi is type-I, then zi is
set to be zi−1 + 1. If hi is type-II, there is a vertical stick vij with j < i which is
adjacent to hi. Then put h′

i into B × {zi} for some large enough zi and connect h′
i

to h′
j via the vertical stick v′ij between B × {zi} and B × {zj}, so that the interior

of the triangle determined by h′
i ∪ v′ij has no intersection with any other horizontal

stick h′
k, k < i. Here, such a triangle will be called a reducible triangle of h′

i. If hi is
type-III, that is, hi is adjacent to some vij and vik with i > j > k, then similarly
the height of h′

i is determined so that the triangle whose boundary contains h′
i ∪v′ij

is reducible.
Now we modify K2 for the purpose of decreasing the number of sticks. For

each i from 3 to n − 1, if h′
i is type-II or III, replace h′

i ∪ v′ij with the other edge
of the reducible triangle (see Fig. 3(b)). Since the interior of the triangle has no
intersection with any other part of the knot, such a replacement preserves the knot
type. And the number of sticks is reduced by one, after each modification. For h′

n,
we modify the knot in another way. Let v′ni and v′nj be the sticks adjacent to h′

n.
The other stick adjacent to v′ni (respectively, v′nj) is denoted by ei (respectively, ej).
Extend ei and ej toward the end points ei ∩ v′ni and ej ∩ v′nj , respectively, long
enough so that the two extended line segments are connected by a line segment
outside of B× [1, zn]. Replace ei ∪ v′ni ∪h′

n ∪ v′nj ∪ ej with these three line segments
(see Fig. 3(c) for example). Then the knot type is preserved, but the number of
sticks is reduced by two. Let K3 be the resulting stick knot.
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(a)

(b)

(c)

Fig. 3. (a) Reduction when hn−1 is type-II, (b) reduction along a reducible triangle and (c)
reduction near h′

n.

Let β1(K1), β2(K1) and β3(K1) be the numbers of type-I, type-II and type-
III horizontal sticks of K1, respectively. Note that β1(K1) = β3(K1). Since n =
β1(K1) + β2(K1) + β3(K1), the number of sticks of K3 is equal to

2n − β2(K1) − (β3(K1) − 1) − 2 = n + β1(K1) − 1.

Therefore,

s(K) ≤ n + β1(K1) − 1.

Now we consider an upper bound of β1(K1). If n is odd, then β1(K1) ≤ (n − 1)/2.
If n is even, then β1(K1) ≤ n/2 in which the equality holds only when β2(K1) = 0.
In that case, let vi1 and vj1 be the horizontal sticks adjacent to h1 in K1. And
replace vi1∪h1 ∪vj1 with vi(n+1) ∪hn+1∪vj(n+1), where hn+1 is the horizontal line
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segment in B × {n + 1} satisfying π(h1) = π(hn+1). Then the resulting stick knot
K ′

1 in B × [2, n + 1] is equivalent to K1. Because β2(K1) = 0 and β2(K ′
1) = 2, we

have

β1(K ′
1) = β1(K1) − 1 ≤ n

2
− 1 <

n − 1
2

.

To summarize, for a nontrivial knot K with a(K) = n, there exists an equivalent
stick knot K ′ with 2n sticks in the cylinder satisfying

β1(K ′) ≤ n − 1
2

and therefore

s(K) ≤ n + β1(K ′) − 1 ≤ a(K) +
a(K) − 1

2
− 1 =

3
2
(a(K) − 1).
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