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In this paper, we realize the crystal basis B(λ) of the irreducible
highest weight module V (λ) of level 1 for Uq(A(1)

n ) using Naka-
jima monomials satisfying some conditions. Also, from this mono-
mial realization, we obtain the image of Kashiwara embedding
Ψ λ

ι : B(λ) ↪→ Z
∞ ⊗ Rλ , where ι is some infinite sequence from the

index set of simple roots. Finally, we give a Uq(A(1)
n )-crystal iso-

morphism between Young wall realization and monomial realiza-
tion, and so we can understand the image of Kashiwara embedding
Ψ λ

ι : B(λ) ↪→ Z
∞ ⊗ Rλ using the combinatorics of Young walls.

© 2010 Elsevier Inc. All rights reserved.

Introduction

The quantum groups Uq(g) introduced by Drinfel’d and Jimbo, independently are deformations of
the universal enveloping algebras U (g) of Kac–Moody algebras g [2,5]. The important feature of quan-
tum groups Uq(g) is that their representation theory is the same as that of U (g). The crystal bases,
introduced by Kashiwara [15], can be viewed as bases at q = 0 for the integrable modules over quan-
tum groups and they are given as a structure of colored oriented graphs, called the crystal graphs,
reflecting the combinatorial structure of integrable modules.

In [16], Kashiwara introduced the embedding of crystal Ψι : B(∞) ↪→ Z∞ , where ι is some infinite
sequence from the index set of simple roots. But, in general, it is not easy to find the image Im Ψι .
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In [1], Cliff described the image of the Kashiwara embedding for the classical Lie algebras, and for
more general types, Zelevinsky and Nakashima obtained the image of the embedding by a unified
method, called the polyhedral realization [28]. Moreover, in [27], for a dominant integral weight λ,
Nakashima gave the embedding of crystal Ψ λ

ι : B(λ) ↪→ Z∞ ⊗ Rλ , and described the explicit form of
ImΨ λ

ι . Recently, in [30,31], the second author extended their theory to the quantum generalized Kac–
Moody algebras. That is, he gave the polyhedral realizations of the crystals B(∞) and B(λ) over the
quantum generalized Kac–Moody algebras.

In [6], Kang introduced an affine combinatorial object called the Young wall, and showed that the
crystal bases for the irreducible highest weight modules of level 1 for quantum affine algebras are
realized as the sets of reduced proper Young walls. In [14], Kang and Lee extended his theory to the
realization of the crystal basis for the irreducible highest weight representations of higher level for
quantum affine algebras. Also, in [10], Kang, Lee and the authors used Young walls to realize the
crystal bases of irreducible highest weight modules over classical quantum finite algebras.

In [17,26], Kashiwara and Nakajima independently defined a crystal structure on the set M of
some monomials which we call the Nakajima monomials. Moreover, they showed that the connected
component C(M) containing a maximal vector M of a dominant integral weight λ is isomorphic to
the irreducible highest weight crystal B(λ). The explicit description of this connected component
C(M) was given for Uq(g) (g = An, Bn, Cn, Dn, G2 and A(1)

n ) by Kang, Kim, and Shin [11,12], Kim and
Shin [19,29]. In [13], Kang and the authors introduced the notion of modified Nakajima monomials, de-
fined a crystal structure on the set of modified Nakajima monomials, and showed that the connected
component containing 1 is isomorphic to the crystal B(∞). Also, in [21], the authors described explic-
itly the connected component containing 1 for quantum finite algebras. Moreover, Jeong, Kang, and
the authors extended their theory to the construction of the crystals B(∞) and B(λ) over quantum
generalized Kac–Moody algebras [4,22].

Besides above mentioned realizations of the crystals, there are several well-known descriptions,
e.g., Young tableaux realization for classical Lie algebras [18,20], path realization using perfect crystals
for quantum affine algebras [7–9], Littelmann’s path realization for symmetrizable Kac–Moody alge-
bras [23,24]. Therefore, it is natural to consider the connection between several realizations. However,
except for some cases, e.g., path realization and Young wall realization, tableau realization and mono-
mial realization, it is not well known.

In this paper, we give a new monomial realization of crystal bases for the irreducible highest
weight representations of level 1 over quantum affine algebra Uq(A(1)

n ), which is different from the
one given in [19]. One of the important advantages of this realization is that it has a natural 1–1
correspondence with the image of the Kashiwara embedding Ψ λ

ι . In addition, we give a crystal iso-
morphism from Young wall realization to monomial realization. Therefore, by combining two crystal
isomorphisms, we have a crystal isomorphism between the set of all reduced Young walls and the
image of Ψ λ

ι . In other words, we can understand the image of Ψ λ
ι from the combinatorics of Young

walls.
Part of this work was completed while the authors were visiting Korea Institute for Advanced

Study in the year of 2008. They are very grateful to all the faculty and staff members of this institute
for their hospitality and support during their visit.

1. Crystals

1.1. Quantum affine algebras

Let I be a finite index set and let A = (aij)i, j∈I be a Cartan matrix of affine type. Let P∨ =
(
⊕

i∈I Zhi) ⊕ Zd and P = {λ ∈ h∗ | λ(P∨) ⊂ Z} be the dual weight lattice and the weight lattice, re-
spectively. Let Π∨ = {hi | i ∈ I} and Π = {αi | i ∈ I} be the sets of simple coroots and simple roots,
respectively. Then the quintuple (A, P∨, P ,Π∨,Π ) is called an affine Cartan datum, and we denote by
Uq(g) the quantum affine algebra associated with the affine Cartan datum.

We denote by P+ = {λ ∈ P | 〈hi, λ〉 � 0 for all i ∈ I} the set of dominant integral weights. For in-
stance, the fundamental weights Λi (i ∈ I) defined by
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〈h j,Λi〉 = δi j and 〈d,Λi〉 = 0 ( j ∈ I)

are dominant integral weights.

1.2. Abstract crystals

An abstract crystal for Uq(g) or a Uq(g)-crystal is a set B together with the maps wt : B → P ,
εi,ϕi : B → Z ∪ {−∞}, ẽi, f̃ i : B → B ∪ {0} (i ∈ I) such that for all i ∈ I and b ∈ B ,

(i) ϕi(b) = εi(b) + 〈hi,wt(b)〉,
(ii) wt(ẽib) = wt(b) + αi if ẽib 
= 0,

(iii) wt( f̃ ib) = wt(b) − αi if f̃ ib 
= 0,
(iv) εi(ẽib) = εi(b) − 1, ϕi(ẽib) = ϕi(b) + 1 if ẽib 
= 0,
(v) εi( f̃ ib) = εi(b) + 1, ϕi( f̃ ib) = ϕi(b) − 1 if f̃ ib 
= 0,

(vi) f̃ ib = b′ if and only if ẽib′ = b for b,b′ ∈ B ,
(vii) ẽib = f̃ ib = 0 if εi(b) = −∞.

Let B1 and B2 be Uq(g) crystals. A morphism of crystals or crystal morphism is a map ψ : B1 → B2
satisfying the following conditions:

(i) for b ∈ B1, wt(ψ(b)) = wt(b), and εi(ψ(b)) = εi(b), ϕi(ψ(b)) = ϕi(b) for all i ∈ I ,
(ii) if b ∈ B1 and f̃ ib ∈ B1, then ψ( f̃ ib) = f̃ iψ(b).

1.3. Examples of crystals

The crystal basis B(λ) of the irreducible highest weight module V (λ) with λ ∈ P+ is a Uq(g)-
crystal, where the maps εi,ϕi (i ∈ I) are given by

εi(b) = max
{
k � 0

∣∣ ẽk
i b 
= 0

}
, ϕi(b) = max

{
k � 0

∣∣ f̃ k
i b 
= 0

}
.

Let U−
q (g) be the negative part of the quantum group Uq(g). Then the crystal basis B(∞) of U−

q (g)

is also a Uq(g)-crystal, where

εi(b) = max
{
k � 0

∣∣ ẽk
i b 
= 0

}
, ϕi(b) = εi(b) + 〈

hi,wt(b)
〉
.

Moreover, the singleton Rλ = {rλ} (λ ∈ P ) is a Uq(g)-crystal with

wt(rλ) = λ, εi(rλ) = −〈hi, λ〉, ϕi(rλ) = 0, ẽirλ = f̃ irλ = 0.

1.4. Tensor product of crystals

Let B1 and B2 be crystals. Then their tensor product B1 ⊗ B2 = {b1 ⊗ b2 | b1 ∈ B1, b2 ∈ B2} is also
a crystal with the maps wt, εi,ϕi , ẽi, f̃ i given by

wt(b1 ⊗ b2) = wt(b1) + wt(b2),

εi(b1 ⊗ b2) = max
{
εi(b1), εi(b2) − 〈

hi,wt(b1)
〉}

,

ϕi(b1 ⊗ b2) = max
{
ϕi(b2),ϕi(b1) + 〈

hi,wt(b2)
〉}

,

ẽi(b1 ⊗ b2) =
{

ẽib1 ⊗ b2 if ϕi(b1) � εi(b2),

b1 ⊗ ẽib2 if ϕi(b1) < εi(b2),

f̃ i(b1 ⊗ b2) =
{

f̃ ib1 ⊗ b2 if ϕi(b1) > εi(b2),

b1 ⊗ f̃ ib2 if ϕi(b1) � εi(b2).



J.-A. Kim, D.-U. Shin / Journal of Algebra 330 (2011) 234–250 237
2. Young walls

2.1. Young walls for Uq(A(1)
n )

The Young walls for Uq(A(1)
n ) are built of colored blocks with shape unit width, unit height, unit

thickness. Given a dominant integral weight λ of level 1 for Uq(A(1)
n ), we build the walls on the

frame Yλ , called the ground-state wall of weight λ, following the building rules given below.

(i) The walls must be built on top of the ground-state wall.
(ii) The colored blocks should be stacked in the patterns given below.

On YΛi :

(iii) Except for the right-most column, there should be no free space to the right of any block.

A Young wall is said to be reduced if

#(k) − #(k + 1) � n for all k � 1.

Here, #(k) is the number of blocks in the kth column of Y from the right.

2.2. Crystal structure on F (λ)

For a dominant integral wight λ of level 1, let F (λ) be the set of all Young walls on Yλ . Given
a Young wall Y ∈ F (λ), a colored i-block is called a removable i-block if the wall remains a Young
wall after removing the block, and a column in Y is called i-removable if the top of that column is a
removable i-block. A place in Y where one may add an i-block to obtain another Young wall is called
an admissible i-slot, and a column in Y is called i-admissible if the top of that column is an admissible
i-slot.

We now define the action of Kashiwara operators ẽi, f̃ i (i ∈ I) on F (λ). Fix i ∈ I and let Y =
(yk)

∞
k=1 ∈ F (λ) be a reduced Young wall. To each column yk of Y , we assign its i-signature sgni(yk)

as − (resp. +) if yk is i-removable (resp. i-admissible). From the sequence of +’s and −’s, we obtain
a finite sequence of −’s followed by +’s, reading from left to right by removing every (+,−)-pair,
which is called the i-signature of Y . We define ẽi Y to be the Young wall obtained from Y by removing
the i-block corresponding to the right-most − in the i-signature of Y . If there exists no − in the i-
signature of Y , we define ẽi Y = 0. We define f̃ i Y to be the Young wall obtained from Y by adding an
i-block to the column corresponding to the left-most + in the i-signature of Y . If there exists no +
in the i-signature of Y , we define f̃ i Y = 0. We also define the maps

wt : F (λ) → P , εi : F (λ) → Z, ϕi : F (λ) → Z
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by

wt(Y ) = −
∑
i∈I

kiαi,

εi(Y ) = the number of −’s in the i-signature of Y ,

ϕi(Y ) = the number of +’s in the i-signature of Y ,

where ki is the number of i-colored blocks in Y . Then (F (λ),wt, εi,ϕi, ẽi, f̃ i) becomes a Uq(A(1)
n )-

crystal. Moreover, if we let Y(λ) be the set of all reduced Young walls on Yλ , then it is not difficult
to see that Y(λ) is a subcrystal of F (λ) [3,6].

2.3. Young wall realization of B(λ)

Theorem 2.1. (See [3,6].) Let λ be a dominant integral weight of level 1, and let Y(λ) be the set of all reduced
Young walls on Yλ . Then there exists a crystal isomorphism φ : Y(λ) → B(λ) sending Yλ to the highest weight
vector uλ in B(λ).

3. Embedding of crystals

3.1. Embedding of B(∞)

Let

Z∞ := {
(. . . , xk, . . . , x1)

∣∣ xk ∈ Z and xk = 0 for k � 0
}
,

and let ι = (. . . , ik, . . . , i1) be an infinite sequence such that

ik 
= ik+1 and #{k | ik = i} = ∞ for any i ∈ I . (3.1)

Now, we associate to ι a crystal structure on Z∞ . Let −→x = (. . . , xk, . . . , x1) be an element of Z∞ . For
k � 1, we set

σk(
−→x ) = xk +

∑
j>k

〈hik ,αi j 〉x j .

Let σ (i)(
−→x ) = maxk: ik=i{σk(

−→x )}, and

n f = min
{
k

∣∣ ik = i, σk(
−→x ) = σ (i)(

−→x )
}
, ne = max

{
k

∣∣ ik = i, σk(
−→x ) = σ (i)(

−→x )
}
.

Now, we define

f̃ i
−→x = (xk + δk,n f )k�1, ẽi

−→x =
{

(xk − δk,ne )k�1 if σ (i)(
−→x ) > 0,

0 otherwise.

We also define

wt(−→x ) = −
∞∑
j=1

x jαi j , εi(
−→x ) = σ (i)(

−→x ), ϕi(
−→x ) = 〈

hi,wt(−→x )
〉 + εi(

−→x ).

Then it is easy to see that Z∞ is a crystal [28]. We denote this crystal by Z∞
ι .
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The following is the Kashiwara embedding theorem.

Theorem 3.1. (See [16,28].) Let ι be an infinite sequence satisfying (3.1). Then there exists a unique strict
embedding of crystals

Ψi : B(∞) ↪→ Z∞
ι such that u∞ �→ (. . . ,0, . . . ,0),

where u∞ is the highest weight vector in B(∞).

3.2. Embedding of B(λ)

Let Rλ = {rλ} (λ ∈ P ) be the crystal given in Section 1.3. Then we have the strict embedding of
crystals

Ωλ : B(λ) ↪→ B(∞) ⊗ Rλ.

Therefore, by Theorem 3.1, we have

Theorem 3.2. (See [27].) Let ι be an infinite sequence satisfying (3.1). Then there exists the unique strict em-
bedding of crystals

Ψ λ
i : B(λ)

Ωλ
↪→ B(∞) ⊗ Rλ

Ψι⊗id
↪→ Z∞

ι ⊗ Rλ,

such that the highest weight vector uλ sends to (. . . ,0, . . . ,0) ⊗ rλ .

Remark 3.3. By Theorem 3.1 and Theorem 3.2, the crystals B(∞) and B(λ) are isomorphic to the con-
nected components of Z∞

ι and Z∞
ι ⊗ Rλ containing (. . . ,0, . . . ,0) and (. . . ,0, . . . ,0)⊗ rλ , respectively.

4. Nakajima monomials

4.1. Nakajima monomials

Let M be the set of monomials in the commuting variables Yi(n) (i ∈ I,n ∈ Z) of the form

m =
∏

i∈I,n∈Z

Yi(n)yi(n) (yi(n) ∈ Z).

The monomials in M are called the Nakajima monomials.

4.2. Crystal structure of M

Let m be a monomial in M. For each i ∈ I , we define

wt(m) =
∑

i

(∑
n

yi(n)

)
Λi,

ϕi(m) = max

{∑
k�n

yi(k)

∣∣∣ n ∈ Z

}
,

εi(m) = max

{
−

∑
yi(k)

∣∣∣ n ∈ Z

}
. (4.1)
k>n
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Let C = (ci j)i 
= j be a set of nonnegative integers such that ci j + c ji = 1, and for each i ∈ I , n ∈ Z,
Ai(n) is defined by

Ai(n) = Yi(n)Yi(n + 1)
∏
j 
=i

Y j(n + c ji)
a ji .

We set

n f = min

{
n ∈ Z

∣∣∣ ϕi(m) =
∑
k�n

yi(k)

}
, ne = max

{
n ∈ Z

∣∣∣ ϕi(m) =
∑
k�n

yi(k)

}
.

Now, we define the Kashiwara operators ẽi , f̃ i (i ∈ I) by

f̃ im =
{

m · Ai(n f )
−1 if ϕi(m) > 0,

0 otherwise,
ẽim =

{
m · Ai(ne) if εi(m) > 0,

0 otherwise.
(4.2)

Then M becomes a Uq(g)-crystal with the maps wt, εi,ϕi , ẽi, f̃ i (i ∈ I) defined in (4.1) and (4.2).

4.3. Monomial realization of B(λ)

Theorem 4.1. (See [17,26].) Let m be a maximal vector in M of weight λ, and let C(m) be the connected
component of M containing m. Then there exists a Uq(g)-crystal isomorphism ψ : C(m) → B(λ) sending m to
the highest weight vector uλ in B(λ).

5. Characterization of monomials in C(m)

We know that the description of the monomials in the connected component C(m) containing a
maximal vector m depends on the choice of the set C = (ci j)i 
= j given in Section 4. In [19], the first
author gave the characterization of the connected component C(m) when the set C = (ci j)i 
= j is given
below.

ci j =
{

0 if i > j, or (i, j) = (0,n),

1 if i < j, or (i, j) = (n,0).

Also, she gave the crystal isomorphism between the set Y(λ) of all reduced Young walls on the
ground state wall Yλ and the set C(m). However, she could not give information for the relation
between C(m) and the image of crystal embedding Ψ λ

ι : B(λ) ↪→ Z∞
�0,ι ⊗ Rλ .

In this section, we select another set C = (ci j)i 
= j given by

ci j = 0 if i > j, and 1 if i < j,

and we characterize the connected component C(m) using Ai(k) (i ∈ I, k ∈ Z). Moreover, in the next
section, we give crystal isomorphisms not only between Y(λ) and C(m), but also ImΨ λ

ι and C(m).

5.1. Characterization of monomial realization of B(λ)

For each i = 0,1, . . . ,n, and k ∈ Z�0, we denote by Si the infinite sequences of the integers as
follows:
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Si = (
si(k): k � 0

) = (1,2, . . . ,n − i,n − i + 2,n − i + 3, . . . ,2n − i + 1,

2n − i + 3,2n − i + 4, . . . ,3n − i + 2,

3n − i + 4,3n − i + 5, . . .) (i 
= n),

Sn = (
sn(k): k � 0

) = (2,3, . . . ,n + 1,n + 3,n + 4, . . . ,2n + 2,

2n + 4,2n + 5, . . . ,3n + 3,

3n + 5,3n + 6, . . .).

For each p = 0,1, . . . ,n, we set

si,p(k) =
{

si−p(k − 1) if 0 � i � p − 1,

si−p(k) if p � i � n,

where si(−1) = 0 for all i ∈ I . Now, we are in a position to state our main theorem.

Theorem 5.1. For each p = 0,1, . . . ,n, the connected component C(Y p(0)) which is isomorphic to B(Λp) for

Uq(A(1)
n ) is the set M(Λp) of the monomials of the following form

M = Y p(0) ·
∏

i∈I,k�0

Ai(k)−ai(k)

satisfying the following conditions:

(i) For each k � 0, ai(k) � si,p(k).
(ii) For (i,k) with n | (i + k − p), if 1 � ai(k) < si,p(k), then

ai(k) �

⎧⎨
⎩

min{a0(k),an−1(k) + 1} for i = n,

min{a1(k − 1),an(k − 1) + 1} for i = 0,

min{ai+1(k − 1),ai−1(k) + 1} otherwise,

and if ai(k) = si,p(k), then

ai(k) =
⎧⎨
⎩

a0(k) + 1 = an−1(k) + 1 for i = n,

a1(k − 1) + 1 = an(k − 1) + 1 for i = 0,

ai+1(k − 1) + 1 = ai−1(k) + 1 otherwise.

(iii) For (i,k) with n � (i + k − p), if 1 � ai(k) < si,p(k), then

ai(k) �

⎧⎨
⎩

min{a0(k),an−1(k)} for i = n,

min{a1(k − 1),an(k − 1)} for i = 0,

min{ai+1(k − 1),ai−1(k)} otherwise,

and if ai(k) = si,p(k), then

ai(k) =
⎧⎨
⎩

a0(k) + 1 = an−1(k) for i = n,

a1(k − 1) + 1 = an(k − 1) for i = 0,

ai+1(k − 1) + 1 = ai−1(k) otherwise.
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Let ι = (. . . ,0,n, . . . ,1,0,n, . . . ,1,0), and let Ψ λ
ι : B(λ) ↪→ Z∞

�0,ι ⊗ Rλ be the crystal embedding

given in Section 3. Then there should be a crystal isomorphism between M(Λp) and ImΨ
Λp
ι . The

following theorem gives an explicit crystal isomorphism from M(Λp) to ImΨ
Λp
ι .

Theorem 5.2. For each p = 0,1, . . . ,n, the function φ :M(Λp) → ImΨ
Λp
ι defined by

φ

(
Y p(0) ·

∏
i∈I,k�0

Ai(k)−ai(k)

)

= (
. . . ,a0(2),an(1), . . . ,a1(1),a0(1),an(0), . . . ,a1(0),a0(0)

) ⊗ rΛp

is a Uq(A(1)
n )-crystal isomorphism.

Proof. By the similar arguments given in the proof of Theorem 5.1 in [21], we can easily show that
φ is a crystal isomorphism. �
5.2. The proof of Theorem 5.1

First, we show that M(Λp) is closed under the Kashiwara operators ẽi and f̃ i . Let M =
Y p(0)

∏
i∈I,k∈Z�0

Ai(k)−ai (k) ∈ M(Λp). For the condition (i), suppose that ai(k) = si,p(k) = si−p(k) for

some k ∈ Z�0, and

f̃ i M = M · Ai(k)−1

= M1 · (Ai−1(k)−ai−1(k) Ai(k − 1)−ai(k−1) Ai(k)−ai(k) Ai+1(k − 1)−ai+1(k−1)
) · Ai(k)−1.

Then in M ,

yi(k) = ai−1(k) − ai(k − 1) − ai(k) + ai+1(k − 1) > 0.

Since almost the same arguments are available for all i ∈ I , we only treat the case when p + 1 � i < n,
and n | (i + k − p). Now, by the condition (ii), ai−1(k) = ai+1(k − 1) = ai(k) − 1, and so

ai(k) > ai(k − 1) + 2. (5.1)

Also, since si−p(k) = ai(k) = ai−1(k) + 1, by the definitions of the sequences (si(k): k � 0) (i ∈ I),
we have ai−1(k) = si−p−1(k). Moreover, by the condition (iii) and the definitions of the sequences
(si(k): k � 0) (i ∈ I), we have ai(k − 1) = si−p(k − 1). Thus, (5.1) is rewritten as

si−p(k) > si−p(k − 1) + 2,

which contradicts the definitions of the sequences (si(k): k � 0) (i ∈ I). Similarly, we can prove that
f̃ i M satisfies the condition (i) for the remaining case when ai(k) = si,p(k) = si−p(k − 1).

For the condition (ii), suppose that ai(k) = min{ai+1(k − 1),ai−1(k) + 1} in M and f̃ i M = M ·
Ai(k)−1. Since the proofs are similar, we only consider the case when i = 1, . . . ,n − 1. By the def-
inition of the Kashiwara operator f̃ i , in M ,

yi(k) = ai−1(k) − ai(k − 1) − ai(k) + ai+1(k − 1) > 0.
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First, if ai+1(k − 1) = ai−1(k) + 1, then ai(k) = ai+1(k − 1), and so

ai−1(k) > ai(k − 1).

But, since ai(k) = ai−1(k) + 1 and ai(k) 
= si,p(k), we have ai−1(k) 
= si−1,p(k). Thus, the condition (iii)
implies ai−1(k) � ai(k − 1), which is a contradiction. Second, if ai−1(k) + 1 < ai+1(k − 1), then ai(k) =
ai−1(k) + 1, and so

ai+1(k − 1) > ai(k − 1) + 1.

But, since n | ((i + 1) + (k − 1) − p), by the condition (ii), we have ai+1(k − 1) � ai(k − 1) + 1. It is a
contradiction. Finally, if ai−1(k) + 1 > ai+1(k − 1), then ai(k) = ai+1(k − 1), and so

ai−1(k) > ai(k − 1).

But, since n � ((i − 1) + k − p), by the condition (iii), we have ai−1(k) � ai(k − 1) + 1. Thus, ai(k − 1) <

ai−1(k) � ai(k − 1) + 1, and so

ai−1(k) = ai(k − 1) + 1 and ai−1(k) = si−1,p(k).

Since ai−1(k) � ai−2(k), we have ai−2(k) = si−2,p(k), and by the similar argument, we have
ai+1(k − 1) = si+1,p(k − 1). Therefore, by the definitions of the sequences (si(k): k � 0), in f̃ i M ,

ai(k) = si,p(k) and ai(k) = ai+1(k − 1) + 1 = ai−1(k) + 1.

That is, f̃ i M satisfies the condition (ii). Similarly, we can show that f̃ i M satisfies the condition (iii).
Moreover, by the similar arguments, we can prove that M(Λp) is closed under the Kashiwara opera-
tors ẽi for all i ∈ I .

Finally, suppose that M 
= Y p(0) and ẽi M = 0 for all i ∈ I . Let (i0,k0) be the largest pair among the
set {(i,k) ∈ I × Z�0 | ai(k) > 0} under the ordering

(i1,k1) > (i2,k2) if k1 > k2, or k1 = k2 and i1 > i2.

Then since

Ai0(k0)
−ai0 (k0) = Yi0(k0)

−ai0 (k0)Yi0(k0 + 1)−ai0 (k0)Yi0+1(k0)
−ai0 (k0)Yi0−1(k0 + 1)−ai0 (k0),

we have εi0 (M) > 0, which is a contradiction.

6. Correspondence between Y(λ) and M(λ)

In previous section, we gave a new realization M(Λi) (i ∈ I), the connected component contain-
ing Yi(0), of the irreducible highest weight crystal B(Λi) in terms of Nakajima monomials, which is
different from the one given in [19]. In this section, we discuss the relation between the set Y(Λi) of
all reduced Young walls on YΛi and M(Λi).
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6.1. Characterization of M(λ)-I

Let Y ∈ Y(Λi) be a reduced Young wall. Then we associate a monomial MY as follows:

(a) First, for the stacked blocks in Y , we associate the monomials following the rules given below.
(i) The rightmost bottom block corresponds to Ai(0)−1.

(ii) Assume that a j-block ( j ∈ I) corresponds to A j(k)−1. Then the above ( j + 1)-block corre-
sponds to the monomial

A j+1(k)−1 if j 
= n, A j+1(k + 1)−1 if j = n,

and the left ( j − 1)-block corresponds to the monomial

A j−1(k + 1)−1 if j 
= 0, A j−1(k)−1 if j = 0.

(b) Finally, the monomial MY is defined by the product of Yi(0) and the monomials corresponding
to the blocks stacked in Y .

Remark 6.1. The following pictures (a) and (b) represent the pattern of the blocks in Young walls
in Y(Λ2) and the pattern of indices k in Ai(k)−1 corresponding to the blocks in Young walls for
Uq(A(1)

5 ), respectively.

(a) (b)

Example 6.2. Let

Y = ∈ Y(Λ0)

for Uq(A(1)
3 ). Then the first, second, third columns (from right to left) in Y correspond to the mono-

mials
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A0(0)−1 A1(0)−1 A2(0)−1 A3(0)−1 A0(1)−1,

A3(0)−1 A0(1)−1 A1(1)−1 A2(1)−1,

A2(1)−1,

respectively, and so

MY = Y0(0) · (A0(0)−1 A1(0)−1 A2(0)−1 A3(0)−1 A0(1)−1)
·(A3(0)−1 A0(1)−1 A1(1)−1 A2(1)−1) · A2(1)−1.

Theorem 6.3. For each p = 0,1, . . . ,n, the map ψ : Y(Λp) → M(Λp) defined by ψ(Y ) = MY is a Uq(A(1)
n )-

crystal isomorphism sending YΛp to Y p(0).

Proof. By the definition of ψ , clearly ψ(YΛp ) = Y p(0). Let Y be a reduced Young wall in Y(Λp). Then
from the coloring of the blocks in Y and the rules for building the walls, it is not difficult to see that
ψ(Y ) satisfies the conditions (i)–(iii) in Theorem 5.1. Also, since Y is reduced, it is easy to see that
ψ is a 1–1 correspondence.

Now, consider the subparts of Y consisting of only j-blocks ( j = i − 1, i, i + 1). Then they are
divided into three cases with respect to the existence of removable i-blocks and admissible i-slots.
First, consider the case when the removable i-block exists as follows.

(i) (ii)

(iii) (iv)
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Here, the shaded blocks are the removable i-blocks. Then in any case, if the leftmost removable i-
block corresponds to Ai(m)−1, we have

yi(k) = 0 if k 
= m + 1, −1 if k = m + 1. (6.1)

Indeed, the subwall in case (i) corresponds to the monomial

Ai(m)−1 Ai−1(m)−1(Ai+1(m − 1)−1 Ai(m − 1)−1 Ai−1(m − 1)−1)
· · · (Ai+1(1)−1 Ai(1)−1 Ai−1(1)−1)Ai+1(0)−1 Ai(0)−1Yi(0),

and so by simple calculation, we have (6.1). Second, consider the case when the admissible i-slot
exists as follows.

(i) (ii)

(iii) (iv)

Then in any case, if the leftmost admissible i-slot corresponds to Ai(m)−1, we have

yi(k) = 0 if k 
= m, 1 if k = m.
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By the similar arguments, it is easy to see that if there is neither admissible i-slot nor removable
i-block, yi(k) = 0 for all k � 0. Therefore, by the definition of the Kashiwara operators ẽi, f̃ i given in
the sets Y(Λp) and M(Λp), ψ is a crystal morphism for Uq(A(1)

n ). �
By Theorem 6.3 and Theorem 5.2, we have

Corollary 6.4. For each p = 0,1, . . . ,n, the function ψ ◦ φ : Y(Λp) → ImΨ
Λp
ι is a Uq(A(1)

n )-crystal isomor-
phism sending YΛp to (. . . ,0,0,0) ⊗ rΛp .

Example 6.5. Let Y be the Young wall for Uq(A(1)
3 ) given in Example 6.2, and let ι = (. . . ,0,3,2,1,

0,3,2,1,0). Then

ψ(Y ) = MY = Y0(0) · (A0(0)−1 A1(0)−1 A2(0)−1 A3(0)−1 A0(1)−1)
· (A3(0)−1 A0(1)−1 A1(1)−1 A2(1)−1) · A2(1)−1

= Y0(0) · A0(0)−1 A1(0)−1 A2(0)−1 A3(0)−2 A0(1)−2 A1(1)−1 A2(1)−2.

Moreover, we have

φ
(
ψ(Y )

) = (. . . ,0,0,2,1,2,2,1,1,1) ⊗ rΛ0 ∈ Im Ψ
Λ0
ι .

That is,

ψ←→ Y0(0) · A0(0)−1 A1(0)−1 A2(0)−1 A3(0)−2 A0(1)−2 A1(1)−1 A2(1)−2

φ←→ (. . . ,0,0,2,1,2,2,1,1,1) ⊗ rΛ0 .

6.2. Characterization of M(λ)-II

For i ∈ {0,1, . . . ,n} and m ∈ Z, we introduce new variables as follows.

Xi(m) =
{

Yn(m)−1Y0(m) for i = 0,

Yi−1(m + 1)−1Yi(m) otherwise.

Then we have

X0(m)A0(m)−1 = X1(m),

X1(m)A1(m)−1 = X2(m),

...

Xn−1(m)An−1(m)−1 = Xn(m),



248 J.-A. Kim, D.-U. Shin / Journal of Algebra 330 (2011) 234–250
Xn(m)An(m)−1 = X0(m + 1),

X0(m + 1)A0(m + 1)−1 = X1(m + 1),

...

Thus, the bijection between Y(Λp) and M(Λp) given in Section 6.1 can be rewritten as follows. Let
Y ∈ Y(λ) be a reduced Young wall. Then the associated monomial MY is rewritten as follows:

(a) First, to each column yk , we associate a monomial as follows.
(i) If Y = YΛi , the columns yk (k � 0) correspond to the monomials

Xi(0), Xi−1(1), . . . , X0(i), Xn(i), Xn−1(i + 1), . . . ,

X0(i + n), Xn(i + n), Xn−1(i + n + 1), . . . ,

respectively.
(ii) Assume that Y 
= YΛi , the top block of yk corresponds to A j(p)−1 by the rule given in Sec-

tion 6.1. Then the kth column yk corresponds to the monomial

X j+1(p) if j 
= n, X j+1(p + 1) if j = n.

(b) Finally, the monomial MY is determined by the product of the monomials corresponding to the
columns yk in Y .

By above 1–1 correspondence, we have another characterization of the connected component
C(Y p(0)).

Theorem 6.6. The connected component C(Y p(0)) = M(Λp) containing Y p(0) is the set of the monomials of
the following form

M = Yir (kr) ·
r−1∏
j=0

Xi j (k j) (r � 1, k j � 0)

satisfying the following conditions:

(i) r + s ≡ p (mod n + 1).
(ii) For each j = 0,1, . . . , r − 1, 0 � k j+1 − k j � 1.

(iii) For each j = 0,1, . . . , r − 1, if k j+1 = k j + 1, then i j+1 < i j , and if k j+1 = k j , then i j+1 � i j .

Finally, from Theorem 6.6, we have the following explicit description of M(Λp) in terms of Yi(k)’s
(i ∈ I , k � 0). Indeed, the Nakajima monomials in the commuting variables Yi(k) (i ∈ I , k ∈ Z) were in-
troduced by Nakajima while studying the structure of quiver varieties [25,26]. Because of the relation
of quiver varieties, the characterization of M(Λp) in terms of Yi(k) is important.

Theorem 6.7. The connected component C(Y p(0)) = M(Λp) containing Y p(0) is the set of the monomials of
the following form

M = Yck+1(dk+1) ·
k∏

j=0

Ya j (b j)
−1Yc j (d j) (k � 0, b j � d j)
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satisfying the following conditions:

(i) a j + b j ≡ c j + d j (mod n).
(ii) For each j = 0,1, . . . ,k,

0 � b j − d j+1 � 1.

Moreover, if b j = d j+1 , then c j+1 < a j , and if b j = d j+1 + 1, then c j+1 > a j .

(iii) ck+1 + ∑k
j=0(c j − a j) ≡ p (mod n + 1).

Proof. Even though it is derived from Theorem 6.6, we will prove directly. For a monomial M =
Yck+1 (dk+1) · ∏k

j=0 Ya j (b j)
−1Yc j (d j) ∈ M(Λp), suppose that f̃ i M = M · Ai(m)−1. By the definition of

the Kashiwara operator f̃ i , i = c j and m = d j for some j, and so M = M ′ · Ya j (b j)
−1Yc j (d j) and

f̃ i M = M ′ · Ya j (b j)
−1Yc j (d j) · Ac j (d j)

−1

= M ′ · Ya j (b j)
−1Yc j−1(d j + 1)Yc j (d j + 1)−1Yc j+1(d j).

Thus, it is clear that f̃ i M satisfies the conditions (i)–(iii). Similarly, we can show that ẽi M satisfies the
conditions (i)–(iii). Moreover, by the definition of Kashiwara operator ẽi , it is easy to see that ẽi M = 0
for all i ∈ I implies M = Y p(0). �
Example 6.8. Let Y be a reduced Young wall given in Example 6.2. Then we have

MY = (· · · X1(5)X2(4)X3(3)X0(3)X1(2)
) · X3(1)X3(1)X1(1)

= Y1(2)X3(1)2 X1(1)

= Y1(2)Y2(2)−2Y3(1)2Y0(2)−1Y1(1).
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