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TUNNEL LEVELING, DEPTH, AND BRIDGE NUMBERS

SANGBUM CHO AND DARRYL MCCULLOUGH

Abstract. We use the theory of tunnel number 1 knots introduced in an ear-
lier paper to strengthen the Tunnel Leveling Theorem of Goda, Scharlemann,
and Thompson. This yields considerable information about bridge numbers of
tunnel number 1 knots. In particular, we calculate the minimum bridge num-
ber of a knot as a function of the maximum depth invariant d of its tunnels.
The growth of this value is on the order of (1 +

√
2)d, which improves known

estimates of the rate of growth of bridge number as a function of the Hempel
distance of the associated Heegaard splitting. We also find the maximum
bridge number as a function of the number of cabling constructions needed to
produce the tunnel, showing in particular that the maximum bridge number of

a knot produced by n cabling constructions is the (n+2)nd Fibonacci number.
Finally, we examine the special case of the “middle” tunnels of torus knots.

Introduction

The Tunnel Leveling Theorem of H. Goda, M. Scharlemann, and A. Thomp-
son [10] says that when a tunnel number 1 knot is in minimal bridge position, any
of its tunnel arcs can be slid to lie in a single horizontal level. Using the theory of
tunnel number 1 knots developed in [5], we will prove the Tunnel Leveling Adden-
dum. Roughly speaking, it says that when a tunnel arc is in level position as in the
conclusion of the Tunnel Leveling Theorem, the other two knots from the θ-curve
which is the union of the knot and its tunnel arc are also (after trivial repositioning)
in minimal bridge position. Its full statement is given near the start of Section 5.

The Tunnel Leveling Addendum gives a great deal of information about bridge
numbers of tunnel number 1 knots. Some of these applications involve the depth in-
variant, which is defined using the theory from [5]. The depth of a tunnel, depth(τ ),
is somewhat similar to the (Hempel) distance dist(τ ) (see J. Johnson [11] and
Y. Minsky, Y. Moriah, and S. Schleimer [13]), but unlike the distance, the depth is
very easy to calculate in terms of the parameter description of tunnels given in [5].
The two invariants are related by the inequality

dist(τ )− 1 ≤ depth(τ ),

but the depth can be much larger than the distance. Indeed, the “middle” tunnels
of torus knots that we examine below are easily seen to have distance 2, but we
will see that their depths can be arbitrarily large.

The depth invariant can be defined geometrically in terms of the cabling con-
structions of [5] (see Section 2), and it also has a geometric interpretation in terms
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260 SANGBUM CHO AND DARRYL MCCULLOUGH

of a construction that first appeared in [10]. That construction, which we call a
giant step, is studied in [7].

There is no upper bound for the bridge number of a knot in terms of the depths
of its tunnels, but among our applications of the Tunnel Leveling Addendum is a
sharp lower bound:

Theorem 7.1 (Minimum Bridge Number). For d ≥ 1, the minimum bridge number
of a knot having a tunnel of depth d is given recursively by ad, where a1 = 2, a2 = 4,
and ad = 2ad−1 + ad−2 for d ≥ 3. Explicitly,

ad =
(1 +

√
2)d√

2
− (1−

√
2)d√

2

and consequently lim
d→∞

(ad − (1+
√
2)d√
2

) = 0.

This improves Lemma 2 of [11], which is that bridge number grows at least
linearly with distance. It also improves Proposition 1.11 of [10], which implies that
bridge number grows at least as fast as 2d.

Actually, the Minimum Bridge Number Theorem can be proven using only the
Tunnel Leveling Theorem, which gives the lower bounds, and some explicit con-
structions to realize the minimum values. Our upper bound result, however, uses
the full strength of the Tunnel Leveling Addendum:

Theorem 7.2 (Maximum Bridge Number). Let (F1, F2, . . .) = (1, 1, 2, 3, . . .) be the
Fibonacci sequence. The maximum bridge number of a knot having a tunnel pro-
duced by n cabling constructions, of which the first m produce simple or semisimple
tunnels, is mFn−m+2 + Fn−m+1.

(The terms “simple” and “semisimple” are recalled in Section 2.) For fixed n,
the largest value for the upper bound in Theorem 7.2 occurs when m = 2, giving
the following absolute maximum:

Corollary 7.2. The maximum bridge number of a knot having a tunnel produced
by n cabling operations is Fn+2.

In fact, this maximum bridge number is achieved by a sequence of torus knot
tunnels, as we will see in Proposition 8.1.

In addition to giving general bounds, the Tunnel Leveling Addendum places very
strong restrictions on the possible bridge numbers that can occur:

Theorem 6.3 (Bridge Number Set). Suppose that a knot K has a tunnel τ produced
by n ≥ 2 cabling operations, of which the first m produce simple or semisimple
tunnels. Then br(K) is one of the 2m− 2 values Fτ (a, b) for 2 ≤ a ≤ b ≤ a+ 1 ≤
m+ 1.

Here, Fτ is the Fibonacci function of τ , defined in Section 6. It appears almost
certain that all 2m− 2 possible values in the Bridge Number Set Theorem always
do occur as bridge numbers. As explained in Remark 6.4, this is easy to see for
m = 2 and m = 3, but for the general case we have not been able to verify all the
necessary examples.

We will also examine the interesting case of the “middle” tunnels of torus knots.
In our paper [6], we calculated the invariants of [5] for all torus knot tunnels. Using
that information, we will show that torus knot tunnels achieve the minimum rate of
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TUNNEL LEVELING, DEPTH, AND BRIDGE NUMBERS 261

growth of bridge numbers in terms of depth, but not the minimum possible values,
while they do achieve the maximum possible bridge numbers in terms of the number
of cabling constructions.

Here is an outline of the sections of the paper. The first two sections constitute a
concise review of the material from [5] that we will need for the present applications.
Section 3 introduces the distance and depth invariants and gives a few results
that follow quickly from [5] and the work of other authors. Section 4 reviews the
Tunnel Leveling Theorem, and Section 5 states and proves the Tunnel Leveling
Addendum. Fibonacci functions are introduced in Section 6, which also contains
the more technical results on bridge number, including the Bridge Number Set
Theorem. The Minimum and Maximum Bridge Number Theorems are proved in
Section 7, and torus knot tunnels are studied in Section 8. Finally, most of the
results apply to the case of tunnel number 1 links, and in Section 9, we briefly
discuss these adaptations.

We thank the referee for a very careful reading of the manuscript.

1. The disk complex of the genus-2 handlebody

Let H be a genus-2 orientable handlebody, regarded as the standard unknotted
handlebody in S3. For us, a disk in H means a properly imbedded disk in H, which
is assumed to be nonseparating unless otherwise stated. The disk complex D(H) is
the 2-dimensional, contractible simplicial complex whose vertices are the isotopy
classes of disks in H, such that a collection of k + 1 vertices spans a k-simplex if
and only if they admit a set of pairwise-disjoint representatives. Each 1-simplex
of D(H) is a face of countably many 2-simplices. As suggested by Figure 1, D(H)
grows outward from any of its 2-simplices in a treelike way. In fact, it deformation

retracts to the tree ˜T seen in Figure 1.
Each disk τ in H is the cocore disk of a tunnel of the knot Kτ which is a core

circle of the solid torus obtained by cutting H along τ . On the other hand, each
tunnel of a tunnel number 1 knot in S3 determines a collection of disks in H as
follows. The tunnel is a 1-handle attached to a regular neighborhood of the knot to
form an unknotted genus-2 handlebody. An isotopy carrying this handlebody to H
carries a cocore 2-disk of that 1-handle to a nonseparating disk in H, and carries
the tunnel number 1 knot to a core circle of the solid torus obtained by cutting
H along the image disk in H. The indeterminacy of this disk due to the choice of
isotopy is the group of isotopy classes of orientation-preserving homeomorphisms

Figure 1. A portion of the nonseparating disk complex D(H) and

the tree ˜T . Countably many 2-simplices meet along each edge.
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Figure 2. A portion of D(H)/G and T near the primitive orbits.

of S3 that preserve H. This group is called the Goeritz group G. The work of
M. Scharlemann [16] and E. Akbas [2] proves that G is finitely presented and even
provides a simple presentation of it.

Since two disks in H determine equivalent tunnels exactly when they differ by an
isotopy movingH through S3, the collection of all (equivalence classes of) tunnels of
all tunnel number 1 knots corresponds to the set of orbits of vertices of D(H) under
G. So it is natural to examine the quotient complex D(H)/G, which is illustrated
in Figure 2. Through work of the first author [4], the action of G on D(H) is well-

understood. A disk D in H is called primitive if there is a disk E in S3 −H for
which ∂D and ∂E intersect transversely in one point in ∂H. The primitive disks
(regarded as vertices) span a contractible subcomplex P(H) of D(H), called the
primitive subcomplex. The action of G on P(H) is as transitive as possible; indeed
the quotient P(H)/G is a single 2-simplex Π which is the image of any 2-simplex
of the first barycentric subdivision of P(H). The vertices of Π are π0, the orbit of
all primitive disks, μ0, the orbit of all pairs of disjoint primitive disks, and θ0, the
orbit of all triples of disjoint primitive disks.

On the remainder of D(H), the stabilizers of the action are as small as possible.
A 2-simplex which has two primitive vertices and one nonprimitive is identified with
some other such simplices, then folded in half and attached to Π along the edge
〈μ0, π0〉. The nonprimitive vertices of such 2-simplices are exactly the disks in D(H)
that are disjoint from some primitive pair, and these are called simple disks. As
tunnels, they are the upper and lower tunnels of 2-bridge knots. The remaining 2-
simplices of D(H) receive no self-identifications and descend to portions of D(H)/G
that are treelike and are attached to one of the edges 〈π0, τ0〉 where τ0 is simple.

The tree ˜T shown in Figure 1 is constructed as follows. Let D′(H) be the

first barycentric subdivision of D(H). Denote by ˜T the subcomplex of D′(H)
obtained by removing the open stars of the vertices of D(H). It is a bipartite
graph, with “white” vertices of valence 3 represented by triples and “black” vertices
of (countably) infinite valence represented by pairs. The valences reflect the fact
that moving along an edge from a triple to a pair corresponds to removing one of
its three disks, while moving from a pair to a triple corresponds to adding one of
infinitely many possible third disks to a pair. The possible disjoint third disks that
can be added are called the slope disks for the pair.
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The image ˜T /G of ˜T in D′(H)/G is a tree T . The vertices of D′(H)/G that
are images of vertices of D(H) are not in T , but their links in D′(H)/G are sub-
complexes of T . These links are known to be infinite trees. For each such vertex
τ of D′(H)/G, i.e. each tunnel, there is a unique shortest path in T from θ0 to the
vertex in the link of τ that is closest to θ0. This path is called the principal path of
τ , and this closest vertex is a triple, called the principal vertex of τ . The two disks
in the principal vertex, other than τ , are called the principal pair of τ . They are
exactly the disks called μ+ and μ− that play a key role in [17]. Figure 4 shows the
principal path of a certain tunnel.

The white vertices of T correspond to unknotted θ-curves in S3, up to isotopy,
for a white vertex gives a triple of nonseparating disks, dual to a θ-curve in H in
which each arc crosses one of the disks and not the others. These are exactly the
unknotted θ-curves, in that a regular neighborhood is isotopic to H which is part
of a Heegaard splitting of S3. Two such θ-curves in H are isotopic in S3 exactly
when they are equivalent under the Goeritz group, so the white vertices of T give
the isotopy classification.

2. The cabling construction and the binary invariants

In a sentence, the cabling construction is to “Think of the union of K and the
tunnel arc as a θ-curve, and rationally tangle the ends of the tunnel arc and one
of the arcs of K in a neighborhood of the other arc of K.” We sometimes call this
“swap and tangle,” since one of the arcs in the knot is exchanged for the tunnel
arc, then the ends of the other arc of the knot and the tunnel arc are connected by
a rational tangle. Figure 3 illustrates two cabling constructions, one starting with
the trivial knot and obtaining the trefoil, then another starting with the tunnel of
the trefoil.

More precisely, begin with a triple {λ, ρ, τ}, where {λ, ρ} is the principal pair of
τ . Choose one of the disks of {λ, ρ}, say ρ, and a slope disk τ ′ of the pair {ρ, τ},
other than λ. This is a cabling operation producing the tunnel τ ′ from τ . The
principal vertex of τ ′ is {ρ, τ, τ ′}.

τ0 τ1
π0

τ1

π0

μ1

μ0 τ0 τ0
π1 π0

π1

π π0 π π1 π0 π1

τ0

Figure 3. Examples of the cabling construction.
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Unless otherwise stated, the slope disk τ ′ is chosen to be nonseparating in H. A
cabling operation using a separating disk as τ ′ produces a tunnel number 1 link, and
the cabling process cannot be continued. This case will be discussed in Section 9.

Theorem 13.2 of [5] shows that every tunnel of every tunnel number 1 knot can
be obtained by a uniquely determined sequence of cabling constructions starting
from the tunnel of the trivial knot. A tunnel τ0 produced from the tunnel of the
trivial knot by a single cabling construction is called a simple tunnel. As already
noted, these are the “upper and lower” tunnels of 2-bridge knots. A tunnel is called
semisimple if it is disjoint from a primitive disk, but not from any primitive pair.

A (1, 1)-knot is a knot that can be put into a 1-bridge position with respect to a
Heegaard torus of S3. Let K be a (1, 1)-knot, whose Heegaard torus splits S3 into
two solid tori V and W . Associated to this (1, 1)-position are two tunnels obtained
as follows. Let αV be an arc in V with endpoints in K, such that the union of αV

with the arc in K ∩ V bounded by the endpoints of αV is a core circle of V . Then
αV determines a tunnel of K; the corresponding tunnel constructed in W is the
other one. Tunnels arising in this way are called (1, 1)-tunnels, and are exactly the
simple and semisimple tunnels.

A tunnel is called regular if it is not primitive, simple, or semisimple.
There is a procedure for assigning rational slopes which record the rational tangle

used in a cabling construction. We will not need these slopes in our study of depth,
although we will include them, in an inessential way, in our discussion of the torus
knot examples in Section 8, and they also appear briefly in Remark 6.4. The slope
invariants are usually not needed for working with depth because the depth is
completely determined by the second set of invariants associated to a tunnel, the
“binary” invariants s2, s3, . . . , sn, which we now define.

The unique sequence of cabling constructions that produces τ from the trivial
tunnel produces a sequence of tunnels τ0, . . . , τn = τ such that τ0 is simple and for
each i ≥ 1, τi is obtained from τi−1 by a cabling construction. The cabling that
produces τi retains one arc of the associated knot Kτi−1

of τi−1 and replaces the
other with a tangle, producing Kτi . The invariant si is 1 exactly when this cabling
replaces the arc that was retained by the previous cabling; otherwise si is 0.

A tunnel is simple or semisimple if and only if all si = 0. The reason is that
both conditions characterize cabling sequences in which one of the original primitive
disks is retained in every cabling; this corresponds to the fact that the union of the
tunnel arc and one of the arcs of the knot is unknotted.

There are two formal definitions of the binary invariants. The first is in terms
of the principal path θ0, μ0, μ0 ∪ {τ0}, μ1, . . . , μn, μn ∪ {τn}, where the μi are
the “black” vertices, the μi ∪ {τi} are the “white” vertices, and τ = τn: si = 0
or si = 1 according to whether or not the unique disk of μi ∩ μi−1 equals the
unique disk of μi−1 ∩ μi−2. Equivalently, each cabling operation begins with a
triple of disks {λi−1, ρi−1, τi−1} and finishes with {λi, ρi, τi}. For i ≥ 2, put si = 1
if {λi, ρi, τi} = {τi−2, τi−1, τi}, and si = 0 otherwise. Figure 4 shows the principal
path of a tunnel with binary invariants 0011100011100.

From the viewpoint of a traveler along the principal path, si = 1 means a change
from making right turns (at the white vertices) to left turns, or from left turns to
right, while si = 0 means a turn in the same direction as the previous turn. Let us
say that a step of the principal path is a portion between successive white vertices.
A principal path can then be described as a step sequence. This is a string of
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θ0
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π0

1

τ

0 0

1

1

1
0

00

0

0

1

1

Figure 4. The principal path of a tunnel τ having binary
invariants 0011100011100, or equivalently with step sequence
“DRRRDRDLLLDLDRR”.

symbols “L”, “R”, or “D”, for “left”, “right”, and “down” as seen from the reader’s
viewpoint (as opposed to the “left” and “right” of a traveler along the path). For
the example of Figure 4, the step sequence is “DRRRDRDLLLDLDRR”. In general,
the initial step of a principal path is always “D”, and the second step, due to the
standard way that we draw the picture, is “R”. Each subsequent step corresponds
to a binary invariant. An “L” can only be followed by another “L” or a “D”,
according as the corresponding binary invariant s is 0 or 1, and similarly an “R” is
followed by another “R” or a “D”, according as s is 0 or 1. When the previous step
is “D”, the effect of s depends on the step before one that produces the “D”. If the
“D” is in a sequence “LD”, then the next step is “R” or “L” according as s is 0 or
1, while if it is in “RD”, then the next step is “L” or “R” according as s is 0 or 1.

Functions that translate between the binary sequence and step sequence descrip-
tions are included in the software at [8]. The main functions there accept either
form of input for principal paths.

3. Distance and depth

The (Hempel) distance dist(τ ) is the shortest distance in the curve complex of

∂H from ∂τ to a loop that bounds a disk in S3 −H (see J. Johnson [11] and
Y. Minsky, Y. Moriah, and S. Schleimer [13]). It is well-defined since the action of
the Goeritz group on ∂H preserves the set of loops that bound disks in H and the
set that bound in S3 −H.

A nonseparating disk has distance 1 if and only if it is primitive, since both
conditions are equivalent to the condition that cutting H along the disk produces
an unknotted solid torus. Therefore the tunnel of the trivial knot is the only tunnel
of distance 1. A simple or semisimple tunnel has distance 2, since it is disjoint from
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a primitive disk. There are, however, regular tunnels of distance 2. It is an easy
observation that the “middle” tunnels of torus knots all have distance 2, and in
most cases these are regular.

When Στ = (H −Nbd(Kτ ), S3 −H) is a Heegaard splitting of the complement
of Kτ , the (Hempel) distance dist(Στ ) is the minimal distance in the curve complex

of ∂H between the boundary of a disk in H −Nbd(Kτ ) and the boundary of a disk

in S3 −H (where the disks may be separating). Clearly, dist(Στ ) ≤ dist(τ ). On
the other hand, Johnson [11, Lemma 11] proved that

Lemma 3.1 (Johnson). dist(τ ) ≤ dist(Στ ) + 1.

M. Scharlemann and M. Tomova [18] proved the following stability result:

Theorem 3.2 (Scharlemann-Tomova). Genus-g Heegaard splittings of distance
more than 2g are isotopic.

Using Lemma 3.1 and Theorem 3.2, Johnson [11, Corollary 13] deduced the
following:

Theorem 3.3 (Johnson). If τ is a tunnel of a tunnel number 1 knot Kτ and
dist(τ ) > 5, then τ is the unique tunnel of Kτ .

Theorem 15.2 of [5] determines all orientation-reversing self-equivalences of tun-
nels:

Theorem 3.4. Let τ be a tunnel of a tunnel number 1 knot or link. Suppose that τ
is equivalent to itself by an orientation-reversing equivalence. Then τ is the tunnel
of the trivial knot, the trivial link, or the Hopf link.

Combining Theorems 3.3 and 3.4 gives the following:

Corollary 3.1. If τ is a tunnel of a tunnel number 1 knot, and dist(τ ) > 5, then
Kτ is not amphichiral.

This follows because Theorem 3.4 shows that an orientation-reversing equivalence
from Kτ to Kτ would produce a second tunnel for Kτ .

Distance also has implications for hyperbolicity:

Theorem 3.5. If Kτ is a torus knot or a satellite knot, then dist(τ ) ≤ 2. Conse-
quently, if dist(τ ) ≥ 3, then Kτ is hyperbolic.

Proof. We have already mentioned the fact that the middle tunnels of torus knots
have distance 2. The other tunnels of torus knots are simple or semisimple, so
also have distance 2. K. Morimoto and M. Sakuma [15] found all tunnels of tunnel
number 1 satellite knots, showing in particular that they are semisimple. �

The depth of τ is the simplicial distance depth(τ ) in the 1-skeleton of D(H)/G
from τ to the primitive vertex π0. From the definitions, τ is primitive if and only
if depth(τ ) = 0, is simple or semisimple if and only if depth(τ ) = 1, and is regular
if and only if depth(τ ) ≥ 2.

The inequality
dist(τ )− 1 ≤ depth(τ )

mentioned in the Introduction is immediate from the definitions. On the other
hand, we have already noted that the middle tunnels of torus knots have distance
2, but we will see in Section 8 that their depths can be arbitrarily large.
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In terms of the step sequence describing the principal path of a tunnel, the
depth is simply the number of D’s that appear. One can, of course, determine the
depth directly from the binary invariants. A maximal block of 1’s in the binary
word s2 · · · sn has the following effect: its first, third, fifth, and so on terms will
produce a downward step, increasing the depth, while the other terms correspond to
horizontal steps, keeping the same depth. This gives the following simple algorithm
to compute depth(τ ) from the binary invariants of τ :

(1) Write the binary word s2s3 · · · sn as O1Z1O2Z2 · · ·OkZk, where Oi and Zi

are, respectively, maximal blocks of ones and zeros (thus O1 and Zk may
have length 0, while all others have positive length).

(2) The depth of τ is 1+
k
∑

j=1

	length(Oi)/2
, where 	length(Oi)/2
 denotes the

least integer greater than or equal to length(Oi)/2.

4. Tunnel leveling

Roughly speaking, the Tunnel Leveling Theorem of Goda, Scharlemann, and
Thompson says that a tunnel arc of a tunnel number 1 knot can be slid so that it
lies in a level sphere of some minimal bridge position of the knot. Here is the rather
technical version of the Tunnel Leveling Theorem that we will need. Illustrations
of conclusions (i) and (ii) of the theorem appear in the first drawings of Figure 5
and Figure 6, respectively.

Theorem 4.1 (Goda-Scharlemann-Thompson). Let {λ, ρ} be the principal pair of
a tunnel τ , and let θ be the θ-curve associated to the principal vertex {λ, ρ, τ} of
τ . Write T for the arc dual to τ , and L and R for the other two arcs of θ that are
dual to λ and ρ, so that Kτ = L∪R, Kλ = R ∪ T , and Kρ = L∪ T . Then there is
a minimal bridge position of Kτ for which either:

(i) T is slid to an arc in a level sphere, and T connects two bridges of Kτ .
Moreover, Kτ ∪ T is isotopic to the original θ. Or,

(ii) T is slid to an eyeglass in a level sphere. The endpoints of T can be slid
slightly apart, moving T out of the level sphere, producing Kτ ∪ T isotopic
to the original θ, and showing that one of Kλ or Kρ is a trivial knot, and
consequently τ is simple or semisimple.

Furthermore, in the n-strand trivial tangle above the level sphere:

(iii) In case (i), the arcs are parallel to a collection of disjoint arcs in the level
sphere, which meet T only in its endpoints.

(iv) In case (ii), the n − 1 arcs not meeting T are parallel to a collection of
disjoint arcs in the level sphere, each meeting the eyeglass in a single point.

Proof. By Theorem 1.8 of [10], we may move Kτ ∪ T , possibly using slide moves of
T as well as isotopy, so that Kτ is in minimal bridge position and T either lies on
a level sphere and connects two bridges of Kτ , or T is slid to an “eyeglass”. Since
the leveling process involves sliding the tunnel arc T , there is a priori no reason
for the resulting θ-curve to be isotopic to the original θ. But Corollary 3.4 and
Theorem 3.5 (combined with Lemma 2.9) of [17] show that in (i) and (ii), the dual
disks to the other two arcs of the θ-curve are the disks called μ+ and μ− there.
By Lemma 14.1 of [5], these disks are the principal pair of τ , that is, λ and ρ.
Therefore the resulting θ-curve is isotopic to the original θ. Finally, the description
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of the trivial tangle above the level sphere in (iii) is from Theorem 6.1 of [10], and
in (iv) from Corollary 6.2 of [10], which relies on [9]. �

A tunnel arc T satisfying conclusion (i) of the Tunnel Leveling Theorem is said
to be in level arc position, while for conclusion (ii), after sliding the endpoints apart
to produce θ, it is in eyeglass position. If it is in one of these two positions, it may
be said to be in level position.

A tunnel arc satisfying all the requirements of level position except that the
number of bridges of Kτ is not necessarily minimal is said to be in weak level
position. The number of bridges is then called the bridge count, denoted bc(Kτ )
and dependent, of course, on the choice of weak level position.

Suppose that τ is in weak level arc position. The endpoints of τ cut Kτ into
two arcs, one dual to λ and the other dual to τ . By a simple isotopy, we may
assume that one end of the arc dual to λ leaves the endpoints of the tunnel arc in
the upward direction, and the other end leaves in the downward direction, for if
both ends leave in the same direction, we can slide an endpoint of the tunnel arc
over one of the arches, achieving a level position for which the two ends leave in
different directions. We then call this an admissible weak level arc position.

When τ is in weak level arc position, each of the local maxima ofKτ lies in exactly
one of Kλ or Kρ. The numbers that lie in each are called the relative bridge counts
of Kλ and Kρ for the weak level arc position of τ and are denoted by rbc(Kλ) and
rbc(Kρ). Clearly bc(Kτ ) = rbc(Kλ) + rbc(Kρ). If τ is in weak eyeglass position,
with Kλ a trivial knot, then we define rbc(Kλ) = 1 and rbc(Kρ) = bc(Kτ ). One
always has br(Kγ) ≤ rbc(Kγ).

A first consequence of Theorem 4.1 is the following.

Lemma 4.2. Let τ be a tunnel of a nontrivial knot, and let {λ, ρ} be the principal
pair of τ . Then br(Kλ) + br(Kρ) − 1 ≤ br(Kτ ). If τ is regular, then br(Kλ) +
br(Kρ) ≤ br(Kτ ).

Proof. Apply Theorem 4.1 to τ . If the tunnel arc is in level arc position, which may
be assumed to be admissible, then we have br(Kλ)+br(Kτ ) ≤ rbc(Kλ)+rbc(Kτ ) =
br(Kτ ). If the tunnel arc is in eyeglass position, producing, say, Kλ trivial, then
we have br(Kλ) + br(Kρ) ≤ 1 + rbc(Kρ) = 1 + br(Kτ ), giving the inequality.
If τ is regular, then the eyeglass configuration cannot occur, giving the stronger
inequality. �

5. Efficient cabling and the Tunnel Leveling Addendum

In this section, we will prove the following theorem:

Theorem 5.1 (Tunnel Leveling Addendum). Let τ be a tunnel with principal vertex
{λ, ρ, τ}. If τ is not simple, choose notation so that ρ is the tunnel directly preceding
τ in the cabling sequence for τ . Assume that τ is not the tunnel of the trivial knot
or a simple tunnel of a (2n+ 1, 2) torus knot. Then either

(a) All level positions of τ are level arc positions, and br(Kτ ) = br(Kρ) +
br(Kλ), or

(b) All level positions of τ are eyeglass positions, τ is semisimple, and br(Kτ ) =
br(Kρ).
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Figure 5. Efficient cabling from admissible weak level arc position.

The exceptional case of the Tunnel Leveling Addendum is detailed in the next
theorem, which as we will see below is simply a restatement of some results from
the work of K. Morimoto and M. Sakuma on tunnels of 2-bridge knots [15]:

Theorem 5.2. The trefoil knots have unique tunnels, which are simple and can be
put into either level arc position or eyeglass position. For the other (2n+1, 2) torus
knots, there are two simple tunnels, of which one can be put into both kinds of level
position, and the other only into level arc position.

Of course the trivial knot has a unique tunnel, which can only be leveled in eyeglass
position.

It is important to understand the geometric content of the Tunnel Leveling Ad-
dendum from the viewpoint of the Tunnel Leveling Theorem 4.1. Apart from the
exceptional cases, the Addendum says that when a tunnel τ is leveled, giving a
positioning of the θ-curve associated to the principal vertex {λ, ρ, τ} of τ , then
(possibly after trivial repositioning) the copies of Kλ and Kρ in that θ-curve are in
minimal bridge position.

In this section we will prove the Tunnel Leveling Addendum and Theorem 5.2,
and in preparation for this we now introduce the technique of efficient cabling. The
basic construction is shown in Figure 5, where the notation is selected so that the
cabling will replace λ and retain ρ. We start with τ in admissible weak level arc
position, as shown in the left-hand drawing. There may, of course, be many more
bridges, some in Kρ and some in Kλ. A cabling of some arbitrary slope replaces λ
with a new tunnel τ ′; the rational tangle in Kτ ′ created by the cabling is inside a
ball represented by the circle in the middle drawing. We may then reposition Kτ ′

as in the right-hand drawing of Figure 5, by “moving the ball up to engulf infinity,”
in such a way that the rectangle in the drawing contains a 4-strand braid. The arc
dual to τ ′ is in weak level arc position, and by a further isotopy, if necessary, we
may assume that it is in admissible weak level arc position. The corresponding
construction for a tunnel in weak eyeglass position can produce either another
semisimple tunnel or a regular tunnel. The resulting tunnel is in weak level arc
position, which by isotopy is also assumed to be admissible. Efficient cablings for
each of the two possibilities are shown in Figures 6 and 7, and the constructions
should be clear from the discussion of the weak level arc case. The next result
details the effect of efficient cabling on bridge counts. The notation K and K ′

is used to indicate knots obtained from the θ-curves associated to {λ, ρ, τ} and
{ρ, τ, τ ′}, respectively:
Proposition 5.1. Suppose that τ is in admissible weak level arc or weak eyeglass
position and that a cabling operation as in Figures 5, 6, or 7 is performed, producing
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Figure 6. Efficient cabling from eyeglass position, producing a
semisimple tunnel.
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τ
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τ
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Figure 7. Efficient cabling from eyeglass position, producing a
regular tunnel.

a new tunnel τ ′ with principal vertex {ρ, τ, τ ′}, and producing a tunnel arc T ′ for
which τ ′ is in level arc position. Then

(1) rbc(K ′
ρ) = rbc(Kρ).

(2) rbc(K ′
τ ) = bc(Kτ ).

(3) bc(K ′
τ ′) = bc(Kτ ) + rbc(Kρ).

Proof. The third equality follows from the first two. The first two are seen by
examination of Figures 5, 6, and 7. For example, let us consider Figure 5. In the
leftmost drawing, denote the arcs dual to λ, ρ, and τ by L, R, and T , respectively.
In the rightmost drawing, after the cabling producing K ′

τ ′ has been performed,
denote the dual arcs by R1, T1, and T ′

1, where the latter is horizontal. Recall that
efficient cabling produces τ ′ in admissible weak level arc position. The number of
bridges that we see in R1∪T ′

1 equals the number that appeared in R plus the number
that appeared in L, showing that rbc(K ′

τ ) = bc(Kτ ). The number of bridges in
T1 ∪ T ′

1 is the number that appeared in L, so rbc(K ′
ρ) = rbc(Kρ). The arguments

for Figures 6 and 7 are similar. �

We are now ready to prove the Tunnel Leveling Addendum and Theorem 5.2
simultaneously. The tunnel called τ in the statement of the Addendum will be
denoted by τ ′ in our argument. Its principal vertex will be written as {ρ, τ, τ ′}.
If τ ′ is not simple, then we assume that τ is the tunnel that precedes τ ′ in the
cabling sequence of τ ′, and the principal vertex of τ will be written as {λ, ρ, τ}. As
in Proposition 5.1, we use K and K ′ to indicate knots obtained from the θ-curves
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associated to {λ, ρ, τ} and {ρ, τ, τ ′}, respectively. Note, however, that Kρ and Kτ

are equivalent to K ′
ρ and K ′

τ and hence br(K ′
ρ) = br(Kρ) and br(K ′

τ ) = br(Kτ ).
We will induct on the length of the cabling sequence of τ ′. If the length is 1,

then τ ′ is an upper or lower tunnel of the 2-bridge knot K ′
τ ′ , so can be put into

level arc position. Each of K ′
τ and K ′

ρ is a trivial knot, so has bridge number 1.
Therefore we have br(K ′

τ ′) = br(K ′
ρ) + br(K ′

τ ). So conclusion (a) of the Tunnel
Leveling Addendum holds for τ ′, provided that τ ′ cannot also be put into eyeglass
position.

The homeomorphism classification of tunnels of 2-bridge knots is given in Table
5.2(B) of [15], and only in the cases there called 2, 3, and 6 does there exist a
simple tunnel which can also be put into eyeglass position. Those cases are defined
in Lemma 5.1 of [15], and upon examination are found to be exactly the 2-bridge
torus knots. Since this is the excluded case in the Tunnel Leveling Addendum,
the Addendum holds for tunnels whose cabling sequences have length 1. A closer
examination of the tunnel classification in [15] verifies the precise statement in
Theorem 5.2, whose proof is now complete.

We now assume that the length of the cabling sequence of τ ′ is greater than 1.
Put τ in level position; if τ is a simple tunnel of a (2n + 1, 2) torus knot, choose
the level position to be level arc position. We then obtain τ ′ by efficient cabling as
in one of Figures 5, 6, or 7.

Suppose first that the resulting weak level arc position for τ ′ is actually a level
arc position. Using Proposition 5.1 and induction, we have br(K ′

τ ′) = rbc(K ′
τ ) +

rbc(K ′
ρ) = bc(Kτ ) + rbc(Kρ) = br(Kτ ) + br(Kρ).

Suppose now that the weak level arc position for τ ′ is not level arc position. Then
br(K ′

τ ′) < bc(K ′
τ ′) = rbc(K ′

τ ) + rbc(K ′
ρ) = bc(Kτ ) + rbc(Kρ) = br(Kτ ) + br(Kρ),

so Lemma 4.2 tells us that τ ′ is semisimple and br(K ′
τ ′) = br(Kτ ) + br(Kρ) − 1.

But ρ is primitive, since the principal vertex of every semisimple tunnel contains a
primitive disk, and τ is not primitive since τ ′ is not simple. Therefore br(Kρ) = 1
and br(Kτ ) = br(K ′

τ ′).
In the latter case, τ ′ cannot be put into level arc position, since then we would

have br(K ′
τ ′) = rbc(K ′

τ )+rbc(K ′
ρ) ≥ br(K ′

τ )+br(K ′
ρ) > br(Kτ ). So either all level

positions are level arc positions, or all are eyeglass positions. This completes the
proof of the Tunnel Leveling Addendum and Theorem 5.2.

The next two corollaries are convenient restatements of parts of the Tunnel
Leveling Addendum.

Corollary 5.1. Let τ be a regular tunnel with principal vertex {λ, ρ, τ}. Then
br(Kρ) + br(Kλ) = br(Kτ ).

Corollary 5.2. Let τ be a semisimple tunnel with principal vertex {π0, ρ, τ}. Then
br(Kρ) = br(Kτ ) or br(Kτ ) = br(Kρ) + 1, according to whether all level positions
for τ are eyeglass positions or all are level arc positions.

6. Fibonacci functions

Let τ be a tunnel and write the cabling sequence of τ as τ0, τ1, . . ., τm−1, τm, . . . ,
τn−1 = τ , where τi is simple or semisimple for i ≤ m − 1, and regular for i ≥ m.
That is, τ is produced by n cablings, the first m of which produce depth-1 tunnels.
In particular, n = m when depth(τ ) = 1.
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Figure 8

The principal vertex of τ0 has the form {π0, π1, τ0}, where π0 and π1 are prim-
itive. If we put τ−1 = π0, the trivial tunnel, then for each k ≥ 1, the principal
vertex of τk is of the form {τi, τk−1, τk} for some i ≤ k − 2. If n > m, that is,
if τ is regular, then the first tunnel of depth 2 is τm, and its principal vertex is
{τm−2, τm−1, τm}. We then define the Fibonacci function Fτ of a regular tunnel τ
as follows. To compute Fτ (a, b), put bm−2 = a, bm−1 = b, and for m ≤ k ≤ n− 1,
put bk = bi + bk−1, where {τi, τk−1, τk} is the principal vertex of τk. Then, put
Fτ (a, b) = bn−1. Figure 8 shows how to calculate that Fτ (2, 2) = 182 for a certain
depth-5 tunnel with m = 4 and n = 15.

Theorem 6.1. Let τ be a simple or semisimple tunnel produced by m cablings.
Then 2 ≤ br(Kτ ) ≤ m+ 1.

Proof. Induct on m, using Corollary 5.2. �
Theorem 6.2. Let τ be a regular tunnel whose cabling sequence contains m tunnels
of depth 1. Let bi = br(Kτi) for i ∈ {m−2,m−1}. Then br(Kτ ) = Fτ (bm−2, bm−1).

Proof. Induct on the length of the cabling sequence of τ , using Corollary 5.1. �
Theorem 6.3 (Bridge Number Set). Suppose that a knot K has a tunnel τ produced
by n ≥ 2 cabling operations, of which the first m produce simple or semisimple
tunnels. Then br(K) is one of the 2m− 2 values Fτ (a, b) for 2 ≤ a ≤ b ≤ a+ 1 ≤
m+ 1.

Proof. By Theorem 6.1, we have 2 ≤ br(Kτm−2
) ≤ m, and by Corollary 5.2,

br(Kτm−2
) ≤ br(Kτm−1

) ≤ br(Kτm−2
) + 1. The result now follows from Theo-

rem 6.2. �
Remark 6.4. We believe that for every (combinatorial type of) principal path, each
of the 2m − 2 possible values given in the Bridge Number Set Theorem occurs
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as a bridge number for some knots having a tunnel constructed using the given
principal path. This is clear for m = 2. In that case, the cabling sequence has only
two tunnels τ0 and τ1 of depth 1. When τ1 is a semisimple tunnel of a 2-bridge
knot, br(Kτ0) = br(Kτ1) = 2, and there are many examples where br(Kτ0) = 2
and br(Kτ1) = 3, such as semisimple tunnels of torus knots [6]. Choosing cabling
sequences that start with these two types of examples gives tunnels whose knots
have bridge numbers Fτ (2, 2) and Fτ (2, 3).

For m = 3, we need to produce the sequences (2, 2, 2), (2, 2, 3), (2, 3, 3), and
(2, 3, 4) for (br(Kτ0), br(Kτ1), br(Kτ2)). Semisimple tunnels of 2-bridge knots give
(2, 2, 2). For (2, 2, 3), we choose τ1 to be a semisimple tunnel of a 2-bridge knot
and choose any cabling with slope not of the form ±2 + 1/k to produce τ2; the
results of [5, Section 15] then show that Kτ2 cannot be 2-bridge. By Corollary 5.2,
br(Kτ2) = 3. For (2, 3, 3), we start by constructing τ1 to be an upper tunnel of a
3-bridge torus knot, say the (4, 3) torus knot, as explained in [6]. The tunnel arc
shown in [6] can be put into eyeglass level position with Kτ1 having three bridges.
Then a cabling which is geometrically like those of Figure 14 of [5] does not raise
the bridge number, so br(Kτ2) = 3 as well. Finally, for (2, 3, 4) we can just use the
upper tunnel of the (5, 4) torus knot, obtained by three cablings as in [6].

For larger m, from upper tunnels of torus knots we obtain the bridge number
sequence (2, 3, 4, . . . ,m+ 1), and hence realize Fτ (m,m+ 1). The idea for (2, 2, 3)
extends to realize (2, 2, . . . , 2, 3), so Fτ (2, 3) occurs as a bridge number. If we start
with such an upper tunnel sequence, for which the upper tunnel is in eyeglass
position, and then at some point begin using cablings as in Figure 14 of [5], we
obtain all sequences of the form (2, 3, 4, . . . , k − 1, k, k, . . . , k), giving the m − 1
values Fτ (k, k). So at least these m+ 1 values in the bridge number set are known
to occur. If we follow the latter procedure, but use a complicated tangle for the
final cabling, then the sequences (2, 3, 4, . . . , k − 1, k, k, . . . , k, k + 1) should also
be obtained, giving the remaining m − 3 values Fτ (k, k + 1) for 3 ≤ k ≤ m − 1.
Unfortunately we lack a means to prove that the final knot has bridge number k+1
rather than k.

A peculiar consequence of Theorem 6.2 is the following:

Corollary 6.1. Let τ be a regular tunnel and let τm be the first tunnel of depth 2
in the cabling sequence of τ . Then br(Kτ ) is completely determined by the principal
path of τ and the value of br(Kτm). In fact,

br(Kτ ) = Fτ ([br(Kτm)/2], [(br(Kτm) + 1)/2]) .

Proof. By Corollary 5.1, br(Kτm−2
) + br(Kτm−1

) = br(Kτm). Since also br(Kτm−2
)

and br(Kτm−1
) differ by at most 1, their values must be as in the statement of the

corollary. �

It is not difficult to implement Theorems 6.2 and 6.3 computationally [8]:
Depth> fibonacci( ’0011100011100’, 2, 2, verbose=True )

F \tau( 2, 2 ) = 182

The iteration sequence is:

2, 2, 4, 6, 10, 14, 18, 22, 40, 62, 102, 142, 182

Depth> bridgeSet( ’0011100011100’ )

[182, 232, 273, 323, 364, 414]
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7. Bounding bridge number

Using the results of Section 6, we can give some general bounds on bridge number.
First we examine lower bounds of bridge number as a function of depth. A bit of

experimentation with Fibonacci functions shows that the fastest growth of depth
relative to bridge number occurs for principal paths whose regular portions (i.e.,
the parts starting from τm−2 and τm−1) are the “paths of cheapest descent” seen in
Figure 9. In that figure, the path on the left is always of cheapest descent, and the
one on the right is of cheapest descent when b2 = b3. Any principal path having
more than two tunnels at a given depth will produce a larger bridge number, as will
any principal path that emerges in the more costly direction out of a downward-
pointing 2-simplex. From Theorem 6.2 we now have:

Corollary 7.1. Let τ be a regular tunnel of depth d, and in the principal path of
τ , let τm be the first tunnel of depth 2, with principal vertex {τm−2, τm−1, τm}. Put
b2 = br(Kτm−2

) and b3 = br(Kτm−1
). For n ≥ 2 let bj be given by the recursion

b2n = b2n−1 + b2n−2,

b2n+1 = b2n + b2n−2.

Then br(Kτ ) ≥ b2d.

We can now prove one of our main results.

Theorem 7.1 (Minimum Bridge Number). For d ≥ 1, the minimum bridge number
of a knot having a tunnel of depth d is given recursively by ad, where a1 = 2, a2 = 4,
and ad = 2ad−1 + ad−2 for d ≥ 3. Explicitly,

ad =
(1 +

√
2)d√

2
− (1−

√
2)d√

2
,

and consequently lim
d→∞

(ad − (1+
√
2)d√
2

) = 0.

b2 b3

b4b5

b6 b7

b8b9

b10

b2 b3

b4 b5

b6b7

b8 b9

b10

Figure 9. The path on the left is of cheapest descent. The path
on the right is of cheapest descent if b2 = b3.
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m m+ 1

2m+ 1 3m+ 2

5m+ 3 8m+ 5

13m+ 8

Figure 10. The fastest growing upper bounds for bridge number,
starting with the last two semisimple tunnels in the cabling se-
quence.

Proof. The smallest possible values for br(Kτm−2
) and br(Kτm−1

) in Corollary 7.1
are 2. These occur for any m, since there are (semisimple) 2-bridge knot tunnels
with arbitrarily long cabling sequences, as seen in [5, Section 15]. Taking b2 =
b3 = 2 in Corollary 7.1 gives a b2d which is a general lower bound for the bridge
number of a tunnel at depth d, and a little bit of algebra shows that b2d = ad for
the recursion in Theorem 7.1. As a matrix, the recursion is

[

ad+1

ad

]

=

[

2 1
1 0

] [

ad
ad−1

]

.

The eigenvalues of this matrix are 1±
√
2, and elementary linear algebra gives the

closed formula for ad. �

We turn now to upper bounds. There is no upper bound in terms of depth, since
there are depth-1 tunnels with arbitrarily large bridge number, such as semisimple
tunnels of torus knots [6]. We can, however, bound the bridge number of Kτ

in terms of the number of cablings needed to produce τ . This time, we use the
principal path forced by choosing the larger of its two possible sums at every step,
shown in Figure 10.

Theorem 7.2 (Maximum Bridge Number). Let (F1, F2, . . .) = (1, 1, 2, 3, . . .) be the
Fibonacci sequence. The maximum bridge number of a knot having a tunnel pro-
duced by n cabling constructions, of which the first m produce simple or semisimple
tunnels, is mFn−m+2 + Fn−m+1.

Proof. If τ is simple, then br(Kτ ) = 2, m = n = 1 and the expression mFn−m+2 +
Fn−m+1 equals 2. If τ is semisimple, then m = n and mFn−m+2 + Fn−m+1 equals
m+1, the upper bound given in Theorem 6.1. So we may assume that τ is regular.

In Figure 10, the top two vertices are τm−2 and τm−1, the last two semisimple
tunnels that appear in the cabling sequence of τn−1. There are semisimple tunnels
τm−1 produced by m cabling constructions which have br(Kτm−1

) = m + 1, such
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as the semisimple tunnels of the (m + 2,m + 1) torus knot [6]. Therefore the
maximum bridge number is that given by Theorem 6.2 applied to the principal
path whose regular portion is shown in Figure 10. Using the fact that m = m · F1

and m+ 1 = m · F2 + F1, one checks that this value is mFn−m+2 + Fn−m+1. �

Corollary 7.2. The maximum bridge number of a knot having a tunnel produced
by n cabling operations is Fn+2.

Proof. For fixed n, the largest upper bound in Theorem 7.2 occurs when m = 2. �

Proposition 8.1 below gives an explicit sequence of tunnels of torus knots that
achieves the maximum value of Corollary 7.2.

8. Middle tunnels of torus knots

The tunnels of torus knots were classified by M. Boileau, M. Rost, and
H. Zieschang [3] and independently by Y. Moriah [14].

For a (p, q) torus knot Kp,q contained in the standard torus T in S3, the middle
tunnel is represented by an arc in T that meets Kp,q only in its endpoints. There
are as many as two other tunnels, which always have depth 1, but here we focus on
the middle tunnels.

In this section, we will include some information on slope invariants, for those
familiar with them. Slopes are not essential to the discussion, and can be ignored
if the reader so chooses.

For the tunnels of torus knots, the slope and binary invariants were calculated
in [6]. In particular, for the middle tunnels, we have the following theorem, in which

U =

[

1 1
0 1

]

and L =

[

1 0
1 1

]

:

Theorem 8.1. Let p and q be relatively prime integers with p > q ≥ 2. Write p/q
as a continued fraction [n1, n2, . . . , nk] with all nj positive and nk �= 1. Let

Ai =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

L −n1 ≤ i ≤ −1,

U 0 ≤ i ≤ n2 − 1,

L n2 ≤ i ≤ n2 + n3 − 1,

U n2 + n3 ≤ i ≤ n2 + n3 + n4 − 1,

· · ·
L k odd and n2 + n3 + · · ·+ nk−1 ≤ i ≤ n2 + n3 + · · ·+ nk − 1,

U k even and n2 + n3 + · · ·+ nk−1 ≤ i ≤ n2 + n3 + · · ·+ nk − 1 .

Put N = n2 + n3 + · · ·+ nk − 2, and for 0 ≤ t ≤ N put

[

at bt
ct dt

]

=

−n1
∏

i=t

Ai ,

where the subscripts in the product occur in descending order. Then:

(i) The middle tunnel of Kp/q is produced by N+1 cabling constructions whose
slopes m0, m1, . . . , mN are

[

1

2n1 + 1

]

, a1d1 + b1c1, a2d2 + b2c2, . . . , aNdN + bNcN .
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Figure 11. Slowest growth of bridge number as a function of
depth for torus knot tunnels, corresponding to the continued frac-
tion expansion 41/29 = [1, 2, 2, 2, 2]. The (41, 29) torus knot has
the smallest bridge number of any torus knot with a depth-4 tun-
nel.

(ii) For each t, the cabling corresponding to the slope invariant mt produces
the (at + ct, bt + dt) torus knot; in particular, the first cabling produces the
(2n1 + 1, 2) torus knot.

(iii) The binary invariants of the cabling sequence of this tunnel, for 2 ≤ t ≤ N ,
are given by st = 1 if At �= At−1 and st = 0 otherwise.

Note that this enables one to find the invariants of the middle tunnels for all
(p, q) torus knots, since Kp,q is isotopic to Kq,p and Kp,−q is equivalent to Kp,q by
an orientation-reversing homeomorphism taking middle tunnel to middle tunnel.
The latter negates the slope invariants, but does not change the binary invariants.

A bit of examination of the binary invariants yields a simple algorithm to find
the depth of the middle tunnel of Kp,q, p > q ≥ 2:

(1) Write p/q as a continued fraction [n1, n2, . . . , nk] with all ni positive and
nk �= 1.

(2) Write the string n2 · · ·nk as B1B2 · · ·B�, where each Bi is either nini+1

with ni = 1, or ni with ni �= 1.
(3) The depth of the middle tunnel is 1 + 	.

This is implemented in the software at [8].
Figure 11 shows an initial segment of the principal paths for the tunnels of

the (p, q) torus knots having continued fraction expansions of the form p/q =
[1, 2, 2, . . . , 2]. Notice that this is the path of cheapest descent from Figure 9.
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The small numbers along the path are the slopes, the letters indicate whether the
constructions correspond to multiplication by U or by L, and the pairs show the
(p, q) for the torus knots determined by the tunnel at each step. The first nontrivial
cabling, with m0 = [1/3], produces a (3, 2) torus knot, and the second produces a
(4, 3) torus knot with bridge number 3. Since we always have p > q, the bridge
number is simply the value of q. These obey the recursion of Corollary 7.1, starting
with b2 = 2 and b3 = 3. Since the cabling sequence for the middle tunnel τ of any
torus knot contains only one two-bridge knot (the (2n1 +1, 2) torus knot produced
by the first nontrivial cabling), there is no regular torus knot tunnel which has
b3 = 2. Since the other tunnels of torus knots are semisimple, the maximum depth
of any tunnel of a torus knot is the depth of its middle tunnel. Therefore each b2d
in this sequence gives the minimum bridge number for a torus knot with a tunnel
of depth d. This gives a version of the Minimum Bridge Number Theorem 7.1 for
torus knot tunnels:

Theorem 8.2. For d ≥ 1, the minimum bridge number of a torus knot tunnel of
depth d is given recursively by td, where t1 = 2, t2 = 5, and td = 2td−1 + td−2 for
d ≥ 3. Explicitly,

td =
1

2
√
2
(1 +

√
2)d+1 − 1

2
√
2
(1−

√
2)d+1 ,

and consequently lim
d→∞

(td − 1
2
√
2
(1 +

√
2)d+1) = 0.

We note that td is ad+1/2, where ad+1 is the lower bound in the Minimum Bridge
Number Theorem 7.1. That is, the minimum bridge number of a torus knot having
a tunnel of depth d is exactly half the minimum bridge number for all knots having
a tunnel of depth d+1 and is approximately (1+

√
2)/2 times the minimum for all

knots having a tunnel of depth d.
In fact, the middle tunnel of any torus knot for which p/q has an expansion

[n1, 2, 2, 2, 2, . . . , 2] will have a principal path as in the previous argument, since
the first term in the continued fraction has no effect on the principal path. Middle
tunnels for which the expansion is not of this form will have different principal
paths, so we can state the following result:

Proposition 8.1. The slowest growth of a bridge number compared to the depth
for sequences of middle tunnels of torus knots occurs when the p/q have continued
fraction expansions of the form ±[n1, 2, 2, 2, . . . , 2].

By similar considerations, one can obtain the upper bound version.

Proposition 8.2. The fastest growth of a bridge number of torus knots per number
of cablings of the middle tunnels occurs for sequences of tunnels τk of Kp,q for which
the continued fraction expansions of p/q are of the form ±[n1, 1, 1, 1, . . . , 1], where
there are k 1’s. For these tunnels, Kτk has bridge number Fk+2.

For these tunnels, the terminal part of the principal path is like that shown in
Figure 10 with m = 2. Since there are exactly k cablings in the cabling sequence
of τk, these tunnels achieve the bridge numbers in the Maximum Bridge Number
Theorem.
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9. The case of tunnel number 1 links

As explained in [5], our entire theory of tunnel number 1 knot tunnels can be
adapted to include tunnels of tunnel number 1 links, simply by adding the sepa-
rating disks as possible slope disks. The full disk complex K(H) is only slightly
more complicated than D(H). Each separating disk is disjoint from only two other
disks, both nonseparating, so the additional vertices appear in 2-simplices attached
to D(H) along the edge opposite the vertex that is a separating disk. The quotient
K(H)/G has only three types of additional 2-simplices:

(1) There is a unique orbit σ0 of “primitive” separating disks, consisting of
separating disks disjoint from a primitive pair, which are exactly the inter-
sections of splitting spheres (see [16]) with H. In K(H)/G, σ0 is a vertex of
a “half-simplex” 〈σ0, π0, μ0〉 attached to D(H)/G along 〈π0, μ0〉. It is the
unique tunnel of the trivial 2-component link.

(2) Simple separating disks lie in half-simplices attached along 〈π0, μ0〉, just
like nonseparating simple disks.

(3) The remaining separating disks lie in 2-simplices attached along edges of
D(H)/G spanned by two (orbits of) disks, at least one of which is nonprim-
itive.

For the spine, a single “Y” is added to T for each added 2-simplex as in (3), and
a folded “Y” for each of the half-simplices as in (1) and (2). The link in K′(H)/G
of a link tunnel is simply the top edges (or top edge, for the trivial and simple
tunnels) of such a “Y” (or folded “Y”).

The cabling operation differs only in allowing a separating slope disk, which
produces a tunnel of a tunnel number 1 link. The cabling sequence ends with
the first separating slope disk. Thus the principal paths look exactly like those of
the knot case, such as the one in Figure 4. The only difference is that no further
continuation is possible if the final tunnel is the tunnel of a link.

For link tunnels, the distance and depth invariants are defined as for knot tunnels.
Simple tunnels are the upper and lower tunnels of 2-bridge links (and are the only
tunnels of these links; see [1], [12], or [5, Theorem 16.3]). Depth-1 tunnels are
the tunnels of links with one component unknotted. The other component must
be a (1, 1)-knot, and the link must have torus bridge number 2 [5, Theorem 16.4].
Lemma 3.1 holds when τ is separating; in fact the argument is an easier version
of the argument in [11], so Theorem 3.3 and Corollary 3.1 hold for links as well as
knots.

The Tunnel Leveling Addendum extends to tunnels of tunnel number 1 links,
since the efficient cabling construction of Section 5 works just as well in the link
case. But the statement and proof are very much simpler, since only the level arc
case need be considered.

Theorem 9.1 (Tunnel Leveling Addendum for Links). Let τ be a tunnel of a tunnel
number 1 link, with principal vertex {λ, ρ, τ}. Then br(Kτ ) = br(Kρ) + br(Kλ).

Using the Tunnel Leveling Addendum for Links, the computational results of
Sections 6 and 7 hold as stated for tunnels of tunnel number 1 links. Consequently,
the software implementations of [8] also produce correct results for link tunnels.
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