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Abstract In this article, a new iterative method of the rational type having fifth-order of accuracy

is proposed to solve initial value problems. The method is self-starting, stable, consistent, and con-

vergent, whereas local truncation error analysis has also been discussed. Furthermore, the method

has been analyzed with a variable stepsize approach that increases performance while taking fewer

steps with acceptable local errors. The method is also tested against some existing fifth-order meth-

ods having rational structure. The proposed one outperforms concerning maximum absolute error,

final absolute error, average error, and norm, while CPU time computed in seconds is comparable.

Furthermore, stiff, singular, and singularly perturbed problems for single and system of differential

equations chosen for simulations yielded minor errors when solved with the new rational method.
� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Let us assume the following initial value problem (IVP):

dyðtÞ
dt

¼ fðt; yðtÞÞ; yðt0Þ ¼ y0; ð1Þ

where t 2 ½t0; tn� and y; f 2 R. It is also assumed that the prob-

lem (1) has a continuously differentiable solution yðtÞð2 C1

class); that is, it is a well-posed IVP. Moreover, the analytical
solution is denoted by yðtnÞ whereas the approximate one is yn
at the mesh points tn ¼ t0 þ nh; n ¼ 0; 1; 2; . . .N, where
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h ¼ tn�t0
N

is known as the step-length or stepsize which may

either be a constant or variable along the integration interval
½t0; tn�. Ordinary differential equations are substantially used
in many fields of Science and Engineering, including Epidemi-

ology, Mathematical Biology, Cell Biology, Physics, Chem-
istry, Nuclear Energy, Fluid Dynamics, Petroleum and
Natural Gas, Econometrics, Electronics, Mechatronics, and

many more as can be found in [1–6]. It is almost impossible
to obtain analytical solutions of a differential equation model
in hand in many circumstances. It appears especially when the

model is non-linear, stiff in nature, or possesses blow-up solu-
tions with singularities and has singularly perturbed solutions.
In these situations, we resort to the discrete type of solutions

rather than looking for continuous ones [7–10].
There are numerous iterative methods to compute approx-

imate solutions of the problem of the type (1). Among well-
known methods are the methods called classical single-step

Runge Kutta [11], multi-step in explicit and implicit forms
[12], rational (nonlinear) methods [13–19], and block methods
[20–25]. Some of these methods have lower order of conver-

gence, are computationally expensive, difficult to code, or are
unsuitable for a stiff and singular type of IVPs. From the avail-
able literature, it is found that there are not many versions of

rational methods having fifth-order of accuracy. Therefore,
this article contributes a fifth-order iterative method of
rational type, which is observed to be useful to deal with IVPs,
including singular and singularly perturbed solutions. The

motivation of the present research work comes from a recently
published paper [26] wherein authors have proposed rational
methods from second to the fourth-order of accuracy. We will

consider both formulations, namely constant and variable
stepsize, for the new rational iterative method suitable for han-
dling stiff, singular, and singularly perturbed IVPs.

2. Formulation and derivation

Traditional numerical methods derived from the local repre-

sentation of a polynomial via Taylor series fail at/or near the
singularities in the analytical solution of an IVP defined along
with an integration interval ½t0; tn� containing some singular
L½yðtÞ; h�RMSSP5
¼ �Gþ yðtnÞð Þ þ �Hy0ðtnÞ � G/1 þ yðtnÞ/1 þ y0ðtnÞð Þh;

þ 1
2
y00ðtnÞ þ yðtnÞ/2 þ y0ðtnÞ/1 � G/2

� �
h2

þ 1
6
y000ðtnÞ þ yðtnÞ/3 þ y0ðtnÞ/2 þ 1

2
y00ðtnÞ/1 � G/3

� �
h3

þ 1
24
yðivÞðtnÞ þ yðtnÞ/4 þ y0ðtnÞ/3 þ 1

2
y00ðtnÞ/2 þ 1

6
y000ðtnÞ/1 � G/4

� �
h4

þ 1
120

yðvÞðtnÞ þ y0ðtnÞ/4 þ 1
2
y00ðtnÞ/3 þ 1

6
y000ðtnÞ/2 þ 1

24
yðivÞðtnÞ/1

� �
h5

þ 1
720

yðviÞðtnÞ þ 1
2
y00ðtnÞ/4 þ 1

6
y000ðtnÞ/3 þ 1

24
yðivÞðtnÞ/2 þ 1

120
yðvÞðtnÞ/1

� �
h6

þOðh7Þ:

ð7Þ
point(s) within the interval. In such situations, various
researchers have worked on the development of rational meth-
ods which originate from a rational approximation for the analyt-
ical solution to an IVP. Such methods smoothly cross singularities
without being failed thereat. Based on the structure proposed in

[26–31], we present the following rational type of approximation
ynþ1 for the analytical solution of the form yðtnþ1Þ:

ynþ1 ¼ Gþ hHy0n 1þ
Xj

i¼1

/ih
i

" #�1

;
Xj

i¼1

/ih
i – � 1; ð2Þ

where G, H and /i ði ¼ 1; 2; 3; � � � ; jÞ are unknown parameters
to be determined. For the formation introduced above, the lin-

ear difference operator L can be associated with it as follows:

L½yðtÞ; h�RMSSPjþ1
¼ yðtn þ hÞ � G½ � � 1þ

Xj

i¼1

/ih
i

" #
� hHy0n;

ð3Þ
where ðjþ 1Þ denotes order of the method. Expanding
yðtn þ hÞ via Taylor’s expansion around tn and collecting the

terms in powers of h, we obtain the following form of the
above linear difference operator:

L½yðtÞ; h�RMSSPmþ1
¼ A0 þ A1hþ A2h

2 þ � � � þ Amh
m

þ Amþ1h
mþ1 þ � � � ; ð4Þ

where it must be noted that the constants Ak ðk ¼ 0; 1; 2; � � � ;
m;mþ 1Þ would be computed in such a way that
A0 ¼ A1 ¼ A2 ¼ . . .Am ¼ Amþ1 ¼ 0; Amþ2 – 0 for the method
to be of order r ¼ mþ 1. To derive the new fifth order rational

method, we put the value of j ¼ 4 in (2) to obtain the following
form

ynþ1 ¼ Gþ hHy0n 1þ /1hþ /2h
2 þ /3h

3 þ /4h
4

� ��1
; ð5Þ

and the associated linear difference operator of (5) is given as
follows:

L½yðtÞ; h�RMSSP5
¼ ðyðtn þ hÞ � GÞ � ð1þ /1hþ /2h

2

þ /3h
3 þ /4h

4Þ � hHy0ðtnÞ: ð6Þ
Expanding yðtn þ hÞ via Taylor’s expansion around tn and col-
lecting the powers of h, we obtain the following
Comparing this with (4), we have the following identities:
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A0 ¼ �Gþ yðtnÞ;
A1 ¼ �Hy0ðtnÞ � G/1 þ yðtnÞ/1 þ y0ðtnÞ;
A2 ¼ 1

2
y00ðtnÞ þ yðtnÞ/2 þ y0ðtnÞ/1 � G/2;

A3 ¼ 1
6
y000ðtnÞ þ yðtnÞ/3 þ y0ðtnÞ/2þ 1

2
y00ðtnÞ/1 � G/3;

A4 ¼ 1
24
yðivÞðtnÞ þ yðtnÞ/4 þ y0ðtnÞ/3 þ 1

2
y00ðtnÞ/2 þ 1

6
y000ðtnÞ/1 � G/4;

A5 ¼ 1
120

yðvÞðtnÞ þ y0ðtnÞ/4 þ 1
2
y00ðtnÞ/3 þ 1

6
y000ðtnÞ/2 þ 1

24
yðivÞðtnÞ/1;

A6 ¼ 1
720

yðviÞðtnÞ þ 1
2
y00ðtnÞ/4 þ 1

6
y000ðtnÞ/3 þ 1

24
yðivÞðtnÞ/2 þ 1

120
yðvÞðtnÞ/1:

ð8Þ
Based upon the above discussion, we take
A0 ¼ A1 ¼ A2 ¼ A3 ¼ A4 ¼ A5 ¼ 0 and A6 – 0. After solving
nonlinear system containing six equations in six unknown
parameters, we determine the unknown parameters of the

method (5) given as follows:

H ¼ 1;

G ¼ yðtnÞ;
/1 ¼ � y00 ðtnÞ

2y0ðtnÞ ;

/2 ¼ 3y00ðtnÞ2�2y000 ðtnÞy0ðtnÞ
12y0ðtnÞ2 ;

/3 ¼ � 3y00ðtnÞ3�4y000 ðtnÞy00ðtnÞy0þyðivÞðtnÞðy0ðtnÞÞ2
24y0ðtnÞ3 ;

/4 ¼ 1

720y0 ðtnÞ4

45y00ðtnÞ4 � 90y00ðtnÞ2y000ðtnÞy0ðtnÞ þ 30yðivÞðtnÞy00ðtnÞy0ðtnÞ2
þ20y000ðtnÞ2y0ðtnÞ2 � 6yðvÞðtnÞyðtnÞ3

 !
:

ð9Þ
RMSSP5ynþ1 ¼ yn þ
720y05n h

720y04n þ �6yðvÞn h4 � 30h3yðivÞn � 120h2y000n � 3
�

þ 30yðivÞn h4 þ 120y000n h
3

� �
y00n þ 20y0002n h4

�
y02n � 90h3

"

Substituting above values into A6, we obtain the following:

A6 ¼ 1

1440y0ðtnÞ4

2yðviÞðtnÞy0ðtnÞ4 þ 45y00ðtnÞ5 � 120y00ðtnÞ3y0ðtnÞy000ðtnÞ
þ45y00ðtnÞ2y0ðtnÞ2yðivÞðtnÞ � 12yðvÞðtnÞy00ðtnÞy0ðtnÞ3
þ60y00ðtnÞy0ðtnÞ2y000ðtnÞ2 � 20y0ðtnÞ3y000ðtnÞyðivÞðtnÞ

0
B@

1
CA:

ð10Þ

Under the local assumption, we have yðrÞðtnÞ ¼ yðrÞn ;

ðr ¼ 0; 1; 2; 3; 4; 5Þ and the new proposed fifth-order rational
method suitable for singular and singularly perturbed prob-

lems (RMSSP5) takes the following final structure along with
its pseudo-code given in the Algorithm 1 below:
60y00nh
�
y03n þ 180y002n h2

�
y002n hy000n þ y00n
� �

y0n þ 45y004n h4

# :
ð11Þ
Algorithm 1. Pseudo code for the proposed fifth-order rational
method RMSSP5 given in (11) with the fixed stepsize where the
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symbols f1ðt; yÞ; f2ðt; yÞ; f3ðt; yÞ, f4ðt; yÞ, and f5ðt; yÞ stand for

the first-, second-, third-, fourth-, and fifth-order derivatives of
yðtÞ.
Fig. 1 Stability region of the proposed RMSSP5 method.
3. Theoretical analysis

3.1. Local truncation analysis

To obtain local truncation error of the method RMSSP5, we
follow the usual procedure by considering the functional

L½wðtÞ; h� associated to the method in (11) as
L½wðtÞ; h� ¼ wðtþ hÞ �RMSSP5ðtÞ, where RMSSP5 is the
proposed method given in (11) and wðtÞ is an arbitrary func-

tion defined along the integration interval ½t0; tn� and is also dif-
ferentiable as many times as required. Having expanded it via
Taylor’s series approach around t and collecting the terms in
powers of h, we obtain the following local truncation error

of RMSSP5 which guarantees its fifth order accuracy, and is
given as follows:

RMSSP5Lnþ1 ¼ h6

1440y04n

2yðviÞn y04n þ 45y005n � 120y003n y0ny
000
n þ 45y002n y02n y

ðivÞ
n

�12yðvÞn y00ny
03
n þ 60y00ny

02
n y

0002
n � 20y03n y

000
n y

ðivÞ
n

 !
þ O h7

� �
;

ð12Þ
where y0n; y

00
n; y

000
n ; y

ðivÞ
n ; yðvÞn , and yðviÞn stand for the values of first,

second, third, fourth, fifth, and sixth derivatives of yðtÞ respec-
tively at tn, provided that y0n – 0.

3.2. Stability analysis

In this section, we will discuss the stability function and asso-

ciated regions (2D and 3D) of RMSSP5 by applying the
method to the sample Dahlquist’s equation shown as
y0ðtÞ ¼ xyðtÞ; ReðxÞ < 0. The following difference equation

is obtained:

ynþ1 ¼ yn
h4x4 � 60h2x2 � 360hx� 720

h4x4 � 60h2x2 þ 360hx� 720

� �
: ð13Þ

Setting z ¼ hx into (13), the rational stability function of

RMSSP5 is obtained as follows:

RðzÞ ¼ z4 � 60z2 � 360z� 720

z4 � 60z2 þ 360z� 720

� �
: ð14Þ

Taking z ¼ xþ iy into (14), we have plotted the absolute sta-

bility region and the associated 3D graphic surface of
RMSSP5 as shown in Figs. 1 and 2, respectively which satisfy
the condition jRðzÞj 6 1. However, the plotted stability region

of RMSSP5 does not contain the whole left half complex plane
in the Fig. 1 since it is not capable enough to cover a small
parabolic region therein whereas that leftover parabolic region

has been well covered on right half complex plane. Thus, it can
be concluded that the method is not an A-stable method. In
addition, it is worth noting that the general structure (2) if con-
sidered with j ¼ 5 and its higher values then methods obtained

with sixth order of accuracy and higher will not be A-stable
either. The rational methods obtained for j ¼ 2; 3, and 4 in
(2) are the only methods that are A-stable.
3.3. Consistency and convergence

The method RMSSP5 given in (11) does satisfy the condition
of being consistent owing to having at least fifth order of accu-

racy as shown in the subSection 3.1. In other words, RMSSP5

is consistent since the truncation error is

Lnþ1 ¼ yðtnþ1Þ �RMSSP5ðtnÞ ¼ h6

1440
!ðfnÞ; ð15Þ

where

!ðfnÞ ¼ 1

y0 ðfnÞ4

2yðviÞðfnÞy0ðfnÞ4 þ 45y00ðfnÞ5 � 120y00ðfnÞ3y0ðfnÞy000ðfnÞ
þ45y00ðfnÞ2y0ðfnÞ2yðivÞðfnÞ � 12yðvÞðfnÞy00ðfnÞy0ðfnÞ3
þ60y00ðfnÞy0ðfnÞ2y000ðfnÞ2 � 20y0ðfnÞ3y000ðfnÞyðivÞn

0
B@

1
CA;

ð16Þ
and fn lies between tn and tnþ1. For each n, the error is Oðh6Þ as
h ! 0. From consistency perspective, n is fixed so !ðfnÞ is
merely a constant which demonstrates that there is no need
to have a uniform bound on ! that is true for all n. Moreover,

the convergence of the method RMSSP5 can easily be claimed
since the method’s stability in combination with its consistency
is sufficient enough to guarantee the convergence as explained

by Henrici Peter in [32].

3.4. Applicability to a system of differential equations

We assume a system of s ordinary differential equations in the

vector form as follows:

y0 ¼ fðt; yÞ; yðt0Þ ¼ y0; t0 6 t 6 tn;

where

yðtÞ ¼ y1ðtÞ; y2ðtÞ; . . . ; ysðtÞð ÞT;
fðt; yðtÞÞ ¼ f1ðt; y1ðtÞ; y2ðtÞ; � � � ; ysðtÞÞ; � � � ; fsðt; y1ðtÞ; y2ðtÞ; � � � ; ysðtÞð ÞT;
y0 ¼ ðy1;0; . . . ys;0ÞT:

ð17Þ



Fig. 2 Graphic surface of the proposed RMSSP5 method.
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The methodRMSSP5 for scalar equation may be written as

ynþ1 ¼ yn þ hlfðtn; yn; hÞ;
where lfðtn; yn; hÞ is commonly known as the incremental func-

tion, and the subscript f on the right hand side shows that the
dependence of the lf on its variables is through function f (and

may be its derivatives). Implementing the proposed method in
(11) to each of the scalar equations in the differential system,
we have obtained the result as:

ynþ1 ¼ yn þ hlðtn; yn; hÞ;
where

lðtn; yn; hÞ ¼ lf1
ðtn; y1;n; ::; ys;n; hÞ; � � � ; lfs

ðtn; y1;n; . . . ; ys;n; hÞ
� �T

:

Finally, this shows that the method RMSSP5 applies to a sys-
tem of ordinary differential equations.

4. Variable step size approach

The derivation and analysis (local truncation error, stability,
consistency) of the proposed RMSSP5 method was performed

in the above sections via a constant stepsize approach. Under
this approach, we come across a problem to figure out the step
size h prior to starting the method. Such a step size will remain

the same throughout the entire process. Nonetheless, an itera-
tive method for solving IVPs should also be elegant enough
when applied under the variable stepsize approach as recom-

mended by some researchers [33]. When the solution of an
IVP has rapid changes over a part of the integration interval
and slower changes in remaining intervals, then using a
method with constant step size is not effective. Therefore, we

will use two approximations such as the fourth-order rational
method given in [26] (shown below in (18)) and RMSSP5.
Later, the local truncation error will be compared between

these two approximations.

ynþ1 ¼ yðtnÞ
þ 24y0 ðtnÞ4h

24yðtnÞ3 � 12hy0ðtnÞ2y00ðtnÞ þ 6h2y0ÞtnÞy00ðtnÞ2 � 3h3y00ðtnÞ3
�4h2y0ðtnÞ2y000ðtnÞ þ 4h3y0ðtnÞy00ðtnÞy000ðtnÞ � h3y0ðtnÞ2yðivÞðtnÞ

" # :

ð18Þ
There are many researchers who have carried out this sort of

approach as discussed in [34,35]. Since the higher order
method makes use of values needed in the lower order method
therefore, there will not be any additional computational cost.

We have followed the process as employed in [36]. In general,
surmise that the local error used with a method of order r to
get ynþ1 be identified by

Mn ¼ yðtn þ hÞ � ynþ1; ð19Þ
where yðtÞ stands for the analytical solution for the problem
(1). At this stage, using a method of order rþ 1 to determine

a result yHnþ1 on this step, one obtains the following

Ce ¼ yHnþ1 � ynþ1

¼ yðtn þ hÞ � ynþ1

� �� yðtn þ hÞ � yHnþ1

� �
¼ Mn þ O hrþ2

� �
:

ð20Þ

It is said to be a computable estimate of the local error for the

lower order numerical method because Mn is Oðhrþ1Þ and so
dominates in (20) for sufficiently small values of h. It has to

be noted that the error can be estimated in ynþ1 via its compar-

ison with a more accurate solution shown as yHnþ1. However, in

embedded kinds of methods, one looks for a pair of numerical
methods which share as many function evaluations as possible.
For the implementation of such pairs, the lower-order method

is merely used to estimate the local error. The higher-order
method is used to advance the integration step. Such Advance-
ment in the integration with the more accurate result ynþ1 is

known as the localextrapolation. A local error tolerance tol
must be specified and, if the estimated error is too large relative
to this tolerance, the step is rejected, and another attempt is
made with a smaller step size. Now, we discuss the approach

for changing the stepsize. From (19), we obtain

yðtn þ hÞ � ynþ1 ¼ hrþ1KðtnÞ þ Oðhrþ2Þ: ð21Þ
Now, if we take a step from tn with a new step size sh, then the

following would be the error

ðshÞrþ1KðtnÞ þ Oðhrþ2Þ ¼ ðsÞrþ1ðhÞrþ1KðtnÞ þ Oðhrþ2Þ
¼ srþ1Ce þ Oðhrþ2Þ: ð22Þ

The predicted largest stepsize passing the error test corre-

sponds to selecting s such that jsrþ1Cej � tol. The newly con-
structed stepsize now becomes as follows

h
tol

jCej
� �1=ðrþ1Þ

: ð23Þ

On recommendation of various researchers, a safety factor w
must be included in (23) in order to guarantee the success of
next try. For this reason, we additionally comply with the

method and achieve the result as hnew ¼ wh tol
jCe j

� �1=ðrþ1Þ
, where

w is taken to be a suitable safety factor w � 0:9 [37]. The only
reason to choose the safety factor w 2 ð0; 1Þ is to avoid failed

integration steps and r in the above equation stands for the
order of the lower order method. In our present scenario,
r ¼ 4. This approach has been implemented successively to
predict the stepsize for the forthcoming step after a successful

step is achieved, that is, when jCej < tol. Moreover, there is
nothing to be worried about the selection of the initial stepsize
hini, we can start with a suitably smaller hini and later the iter-



Table 1 Maximum Absolute Errors on ½0; 0:5� (first row), Absolute Errors at t ¼ 0:5 (second row), Absolute Mean Errors on ½0; 0:5�
(third row), Norm (fourth row) and CPU Time in seconds (fifth row) of each individual method with constant stepsize for Numerical

Experiment 1.
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ative method will rectify this value if need be, based on the
stepsize approach.

5. Numerical dynamics with results and discussion

In this section, we consider different types of IVPs to test the
performance of the proposed method RMSSP5 given in (11).
Table 2 Maximum Absolute Errors on ½0; 1� (first row), Absolute E

row), Norm (fourth row) and CPU Time in seconds (fifth row) o

Experiment 1.
Comparison has been carried out with three fifth-order meth-
ods chosen from the literature. One of them is known as the

rational RK method under Heronian mean [38] abbreviated
as HeM, the second one is the rational RK method under
contra-harmonic mean [39] abbreviated as CoM, and the third

one is the well-known fifth-order Taylor series method denoted
as Taylor; in the present computations. Both constant and
rrors at t ¼ 1 (second row), Absolute Mean Errors on ½0; 1� (third
f each individual method with constant stepsize for Numerical



Table 3 Maximum Absolute Local Truncation Errors on ½0; 0:5� (first row), Absolute Local Truncation Errors at t ¼ 0:5 (second

row), Absolute Mean Local Truncation Errors on ½0; 0:5� (third row), Local Truncation Norm (fourth row) and CPU Time in seconds

(fifth row) of each individual method with constant stepsize for Numerical Experiment 1.

Table 4 Number of steps (first row), and Absolute Errors at t ¼ 0:5 (second row) of each individual method with variable stepsize for

Numerical Experiment 1.
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variable stepsize approaches solve IVPs taken under scalar and
vector versions.

Problem 1. Consider the following first-order singular type of
IVP ([26]):
y0ðtÞ ¼ 1þ y2ðtÞ; yð0Þ ¼ 1; 0 6 t 6 1 ð24Þ
with the exact solution yðtÞ ¼ tan tþ p

4

� �
, where the singularity

occurs at t ¼ p
4
.

As far as numerical experiment 1 is concerned, we have
solved it using the fifth-order methods HeM, CoM, Taylor,

and RMSSP5 with decreasing constant stepsizes

h ¼ 1=2i; i ¼ 3; � � � ; 7 in the Table 1 wherein maximum abso-
lute errors, final absolute errors, absolute mean errors, norm
and CPU time in seconds have been computed while taking

the integration interval ½0; 0:5� to avoid the singularity that
occurs at t ¼ p

4
. The numerical results show that the proposed

method RMSSP5 yields the smallest errors in every case with
comparable CPU times. In Table 2, we have carried out the



Fig. 3 Comparison between analytical and approximate solution

via RMSSP5 with h ¼ 1=26 for Numerical Experiment 1.
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same computations but considered the interval ½0; 1� to include
the singularity wherein it can easily be observed that the only
method giving highly satisfactory results is the proposed

method RMSSP5. Moreover, local truncation errors are also
Table 5 Maximum Absolute Errors on ½�1; 1� (first row), Absolute

(third row), Norm (fourth row) and CPU Time in seconds (fifth row

Experiment 2.
computed in Table 3 which, once again, shows better perfor-
mance of the proposed method. Also, Table 4 demonstrates
the usefulness of the variable stepsize approach for each

method with RMSSP5 being the method utilizing a minimum
number of steps while maintaining an acceptable magnitude
of errors in contrast to the other three methods. Finally,

Fig. 3 demonstrates the usefulness of RMSSP5 wherein the
approximate solution smoothly crosses singularity (t ¼ p=4)
without being failed thereat. In contrast, the other three meth-

ods were unsuccessful in capturing this behavior and, thus, not
plotted.

Problem 2. Consider the following singularly perturbed IVP
([31]):

y0ðtÞ ¼ �2pyðtÞ2; yð�1Þ ¼ 4; �1 6 t 6 1; p ¼ 100; ð25Þ
with the exact solution yðtÞ ¼ 4=ð1þ 8ðtþ 1ÞpÞ.

For the numerical experiment 2, we have computed the
maximum absolute errors, final absolute errors, absolute mean
errors, norm, and CPU time in seconds while using decreasing

constant stepsizes h ¼ 1=2i; i ¼ 2; 4; 6; 8; 10 over the integra-
tion interval ½�1; 1�. Among all methods, the method

RMSSP5 produced the acceptable results when i ¼ 2; 4; 6; 8
in the stepsize, whereas the remaining methods ultimately
failed. However, in the case of i ¼ 10, we start to get suitable
Errors at t ¼ 1 (second row), Absolute Mean Errors on ½�1; 1�
) of each individual method with constant stepsize for Numerical



Table 6 Maximum Absolute Errors on ½0; 10� (first row), Absolute Errors at t ¼ 10 (second row), Absolute Mean Errors on ½0; 10�
(third row), Norm (fourth row) and CPU Time in seconds (fifth row) of each individual method with constant stepsize for Numerical

Experiment 3.
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error values in each method even though the proposed
RMSSP5 outperforms as shown by the last column of the

Table 5.

Problem 3. Consider the following stiff IVP ([39, p. 113]):
y0ðtÞ ¼ �yðtÞ; yð0Þ ¼ 1; 0 6 t 6 10; ð26Þ
with the exact solution yðtÞ ¼ expð�tÞ.
Table 7 Number of steps (first row), and Absolute Errors at t ¼ 10

Numerical Experiment 3.
For the numerical experiment 3, we have performed com-
putations to determine the maximum absolute errors, final

absolute errors, absolute mean errors, norm, and CPU time
in seconds while using decreasing constant stepsize

h ¼ 10=2i; i ¼ 3; . . . ; 7 over the integration interval ½0; 10� while
using the methods HeM, CoM, Taylor and RMSSP5. Table 6

shows that errors produced by RMSSP5 are smallest in each
case while consuming the comparable amount of CPU times
(seconds). Variable stepsize approach is used within the Table 7
(second row) of each individual method with variable stepsize for



Table 8 No. of Steps (first row), Maximum Absolute Error in y1ðtÞ (second row), Maximum Absolute Error in y2ðtÞ (third row),

Absolute Error in y1ðtÞ at t ¼ 1 (fourth row), Absolute Error in y2ðtÞ at t ¼ 1 (fifth row) via Taylor’s and Proposed methods with

variable stepsize for Numerical Experiment 4.
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while avoiding the HeM method because the number of steps
was substantially large enough to be included for this particu-

lar method. However, a comparison of RMSSP5 with the
remaining two methods reveals the importance variable step-
size approach considered within the proposed method since

it yields better errors in the smallest possible number of steps.

Problem 4. Consider the following singular system ([31]):

dy1ðtÞ
dt

¼ y2ðtÞ; y1ð0Þ ¼ 1;
dy2ðtÞ
dt

¼ �4y2ðtÞ
2tþ3

; y2ð0Þ ¼ 1;
ð27Þ

with the rational solution y1ðtÞ ¼ 5
2
� 9

4ðtþ3=2Þ ; y2ðtÞ ¼ 9

4ðtþ3=2Þ2 ;

t 2 ½0; 1�.
For the last numerical experiment 4, a singular system has

been considered where the singularity occurs at t ¼ �3=2. Here,
the methods called HeM and CoM failed to produce error values

when considered with the variable stepsize approach. On the
other hand, Taylor and the proposed RMSSP5 were successful,
as shown in Table 4. The number of steps, maximum and final

absolute errors in both state variables y1ðtÞ and y2ðtÞ are com-
puted wherein the method RMSSP5 reaches the size of error as

small as 10�16 while consuming a fewer number of steps in com-
parison with the Taylor method. Therefore, it can be said that the

variable stepsize approach in RMSSP5 is highly efficient. Table 8.

6. Concluding remarks

A new rational method RMSSP5 has been developed with
fifth-order accuracy via multi-variable Taylor series expansion.
The method is self-starting, stable, and consistent. Its principal

term in the local truncation error contains the term Oðh6Þ,
which confirms the fifth-order convergence of the proposed
method. The variable stepsize approach employed improved

its performance when different kinds of absolute errors were
computed. The proposed method was also compared with
some existing rational fifth-order methods. This confirmation

depends upon various initial value problems taken as single
and systems of differential equations. Generally, the method
performs better for problems with singularities, having stiff
nature, and are singularly perturbed. The future plans consist
of a proposal with a new nonlinear method having A-stability

features and a higher-order convergence.
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