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Abstract The impact of the Atangana-Baleanu (AB) time-fractional integral on second-grade fluid
with ternary nanoparticle suspension across an infinite vertical plate was studied in this paper. By
generalized Fourier’s law, the generalized fractional constitutive equation for the thermal flux

fluid; explains a thermal process with memory. Closed-form solutions are calculated using Laplace trans-

Atangana-Baleanu time-
fractional integral;
Generalized Fourier’s law;
Laplace transform

form and represented using Lorenzo and Hartley G—functions and integral forms. The numerical
effects of physical and fractional parameters are presented.
© 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria
University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Fractional calculus (FC) is a new discipline in science and engi-
neering that deals with mathematical modeling of real-world
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issues. The restrictions of integer ordered differential calculus
are addressed by fractional ordered derivatives. Many scien-
tists and researchers are using FC to apply real-world complex
dynamics in fields such as physics, biology, electrochemistry,
mechatronics, bioengineering, signal and image processing,
environmental science, and economics because FC under-
stands fading memory effects and boundary behavior that
arise in physical and biological systems [1,2]. Many current
models of physical processes have been effectively modified
using fractional calculus. Abel used fractional calculus to solve
an integral equation that emerges in the formulation of the
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tautochrone issue, which was the first use of fractional deriva-
tives. The whole theory of fractional derivatives and integrals
can be said to have been established in the second half of the
nineteenth century. When utilizing fractional derivatives to
describe viscoelastic materials, Caputo and Mainardi [3.4]
and Caputo [5] found good agreement with experimental data
and established a link between fractional derivatives and the
theory of linear viscoelasticity. A comprehensive list of the
latest applications of ordered fractional calculus was found
in [6-9].

The fractional derivatives are adopted to represent the
effects of a long time - memory, which is essential while mod-
eling fluid flows depends on the flow history. The time-
fractional derivative attracted numerous researchers due to
their potential applications in epidemiology modeling, quan-
tum mechanics, tuberculosis (TB) disease modeling, applied
physics and chemistry, viscoelasticity, Ebola treatment, Cancer
therapy, and modeling of Chaotic systems Biofluids. The ther-
mal conductivity of conventional fluids plays a vital role in
governing the heat transfer rate between medium and surface.
In comparison to the base fluids with low thermal conductiv-
ity, nanofluids have more excellent thermal properties. Still,
investigators recently established a novel fluid, namely, Hybrid
Nanofluid (HNF), in which two types of nanoparticles are dis-
persed in a base fluid. These HNFs have many prospective
applications such as microelectronics, microfluidics, medical,
transportation, acoustics, defense, and chemical catalytic reac-
tors [10-13].

Two forms of fluids have changed the dynamics of today’s
world: Newtonian and non-Newtonian fluids. Researchers first
concentrated on Newtonian fluids, but the relevance of non-
Newtonian fluids is expanding due to the complexity and vari-
ety of multiple fluid-dependent procedures. Non-Newtonian
fluids are useful in a wide range of applications, including eco-
nomic, industrial, physiological, mechanical, physical, medici-
nal, and technological. As a result, for a better understanding
of such occurrences, a narrative of non-Newtonian fluids is
required. It’s possible to do so by contrasting Newtonian
and non-Newtonian fluid properties. The difference between
Newtonian and non-Newtonian fluids is that Newtonian fluids
have a linear relationship between shear and strain rates, but
non-Newtonian fluids do not. As a result of this connection,
non-Newtonian fluids have a variety of properties and are clas-
sified as shear thinning, shear thickening, dilatant, and thixo-
tropic fluids. Rheologists revealed that different fluid models,
such as second-grade fluid, which describes shear thinning
and thickening features, and Newtonian fluid, behave differ-
ently in different scenarios. Because of its dynamical proper-
ties, second-grade fluid is well-known and valuable among
researchers [14-19].

The thorough literature introduced above endorses. To the
best of the author’s acquaintance, the diminutive consideration
is paid towards assessing buoyancy and heat source/sink
effects on ternary second grade nanofluid incompressible tran-
sient flow above the sinusoidal oscillating upright surface.
Therefore, the principal attention of the present investigation
is heat transfer analysis and thermodynamic activity of a
second-grade ternary nanofluid flow over an oscillating vertical
plate with Atangana-Baleanu time-fractional integral. The
resulting flow governing equations are solved utilizing a widely
accepted Laplace Transform Technique (LTT). The computa-
tional results obtained through MATHCAD software are val-

idated in the limiting cases of the fractional integral. The
illustrative images of boundary layer profiles for velocity and
thermal flow are illustrated. The friction factor and rate of heat
transfer values are tabularized and explained.

2. Mathematical formulation and solution of the problem

Consider an incompressible second-grade ternary nanofluid
lying in a plane over an infinite rigid flat plate. The x—axis is
parallel to the plate and y—axis is taken normal to the plate.
Initially, the fluid and the plate are at rest. After a timet = 07,
the plate begins to moving in its plane with velocitydof(t),
where 1J, is the constant velocity and f{-) is Laplace trans-
formable function withf{0) = 0. At the same time, the plate
temperature is raised/lower to y/ which is maintained con-
stant. We assume that the velocity and temperature are the
functions of y and ¢ only. For such a flow, the constrain of
incompressibility is identically satisfied. Under the assumption
of no pressure gradient in flow direction and Boussinesq’s
approximation, the unsteady flow governed by the following
set of partial differential equations [20,21].
Equation of momentum.

' (v,1) PV (0 | V()
P ™ = Hor ™52 "oy
8By yld 0, 1) = 1 ]s v, 1> 0, (1)
Thermal balance equation.
AW (y.1) _ O0q(r,1) .
(pCI’)mn_/' (9[ - a}’ . r> 07 (2)
Fourier’s law.
(v, 1)
qy,t) = _kmn‘ 5 3
1) =~y 5 ()
where

- Component of velocity x& y-Cartesian coordinates.

u- Dynamic viscosity

g - Gravitational acceleration
¥’ - Temperature

1, - Ambient temperature

¢, - Specific heat

p - Density

B, - Thermal expansion factor
1., - Temperature of the sheet
k - Thermal conductivity

Q - Heat source/sink

The thermophysical characteristics that are effective are speci-
fied by (see Sundar et al. [22]).ariation.Basel) 2020, d plate,

2.1. Ternary nanofluid

Hy
(1= (¢ + ¢+ ¢3))2.5

Pong = (1 = (1 + b2+ &3)) pr+ P1051 + D2p52 + D3053

(pcﬂ)mn[ = (1 - ((l)l + ¢2 + (/)3))(pcp)_/'+ d)l (pCp)Sl + ¢2 (pCﬁ)SZ
+ s (pc,,)53

)umn/ =



Heat transfers thermodynamic activity of a second-grade ternary nanofluid flow

10047

(0B g = (1= (b1 + bs + $3)) (pB,) ,+ $1(pB,) 5,
+ ¢, (Pﬁx’)sz + ¢; (pﬂx’)s3

Ky _ §1k1 + ¢oka + d3ks + 2(h1 + s + d3)kr + 2(h1 + s + ¢3) (1K1 + Poka + d3ks) — 2(¢1 + ¢ + ¢3)'ks

kb/

2.2. Hybrid nanofluid

1
' (1= (¢ + $,))*

iu/m/ =

Phnf = (1—(¢, + ¢2))P/+ G151 + Pa2psa
(pcﬂ)/m/': (1—(¢) + ¢2))(Pcp)f+ o (PC/:)SI + ¢, (pCp)S2

(pﬁl’)lmf‘: (l - (¢1 + ¢2))(pﬁ/)f+ ¢1 (pﬁz’)51 + ¢2(pﬁl’)5~2

Ky _ bk + ok +2(d) + do)ks +2(d) + ¢5)(Piki + ¢oka) —

Grkr + doka + p3ks +2(dy 4 by + P3)kr — (d) 4 by + h3)(Drki 4 ok + P3ks) + () + dy + ¢3)2k1

we get the non-dimensionless problem by removing the star
notations

Ky

2.3. Mano nanofluid

1

Pnf = (1- (d)l))Per 1051

My =

(pcp),,f: (1 -

(PB) = (1= (1) (pB,),+ d1(pB,)

(01)) (PCIJ)/ +1(pe)

@': bk +2(h)kr + 2(¢)) (pik1) — 2()) Ky
ki ki 20k — (1) (dika) + (90)ks
The expressions mentioned above ¢, ¢, and ¢; denoted

the solid volume fractions of Cu, Al,O3, and Ag, respectively.
Initial and boundary conditions that are suitable involve:

9 (1,0)=0, /(,0) =7 y>0, (4)
9(0,1) = 1), £ (0,1) =1y, >0, (5)
9 (y,1) =0, (v,1) = yasy — oo, 1>0. (6)

In Egs. (1)-(6), add the dimensionless variables mentioned
following:

ki + ok +2(d) + G2k — (@) + ) (1K1 + doka) +

M(Y,3)  FI(X,T) I, J) -
- AQ S 8
83 aYZ ! aYZaS + Gr/{( 7‘5)7 ( )
o(Y,3) 1 9¢(Y,3) ©)
I  Pr OY
2(¢ + b2)’ks
(1 + b2) ks
~ _ _ 9(Y,3)
u(Y,0) =0, 7(Y,0) =0, Y > 0, (11)
9(0,3) =f(3), x(0,5) =1, I>0, (12)
Y, 3) — 0, x(Y,3) = 0asY¥ — o0, I = 0. (13)

where Gr is the Grashof number and Pr is Prandtl number.

In the following part, we’ll look at a thermal process with
memory, which is described by the generalized fractional ther-
mal flux [23,24].

~ _ _p(92(Y,3)

);0<a<1, (14)

where I7 is the generalized Atangana-Baleanu fractional inte-
gral defined as.

(EN(3) = (1 = f(3) + g (3,9) # A(3), € (0,1), (15)

with the kernel ¥, (#, o) which is defined as.

(32 =205 (16)
It is observed thatL{y,(J,o)} =1, lim L{yy(3,0)} =

1 = L{6(3)}, therefore,

lim i (3,2) = 5(3)

(17)
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Using the above properties, the fractional integral operator
can be defined foro = 0.

The fractional integral operator in Eq. (15) has the follow-
ing properties:

(13/)(3) = 8(3) f(S)*f(S),

(IL)(3) = 1% A(3) = [ fv)dv. (18)

3. Solution of the problem

3.1. Temperature distribution

We get the following results by applying the Laplace transform
to Egs. (9), (14), (12),, (13),, and utilizing the initial condition
in Eq. (11),:

s7(Y,s) = Plr 6q€()§ 9) (19)
(F.5) = — {(1 - O;):a + oc] c');(f()?s)7 (20)
2(0,5) :é, Z2(X,5) = 0 as T — oo. (1)

The solution of Egs. (19) and (20) under the conditions of
Eq. (21) is represented as

_ 1 Prsot!
(Y Yy —o-—
2(Y,s) = CXP< = vwa)

= —exp< T— 0(1 lsasaﬂ ) (22)

For the inverse Laplace transform, Eq. (22) can be written

as.
Z(Yv S) = ;{](S);CZ(Yv S)v (23)
where
nl) =t =V b= = S T v
: i E; ’ ) 2 Vb K +b H/Z(Y,S)
=Bls) Als) + b A(s): Bls) ==, Als) = 77
wlm)
= 2 wa(s) = > +1b, a=/-F" and b -2
wa(s) ot l—a —o

Applying the inverse Laplace transform to Eq. (23), we
obtain.

2(Y,3) = 1 (3) * (Y, 3), (24)
with 7,(3) = B(3)A(3) + bA(3); B(3) = r(:) A(3) =
I 7= 5 00, —o; —uS *)du, .

where 3 '(D(ﬁ, —0;—a3"%) = L’l{ e’ } >0, 0<
g < 1 is the Wright function and.
1(0,3) = [ A 00 wh(3, u)du
L) === [ zexp( 4?>JO(2\/aYz)dz
3,u)= m(3u)— I ( )*hg(\s u), withh(3,u) =
k Sk(a+1)-1
3(6) = 320 S Sy = /%I (2V”~’)

where

The function J,(-) denoted the Bessel functions of the first
kind and defined asJ,(z) = 322 0" (%')MW .

m=0 m!T’(m+p+1)
For the case when a = 0, we obtain the classical tempera-
ture distribution defined as.

T(,1) = erfe (y;\?) .

3.2. Nusselt number

The mathematical expression for the heat transfer rate is given
as.

1) Foraz#0.

)
Nu = or

_ _{0%(1:9 } _ L’l{l Pryrt] } _
=0 oY Y=0 s\ (1—a)s*+a

atl a—1
Pr L 1 52 i — ﬁLfl 52 .
{A (v“+lT’1)l/2} - (s”—ﬁ)]/z
(25)

We use the Lorenzo-Hartley G-functions,

Gupet,—d) = L {ﬁ} Re(ac —b) > 0

In our =oe=1/25ac—b=1/2>0,
therefore, the condition is Verlﬁed
The inverse Laplace transform Eq. (29) is.

Pr o
Nu= 76 (b7 2) (26)

2) For o = 0, we have.

casea =a, b =

Nu= L’l{%\/E} = \/P_rL”{\/%} = %.

3.3. Velocity field

We get the following results by applying the Laplace transform
to Egs. (8), (12)y, (13);, and utilizing the initial condition in Eq.
(1)

- B FI(Y,s) T
sH(Y,s) = (1+7s) T + Gry(Y,s), (27)
15(0,3) = F(s), 1§(Y,s) —0as Y — occ. (28)

The solution of Eq. (27) under the conditions of Eq. (28)
and using Eq. (22) can be written as.
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(Y, s) = F(s)e "Vrn
Y (lpr.\-;!x v
Gr e R eV
+ Pr(14ys)s*t! s - s ’ (29)
[s — Fi=zjvra]

Eq. (29), can be written as.

I(X,5) = (F())¥1(s) + Wa(o) [1(X,5) = ¥4 (s)], (30)

where

VAL
Wi(s) =¢ , Wa(s) = { mmw'
ST

:| Grzk 0
s
k! (H%)Hl
Applying inverse Laplace transform to Eq. (30) and using
the formulas.

L’I{L,:/%} = —2a [ sin0m) exp( bz “) dz and

n JO  z(a+z?) a+z?
Groo o3, 7) = L {57}y R(s) > 0, R(v =) >0,
where G(-,-) being the Lorenzo and Hartley G—function, we
obtain.

S“

4(3)
d3

I(Y,3) = £ WL(3) + Wa(3) + [1(X,3) —(I)], (1)

where
¥, (3) -2 é—%cxp( )d;,
Wi (3) = Gry_ 2, 0[ ,ﬂ);“ G, —1ak, k1 (3*%) + (5)A+IGI,—I—1—1k.k+I (1*%)}

For the case whena = 0, we obtain the classical velocity
field defined as.

HY,3) = % * W (3) + %H(l) % exp (%)
. [erfc @{?) _\111(3)}, 32)

4. Numerical inversion formula

For the validation of our work, we apply the Stehfest’s for-
mula [25] for numerical algorithm of inverse Laplace trans-
form method and the compressions are presented in Tables 1
and 2. The Stehfest’s formula is defined as.

Table 1 Effect of the volume friction of ternary nanofluid.
¢3 Pr X(Yv S) q(Yv S) ﬁ(Y’ S)
0 6.03986 0.18196 0.3523 1.02929
0.01 5.96272 0.18564 0.35583 1.04238
0.02 5.88921 0.18921 0.35919 1.05437
0.03 5.81906 0.19269 0.36238 1.06607
0.04 5.75209 0.19606 0.36541 1.0775
0.05 5.68815 0.19933 0.36829 1.08867
0.06 5.62709 0.20251 0.37103 1.09956
0.07 5.56879 0.20559 0.37364 1.11017
0.08 5.51314 0.20857 0.37611 1.12052
0.09 5.46003 0.21145 0.37846 1.13059
0.1 5.40935 0.21424 0.3807 1.14038

Table 2 Effect of the volume friction of hybrid nanofluid.
0 6.12879 0.1778 0.34822 1.02929
0.01 6.03986 0.18196 0.3523 1.04275
0.02 5.96042 0.18575 0.35594 1.0551
0.03 5.88466 0.18944 0.35939 1.06718
0.04 5.81228 0.19302 0.36268 1.079
0.05 5.74309 0.19652 0.36581 1.09056
0.06 5.67694 0.19991 0.3688 1.10188
0.07 5.61368 0.20321 0.37163 1.11293
0.08 5.55317 0.20642 0.37433 1.12373
0.09 5.49531 0.20953 0.3769 1.13427
0.1 5.43997 0.21255 0.37935 1.14454
- In(Q) & - In(2)
XS(Yv ;S) gT dj;{ 51] 1 9 (33)
=1
In(2) & - In(2)

Is(Y, ) = dorj 34

S( ’ ) t lzzl J yJ ¢ ’ ( )
j+m x—~min(j,n) " (2n)! [ ig:
whered; = (=1 3" [ﬁ’l']" m, m is a positive

integer and [r] denotes the integer value function or bracket
function.

Temperature
&

Temperature
&

0 1 2 3 4 Y 5

Fig. 1  Profiles of x(Y,3) versus Y for « variation.
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5. Numerical results and discussions

The impacts of fractional and physical characteristics on tem-
perature distribution, thermal flux, and velocity field were dis-
cussed in this section. With constant heat, we looked at the
plate’s cosine and sine oscillations. In numerical simulations,
we treated Cu, Al,O3, and Ag as nanoparticles.

As seen in Eq. (15), the fractional integral is given by a con-
volution with the power law kernel of fractional parameter. It
is clear from this definition that the history of the temperature
gradient up to time t, weighted with the convolution kernel,
will influence the value of the heat flux from the instant t.
The considered model is a mathematical model in which the
history of the temperature gradient influences the present ther-
mal process, therefore it is a model with memory. The thermal
gradient is damped by the power kernel, therefore the corre-
sponding parameter of the kernel have the role of the memory
parameter.

We showed the influence of the fractional parameter o at
two different time values in Figs. 1-4. It is observed that when

Thermal Flux

14
in

[

Thermal Flux

B
[

0 2 4 6 8

T 1:0

Fig. 2 Profiles of ¢(Y,3J) versus Y for o variation.

the fractional parameter « is increased, it has an excellent tem-
perature distribution enhancement and the temperature of the
system increased. This is due to the fact that as the fractional
parameter o is increased, the thermal flux increases. We
employed a gemeralized Fourier’s law and a temperature dis-
tribution that was dependent on the amount of thermal flux.
The velocity has a comparable effect, which is to be expected.
As time passes, the thermal and boundary layer disparity
grows. Due to the definition of fractional integral (see Eq.
(15), these influences are provided as the sum of two compo-
nents. The first portion approaches zero as the fractional
parameter approaches 1, whereas the second part has multiple
fractional parameters and a singular kernel. Figs. 5 and 6 show
the effect of the second-grade fluid parameter. The Newtonian
fluid has the most incredible velocity near the plate for short
time values, but the influence is opposite for away from the
plate. The critical point will vanish for long periods of time.
For sine oscillation, the second-grade parameter has a signifi-
cant impact.

- Velocity

&

0 2 - 6 $ Y 10

Fig. 3 Profiles of ¢(Y,3J) versus Y for o variation with

f(t) = cos(nt/4).
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Velocity

0 2 4 6 8 Y 10

Fig. 4 Profiles of 9(Y,3) versus Y for o variation with

Sf(t) = sin(nt/4).

Effects of the volume friction of ternary and hybrid nano-
fluid are presented in Tables 1 and 2. It is observed that by
increasing the values of these volume frictions, the Pr number
decreases, and the temperature, heat flux, and velocity
increase. They are adding the volume friction, which increases
the system temperature and velocity.

For the validation of our results, we compare our results
with numerical inversion method defined by Stehfest’s and pre-
sented in Tables 3 And 4. It is observed that the numerical
inversion method has a good agreement with our results.

6. Conclusions

In this article, we studied influence of the Atangana-Baleanu
(AB) time-fractional integral on second-grade fluid with tern-
ary nanoparticle suspension across an infinite vertical plate.
By generalized Fourier’s law, the generalized fractional consti-
tutive equation for the thermal flux explains a thermal process
with memory. Closed-form solutions are calculated using
Laplace transform and represented using Lorenzo and Hartley

Velocity

()

Fig. 5 Profiles of ¢¥(Y,3J) versus Y for n variation with
(1) = cos(nt/4).

G-functions and integral forms. The numerical effects of phys-
ical and fractional parameters are presented. The observations
are:

e By increasing fractional parameter, It has an excellent tem-
perature distribution enhancement.

e The velocity has a comparable effect, which is to be
expected. As time passes, the thermal and boundary layer
disparity grows.

e The Newtonian fluid has the most incredible velocity near
the plate for short time values, but the influence is opposite
for away from the plate. The critical point will vanish for
long periods of time.

e For sine oscillation, the second-grade parameter has a sig-
nificant impact.

e By increasing the values of these volume frictions, the Pr
number decreases, and the temperature, heat flux, and
velocity increase.

e The numerical inversion method has a good agreement with
our results.
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in

Velocity -

]

Velocity

Fig. 6 Profiles of ¥(Y,3J) versus Y for o variation with

f(t) = sin(nt/4).

Table 3 Comparison of temperature distribution with inver-
sion method y.

y  x(X,3); BEq. (24)  s(Y,3); Eq. 33)  |x(X,3) — xs(X, J)|
0 1 1 0

0.1 0.98274322 0.98455667 0.00181345
0.2 0.96091618 0.9677866 0.00687042
0.3 0.95290404 0.94958017 0.00332387
0.4 0.93405618 0.92981783 0.00423835
0.5 0.90807069 0.90836443 0.00029374
0.6 0.88242409 0.88508683 0.00266273
0.7  0.85826375 0.85987906 0.00161531
0.8 0.83311703 0.83267174 0.0004453

0.9 0.80489138 0.8034225 0.00146888
1 0.77319345 0.77209892 0.00109453
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Table 4 Comparison of velocity field with inversion method.

0 0.70711 0.79204 0.08494
0.1 0.83412 0.92565 0.09153
0.2 0.94784 1.04444 0.0966

0.3 1.04864 1.14894 0.10031
0.4 1.13689 1.23973 0.10284
0.5 1.21301 1.31735 0.10434
0.6 1.27745 1.38236 0.10491
0.7 1.33071 1.43536 0.10465
0.8 1.37328 1.47693 0.10365
0.9 1.40567 1.50769 0.10202
1 1.42843 1.52827 0.09984
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