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ABSTRACT Metasurfaces are artificial sheets with sub-wavelength thickness and they are two-dimensional
equivalents of metamaterials. The generalized sheet transition conditions (GSTCs) have been recently
proposed for electromagnetic analysis of the metasurfaces. In GSTCs, the metasurface is generally modeled
as a sheet with zero-thickness. However, the conventional finite-difference time-domain (FDTD) method is
not straightforwardly applied to analyze electromagnetic wave propagation in the metsurface by harnessing
GSTCs because GSTCs exhibit electric and magnetic discontinuities. Alternatively, the GSTC-FDTD
formulation is highly suitable for analyzing the electromagnetic properties of metasurfaces by introducing
electric and magnetic virtual grids. Meanwhile, metasurfaces can be realized by using 2-D materials such
as black phosphorus and thus the dispersion characteristics of metasurfaces should be considered. In this
work, we propose an efficient dispersive GSTC-FDTD algorithm by employing the Drude dispersion model.
Moreover, for the first time, the numerical surface susceptibility inherent to the dispersive GSTC-FDTD
formulation is derived and its numerical accuracy is investigated. Numerical examples illustrate high
efficiency of the proposed Drude-dispersive GSTC-FDTD algorithm.

INDEX TERMS Computational electromagnetics, dispersion, finite difference methods.

I. INTRODUCTION
There are various computational methods for analyzing com-
plex electromagnetic problems [1]–[8]. Among many numer-
ical methods, the finite-difference time-domain (FDTD)
method has been popularly employed to analyze electro-
magnetic wave propagation in complex media such as lossy,
anisotropic, non-linear, or dispersive media [9]–[18]. The
FDTD method is a grid-based numerical analysis tech-
nique that discretizes spatial and temporal partial derivatives
of the time-dependent Maxwell’s curl equations using the
central-difference scheme (CDS) [19], [20]. The remarkable
advantages of the FDTD method are robustness, simplicity,
and broadband analysis in a single simulation.

The metasurfaces are sub-wavelength-thickness sheets to
control electromagnetic wave propagation to yield extraordi-
nary properties. Metasurfaces have been successfully applied
to a broad variety of applications, such as flat-lenses
[21], [22], hologram generation [23], remote processing [24],
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harmonic generation [25], dual-band antennas [26], and
polarization analyzers [27]. The thickness of metasurfaces
is much thinner than a wavelength in general and thus
they can be modeled as zero-thickness sheets. The gener-
alized sheet transition conditions (GSTCs) was proposed
to efficiently model these metasurfaces using the surface
susceptibility [28]. The conventional FDTD method cannot
be simply used to analyze metasurfaces by harnessing the
efficient GSTCs since the standard E- and H - FDTD grids
are not located on zero-thickness sheets.

Recently, the GSTC-FDTD algorithm was proposed by
introducing virtual E- and H - FDTD grids and consider-
ing the surface susceptibility between virtual FDTD grids
[29], [30]. Vahabzadeh et al. analyzed polychromatic, non-
linear, and space-time varying metasurfaces by using the
GSTC-FDTD algorithm [30]. In addition, the GSTC-FDTD
algorithm was extended to analyze electromagnetic proper-
ties of dispersive metasurfaces by adopting the Lorentz dis-
persion model [31]. However, this dispersive GSTC-FDTD
formulation leaves some regrets in terms of computational
efficiency.
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In order to improve computational efficiency, we propose
a GSTC-FDTD formulation based on the Drude dispersion
model. Our proposed GSTC-FDTD formulation can accu-
rately analyze the electromagnetic characteristics of disper-
sive metasurfaces, with high computational efficiency. The
remainder of the paper is organized as follows. In the next
section, the GSTC-FDTD algorithm is briefly reviewed and
then the GSTC-FDTD formulation by applying the auxiliary
differential equation (ADE) to the Drude dispersion model is
proposed. Next, we investigate the numerical surface suscep-
tibility of the proposed Drude-based GSTC-FDTD and the
previous Lorentz-based GSTC-FDTD formulations. Numer-
ical examples are employed to illustrate superiority of the
proposed Drude-dispersive GSTC-FDTD formulation over
the previous Lorentz-dispersive GSTC-FDTD formulation
and the conventional FDTD algorithm. Finally, concluding
remarks are followed.

II. PROPOSED DISPERSIVE GSTC-FDTD FORMULATION
Let us consider a metasurface located on the xy-plane of the
Cartesian coordinate at z = �, as shown in Fig. 1. In the
GSTC-FDTD algorithm, a virtual electric FDTD grid located
at �− and a virtual magnetic FDTD grid located at �+ are
introduced. The GSTC-FDTD update equations for Ex and
Hy field components are expressed as follows

En+1x (k + 1) = Enx (k + 1)

−
1t
ε01z

(
Hn+1/2
y (k + 1)− Hn+1/2

y (�+)
)
,

(1)

Hn+1/2
y (k) = Hn−1/2

y (k)−
1t
µ01z

(
Enx (�

−)− Enx (k)
)
,

(2)

where ε0 andµ0 indicate the permittivity and the permeability
of the free space respectively. Note that 1z indicates the
FDTD grid size along the z direction, k indicates the space
index along the z direction, 1t denotes the FDTD time step
size, and the superscript indicates the time index. Here, the
virtual electric field, Ex(�−), and the virtual magnetic field,
Hy(�+), are calculated through the GSTCs algorithm. In the
frequency domain, the GSTC algorithm can be written as (an
ejωt time dependence is assumed) [28]

−1Hy(ω) = J̃ xxee (ω)+ J̃
xy
em(ω), (3)

−1Ex(ω) = M̃ yy
mm(ω)+ M̃

yx
me(ω), (4)

FIGURE 1. GSTC-FDTD grids for electromagnetic analysis of a metasurface
located at z = �.

where

J̃ xxee (ω) = jωε0χ̃xxee (ω)Ẽx,av(ω), (5)

J̃ xyem(ω) = jk0χ̃xyem(ω)H̃y,av(ω), (6)

M̃ yy
mm(ω) = jωµ0χ̃

yy
mm(ω)H̃y,av(ω), (7)

M̃ yx
me(ω) = jk0χ̃yxme(ω)Ẽx,av(ω). (8)

Note that ω is the angular frequency, k0 is the prop-
agation constant of the free space, χ represents the
frequency-dependent surface susceptibility tensor, 1ϕξ =
ϕtrξ − (ϕincξ + ϕ

ref
ξ ), ϕξ,av = (ϕincξ + ϕ

ref
ξ + ϕ

tr
ξ )/2 with

ϕ representing the spectral electric or magnetic fields, and
the superscripts ‘‘inc’’, ‘‘tra’’, and ‘‘ref’’ denote the incident,
transmitted, and reflected waves, respectively [32]. In the
FDTD framework, it is necessary to convert (3) and (4)
into the time-domain counterparts. By applying the inverse
Fourier transform (IFT) and the central averaging scheme,
we obtain the following update equations for the GSTCs
algorithm in the discrete FDTD world as follows

Hn+1/2
y (�+) = Hn+1/2

y (k)

−
J xx,n+1ee + J xx,nee

2
−
J xy,n+1em + J xy,nem

2
,

Enx (�
−) = Enx (k + 1) (9)

+
M yy,n+1/2
mm +M yy,n−1/2

mm

2

+
M yx,n+1/2
me +M yx,n−1/2

me

2
. (10)

Substituting (9) into (1), and (10) into (2) and then rear-
ranging them, we have the following GSTC-FDTD update
equations for Ex and Hy:

En+1x (k + 1) = Enx (k + 1)

−
1t
ε01z

(
Hn+1/2
y (k + 1)− Hn+1/2

y (k)
)

−
1t

2ε01z

(
J xx,n+1ee + J xx,nee

)
−

1t
2ε01z

(
J xy,n+1em + J xy,nem

)
, (11)

Hn+1/2
y (k) = Hn−1/2

y (k)−
1t
µ01z

(
Enx (k + 1)− Enx (k)

)
−

1t
2µ01z

(
M yy,n+1/2
mm +M yy,n−1/2

mm

)
−

1t
2µ01z

(
M yx,n+1/2
me +M yx,n−1/2

me

)
. (12)

Now, let us consider the dispersive properties of the meta-
surfaces. In this work, we employ the Drude dispersionmodel
to derive an efficient dispersive GSTC-FDTD formulation.
We show details on how to derive update equations for
the Drude-dispersive GSTC-FDTD algorithm by considering
only the electrical polarization current density, J̃ xxee (ω). Using
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the Drude dispersion model for the surface electric suscepti-
bility, J̃ xxee in (5) can be expressed as follows

J̃ xxee (ω) = jωε0
ω2
D,ee

γee(jω)+ (jω)2
Ẽx,av(ω) (13)

By rearranging (13) and applying the IFT, we have

dJ xxee
dt
+ γeeJ xxee = ε0ω

2
D,eeEx,av. (14)

Note that the jω terms in the numerator and the denominator
in (13) are cancelled out each other and thus the first-order
time derivative is involved in the ADE for the Drude disper-
sion model. By applying the standard FDTD discretization to
the above equation, we have

J xx,n+1ee − J xx,nee

1t
+ γee

J xx,n+1ee + J xx,nee

2

= ε0ω
2
D,ee

En+1x,av + E
n
x,av

2
. (15)

Rearranging (15), we obtain the following ADE update equa-
tion for J xxee :

J xx,n+1ee

=
2− γee1t
2+ γee1t

J xx,nee +
ω2
D,eeε01t

2+ γee1t

(
En+1x,av + E

n
x,av

)
. (16)

Note that other dispersive polarization current densities can
be obtained in a similar fashion. For example, theADE update
equation forM yy

mm is written as follows

M yy,n+1/2
mm =

2− γmm1t
2+ γmm1t

M yy,n−1/2
mm

+
ω2
D,mmµ01t

2+ γmm1t

(
Hn+1/2
y,av + Hn−1/2

y,av

)
. (17)

Now, by substituting (16) and (17) into (11) and (12)
respectively, we have

En+1x (k + 1) = Enx (k + 1)

−
1t
ε01z

(
Hn+1/2
y (k + 1)− Hn+1/2

y (k)
)

−
1t

2ε01z

[
2− γee1t
2+ γee1t

J xx,nee + J
xx,n
ee

+
ω2
D,eeε01t

2+ γee1t

(
En+1x,av + E

n
x,av

)]
−

1t
2ε01z

(
J xy,n+1em + J xy,nem

)
, (18)

Hn+1/2
y (k) = Hn−1/2

y (k)

−
1t
µ01z

[Enx (k + 1)− Enx (k)]

−
1t

2µ01z

[
2− γmm1t
2+ γmm1t

M yy,n−1/2
mm +M yy,n−1/2

mm

+
ω2
D,mmµ01t

2+ γmm1t

(
Hn+1/2
y,av + Hn−1/2

y,av

)]
−

1t
2µ01z

[
M yx,n+1/2
me +M yx,n−1/2

me

]
. (19)

Here, the average electric and magnetic field components are
defined as En+1x,av = [En+1x (k+1)+En+1x (k)]/2 andHn+1/2

y,av =

[Hn+1/2
y (k+1)+Hn+1/2

y (k)]/2. By substituting these average
electric or magnetic field components into the (18) and (19)
and rearranging them, we finally obtain the proposed Drude-
dispersive GSTC-FDTD update equations for Ex and Hy:(
1+

ω2
D,ee1t

2

41z(2+ γee1t)

)
En+1x (k + 1)

=

(
1−

ω2
D,ee1t

2

41z(2+ γee1t)

)
Enx (k + 1)

−
1t
ε01z

(
Hn+1/2
y (k + 1)− Hn+1/2

y (k)
)

−
ω2
D,ee1t

2

41z(2+ γee1t)

(
En+1x (k)+ Enx (k)

)
−

21t
ε01z(2+ γee1t)

J xx,nee

−
1t

2ε01z

(
J xy,n+1em + J xy,nem

)
, (20)(

1+
ω2
D,mm1t

2

41z(2+ γmm1t)

)
Hn+1/2
y (k)

=

(
1−

ω2
D,mm1t

2

41z(2+ γmm1t)

)
Hn−1/2
y (k)

−
1t
µ01z

(
Enx (k + 1)− Enx (k)

)
−

ω2
D,mm1t

2

41z(2+ γmm1t)

(
Hn+1/2
y (k + 1)

+Hn−1/2
y (k + 1)

)
−

21t
µ01z(2+ γmm1t)

M yy,n−1/2
mm

−
1t

2µ01z

(
M yx,n+1/2
me +M yx,n−1/2

me

)
. (21)

On the other hand, as alluded previously, the Lorentz-
dispersive GSTC-FDTD formulation was introduced in [31].
The surface susceptibility of the Lorentz dispersion model is
expressed as

χ̃xxee (ω) =
ω2
L,ee

ω2
0,ee + 2jωγee + (jω)2

. (22)

It is worthy to include the update equations for the Lorentz-
dispersive GSTC-FDTD formulation in [31] and they are as
follows

J xx,n+1ee = −
1t2ω2

0,ee − 2

γee1t + 1
J xx,nee −

1− γee1t
1+ γee1t

J xx,n−1ee

+
ε01tω2

L,ee

2+ 2γee1t

(
En+1x,av − E

n
x,av

)
, (23)

M yy,n+1/2
mm = −

1t2ω2
0,mm − 2

γmm1t + 1
M yy,n−1/2
mm

−
1− γmm1t
1+ γmm1t

M yy,n−3/2
mm
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+
µ01tω2

L,mm

2+ 2γmm1t

(
Hn+1/2
y,av − Hn−3/2

y,av

)
, (24)(

1+
ω2
L,ee1t

2

81z(1+ γee1t)

)
En+1x (k + 1)

= Enx (k + 1)−
1t
ε01z

(
Hn+1/2
y (k + 1)−Hn+1/2

y (k)
)

−
ω2
L,ee1t

2

81z(1+ γee1t)

(
En+1x (k)− En−1x (k + 1)

−En−1x (k)
)
+

1t
2ε01z

(
ω2
0,ee1t

2
− 2

γee1t + 1
− 1

)
J xx,nee

+
1t

2ε01z
1− γee1t
1+ γee1t

J xx,n−1ee

−
1t

2ε01z

(
J xy,n+1em + J xy,nem

)
, (25)(

1+
ω2
L,mm1t

2

81z(1+ γmm1t)

)
Hn+1/2
y (k)

= Hn−1/2
y (k)−

1t
µ01z

(
Enx (k + 1)− Enx (k)

)
−

ω2
L,mm1t

2

81z(1+ γmm1t)

(
Hn+1/2
y (k + 1)

−Hn−3/2
y (k + 1)− Hn−3/2

y (k)
)

+
1t

2µ01z

(
ω2
0,mm1t

2
− 2

γmm1t + 1
− 1

)
M yy,n−1/2
mm

+
1t

2µ01z
1− γmm1t
1+ γmm1t

M yy,n−3/2
mm

−
1t

2µ01z

(
M yx,n+1/2
me +M yx,n−1/2

me

)
. (26)

It should be noted that ω2
0,ee is involved in the Lorentz disper-

sion model and thus the second-order time derivative should
be considered in Lorentz-dispersion-based polarization cur-
rent densities, which leads to worse computational efficiency
versus theDrude dispersionmodel counterpart. Table 1 shows
the number of field variables and operation count for each dis-
persive GSTC-FDTD formulation. As shown in Table 1, the
computational efficiency of the proposed Drude-dispersive
GSTC-FDTD formulation is better than in the Lorentz-based
counterpart.

III. NUMERICAL SURFACE SUSCEPTIBILITY
In this section, the numerical surface susceptibility is derived
for the proposed Drude-dispersive GSTC-FDTD algorithm
and the Lorentz-dispersiveGSTC-FDTD algorithm. Since the
FDTD method has the discrete nature, the numerical surface
susceptibility of the media is different from the analytical
surface susceptibility.

First, we consider the numerical surface susceptibility for
the proposed Drude-dispersive GSTC-FDTD formulation.
For simplicity, we derive the numerical surface susceptibility
for the electrical polarization current density only. Let us
express En = Eejωn1t and Jn = Jejωn1t [12], [33], [34].

TABLE 1. Computational efficiency (per computational cell and field
component).

By plugging En and Jn into (16), we obtain

J xxee e
jω(n+1)1t

=
2− γee1t
2+ γee1t

J xxee e
jωn1t

+
ω2
D,eeε01t

γee1t + 2

(
Ex,avejω(n+1)1t + Ex,avejωn1t

)
. (27)

Dividing both sides by ejω(n+1/2)1t , we have

J xxee e
jω1t
2 =

2− γee1t
2+ γee1t

J xxee e
−jω1t

2

+
ω2
D,eeε01t

2+ γee1t

(
Ex,ave

jω1t
2 + Ex,ave

−jω1t
2

)
. (28)

By rearranging (28), we obtain

J xxee = ε0
ω2
D,ee

γee+jω̃
Ex,av (29)

In above, ω̃ = 2
1t tan

ω1t
2 . We finally derive the numeri-

cal surface susceptibility of the proposed Drude-dispersive
GSTC-FDTD algorithm:

χ̃xxee (ω) =
ω2
D,ee

γee(jω̃)+ (jω̃)2
(30)

Next, let us derive the numerical surface susceptibility
of the Lorentz-dispersive GSTC-FDTD formulation. In the
similar fashion, we have

J xxee e
jω(n+1)1t

= −
1t2ω2

0,ee − 2

γee1t + 1
J xxee e

jωn1t
−

1− γee1t
1+ γee1t

J xxee e
jω(n−1)1t

+
ε01tω2

L,ee

2+ 2γee1t

(
Ex,avejω(n+1)1t − Ex,avejω(n−1)1t

)
.

(31)

By dividing both sides by ejωn1t and rearranging the resulting
equation, we obtain

J xxee = ε0
ω2
L,ee(jω̃)

ω̃2
0,ee + 2γee(jω̃)+ (jω̃)2

Ex,av, (32)

where ω̃2
0,ee = ω2

0,ee/(cos
ω1t
2 )2. Finally, we obtain the

numerical surface susceptibility of the Lorentz-dispersive
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GSTC-FDTD formulation as follows

χ̃xxee (ω) =
ω2
L,ee

ω̃2
0,ee + 2γee(jω̃)+ (jω̃)2

. (33)

IV. NUMERICAL EXAMPLES
Black phosphorus (BP), a two-dimensional puckered hexag-
onal lattice structure, exhibits in-plane anisotropic prop-
erties between armchair and zigzag directions, enabling
tunable THz responses [35]–[39]. BP has been popularly
employed for various metasurface applications [40]–[42].
In [40], Feng et al. proposed BP-based metasurfaces to
achieve near-unity infrared absorption by controlling the
angle of incident light and polarization. In [41], the authors
employed BP as metasurfaces exhibiting broadband and
polarization-insensitive coherent perfect absorption in THz
band. BP is a promising 2-Dmaterial for metasurface applica-
tions because it can yield extraordinary electromagnetic prop-
erties such as tunable anisotropic plasmonic responses [42].

In this work, as a proof of concept, we consider BP to vali-
date the numerical accuracy and efficiency of the proposed
Drude-dispersive GSTC-FDTD algorithm. The anisotropic
surface conductivity of BP can be calculated by employing
a semiclassical Drude model [35] as

σs,jj(ω) =
Dj

π (jω + ηe
h̄ )
, (34)

where j = x, y represents each in-plane direction. In above,
ηe is the relaxation rate,Dj = πe2nsj/mj is the Drude weight,
nsj is the electron doping, mj is the electron mass along the j
direction, and the electron mass along the x direction and y
direction can be evaluated by

mx = h̄2
2γ 2
1BP
+ηc

,my = h̄2
2υc
, (35)

where h̄ is the reduced Plank constant, γ = 4d/π , ηc =
h̄2/(0.4m0), υc = h̄2/(1.4m0), 1BP is the thickness depen-
dent direct band gap, d is the scale length of BP, andm0 is the
static electron mass. In this work,1BP = 2 eV, ηe = 10 meV,
nsj = 1013/cm2, and d is 0.223 nm [35].
The electric surface susceptibility of BP can be expressed

in the Drude dispersion model as follows

χee(ω) =
σs(ω)
jωε0

=
ω2
D,ee

γee(jω)+ (jω)2
(36)

where ωD,ee =
√

Dj
ε0π

and γee = ηe/h̄.
First, we investigate the numerical surface susceptibility

of the proposed Drude-dispersive GSTC-FDTD algorithm
and the Lorentz-dispersive GSTC-FDTD algorithm in the
frequency range of 1 THz to 10 THz. Fig. 2 shows the analyt-
ical surface susceptibility and its numerical counterparts for
the proposed Drude and the conventional Lorentz dispersive
GSTC-FDTD algorithms. Note that the FDTD grid size was
set to 1 nm in 2-D materials in literature [13], [43] but,
in this work, we set the FDTD grid size as 10 nm (which is

FIGURE 2. Numerical surface susceptibility of BP. (a) Real (Armchair).
(b) Imaginary (Armchair). (c) Real (Zigzag). (d) Imaginary (Zigzag).

3000 cells per minimumwavelength in free space) for the dis-
persive GSTC-FDTD algorithm, unless specified otherwise.
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FIGURE 3. Relative error of the numerical surface susceptibility of BP.

The time step size is set to 3.3× 10−17s for the CFL stability
condition [19]. The numerical susceptibilities are in good
agreement with the analytical surface susceptibility. Fig. 3
shows the relative errors of the numerical surface suscepti-
bility for the Drude- and Lorentz dispersive GSTC-FDTDS
and it is observed that both errors are same and they can be
negligible.

Next, we analyze electromagnetic properties of BP
using actual FDTD simulations. In FDTD simulations, the
one-dimensional computational domain has a physical length
of 100 nm along the z direction and the metasurface
sheet (BP) is located at the center of the computational
domain. The electric current with a differentiated Gaussian
pulse in the time domain is used for source excitation. The
whole FDTD domain consists of 30 cells including 10-cell
perfectly matched layers (PMLs) [44]–[46] on both ends. All
FDTD simulations are performed on Intel i7-10700 CPU.
Let us consider the BP sheet when the direction of the
electron mass is armchair or zigzag. When the direction of
the electron mass is armchair, the x-polarized electric current
source is excited and when the direction of the electron
mass is zigzag, the y-polarized electric current source is
excited. Other simulation setup parameters are maintained.
Figs. 4, 5, and 6 shows the reflection coefficient and the
transmission coefficient of the BP sheet when the FDTD grid
size is 1 nm, 2 nm, and 10 nm. As shown in Fig. 4, the
numerical results of the Lorentz-dispersive GSTC-FDTD, the
Drude-dispersive GSTC-FDTD, and the conventional Drude-
ADE FDTD [19] agree very well with the analytical val-
ues [32] for both armchair and zigzag directions when the
FDTD grid size is 1 nm. However, when the FDTD grid
size is increased to 2 nm or 10 nm, the conventional FDTD
results are significantly different from the analytical values,
whereas both dispersive GSTC-FDTD results match well
with the analytical values, with no respect to the FDTD grid
size.

As the next example, a two-dimensional problem for a BP
sheet is analyzed and the geometry of this problem is shown
in Fig. 7.We consider two different BP sheet orientations. For

FIGURE 4. 1-D FDTD simulation results of the BP sheet: 1-nm FDTD grid
size. (a) Reflection coefficient. (b) Transmission coefficient.

FIGURE 5. 1-D FDTD simulation results of the BP sheet: 2-nm FDTD grid
size. (a) Reflection coefficient. (b) Transmission coefficient.

the armchair case, we set the electron mass having armchair
characteristic along the x direction (and zigzag characteristic
along the z direction). For the zigzag case, we set the electron
mass having zigzag characteristic along the x direction (and
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FIGURE 6. 1-D FDTD simulation results of the BP sheet: 10-nm FDTD grid
size. (a) Reflection coefficient. (b) Transmission coefficient.

FIGURE 7. 2-D problem for a BP sheet.

armchair characteristic along the z direction). We employ the
FDTD grid size of 1 nm, 2 nm, and 10 nm and the correspond-
ing time step size is set to 2.333×10−18s, 4.667×10−18s, and
2.333 × 10−17s respectively for the CFL stability condition.
The physical size of the FDTD domain is 1000 nm× 1000 nm
and 10-cell PML layers are used in the each direction. The
length of the BP sheet along the x direction is 1000 nm. The
z-directed magnetic current with the differentiated Gaussian
pulse in the time domain is excited at 20 nm above the BP

FIGURE 8. 2-D FDTD simulation results of the BP sheet: 1-nm FDTD grid
size. (a) Armchair. (b) Zigzag.

FIGURE 9. 2-D FDTD simulation results of the BP sheet: 2-nm FDTD grid
size. (a) Armchair. (b) Zigzag.

sheet and then Hz at 10 nm below the BP sheet is observed.
Other simulation setup parameters are maintained same as
in the one-dimensional case. Figs. 8, 9, and 10 shows the
normalized magnetic fields of the three numerical results
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FIGURE 10. 2-D FDTD simulation results of the BP sheet: 10-nm FDTD grid
size. (a) Armchair. (b) Zigzag.

TABLE 2. Comparison of CPU time and memory storage.

when the FDTD grid size is 1 nm, 2 nm, and 10 nm. The
numerical result of both dispersive GSTC-FDTDs are same,
regardless of the FDTD grid size. However, the conventional
FDTD results are in agreement with dispersive GSTC-FDTD
results for only the FDTD grid size of 1 nm (Fig. 8) and
thus the conventional FDTD simulations with larger FDTD
sizes (Figs. 9 and 10) cannot be used. Table 2 summarizes
CPU time and memory storage for accurate electromagnetic
simulations: both GSTC-FDTDs with the FDTD grid size
of 10 nm and the conventional FDTD with the FDTD grid
size of 1 nm. As shown in the table, the proposed Drude-
dipsersive GSTC-FDTD simulation requires less CPU time
and memory storage requirement compared to the other two
FDTD simulations.

V. CONCLUSION
In this work, we propose an efficient dispersive GSTC-FDTD
formulation based on the Drude dispersion model. The num-
ber of field variables and operation count is discussed for
the proposed dispersive GSTC-FDTD formulation and the
previous Lorent-based GSTC-FDTD formulation. In addi-
tion, the numerical surface susceptibilities of the proposed
Drude-dispersive GSTC-FDTD algorithm and the conven-
tional Lorentz-dispersive GSTC-FDTD algorithm are derived
to confirm the numerical accuracy. Numerical examples are
employed to demonstrate that the proposed Drude-dispersive
GSTC-FDTD formulation can accurately and effectively ana-
lyze electromagnetic waves interaction with the metasurface.
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