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various forms of approximation operators and their properties by means of soft neighborhoods. In
this paper, we propose the notion of Z-soft rough covering fixed point set
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briefly,Z-SRCFP-set

)
induced by covering soft set. We study the conditions that the family of Z-SRCFP-sets become
lattice structure. For any covering soft set, the Z-SRCFP-set is a complete and distributive lattice,
and at the same time, it is also a double p-algebra. Furthermore, when soft neighborhood forms a
partition of the universe, then Z-SRCFP-set is both a boolean lattice and a double stone algebra.
Some main theoretical results are obtained and investigated with the help of examples.
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1. Introduction

The classical rough set theory introduced by Pawlak in 1982 [31] is an excellent mathematical
tool to handle uncertain, vague or inexact knowledge and has been successfully applied to different
fields like pattern recognition, data mining, machine learning and many others [17, 23, 32]. Rough set
theory is based on equivalence relations which partitions the universe and every block of partition is
an equivalence class. The key concept in rough set theory is the lower and upper approximations and
equivalence relations is used to find such approximations. However, the notion of equivalence relation
and partition is too restricted for many practical applications of real world. Therefore, generalizations
of rough set theory have been introduced by many authors such that tolerance based rough sets,
similarity relation based rough sets, arbitrary binary relation based rough sets, covering based rough
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sets and many others [34, 41].
Covering is an approach to extend any partition and is a more general concept used to deal with the

attribute subset. Covering-based rough sets are more reasonable than classical rough sets for dealing
with the problems of uncertainty, and this theory has obtained a lot of attention and many meaningful
research fruits. In order to establish an applicable mathematical systems for covering-based rough set
and promote its applications in various fields of life, it has been linked with some other theories like
fuzzy set theory, soft set theory, neutrosophic set theory, graph theory and blend of theories [7, 9, 15,
21,22,24,25,44–49,51]. Some important work on fuzzy β-covering and Noise-tolerant fuzzy covering
based multigranulation rough sets, along with applications can be seen it [18–20].

Lattice theory and partial order play an important role in many fields of engineering and computer
science, e.g., they have many applications in distributed computing, that is, vector clocks and
global predicate detection, concurrency theory, occurrence nets and pomsets, programming language
semantics (fixed-point semantics), and data mining. They have also useful in other disciplines of
mathematics such as combinatorics, group theory and number theory. Many authors have combined
the rough set theory and lattice theory, and some useful results have been obtained. Based on the
existing works about the connection of rough sets and lattice theory, Chen et al. [8] used the notion of
covering to define the approximation operators on a completely distributive lattice and set up a unified
framework for generalizations of rough sets.

Molodtsov [29] introduced the notion of soft sets to overthrow the problem of handling multi-
attributes. This theory has been amended in some appearances to tackle many problems [1–3, 30].
A number of utilizations and applications has been established and used regarding multi-attributes
modeling and decision making problems. Shah et al. [36] discussed another approach to roughness of
soft graphs with applications in decision making [14–16, 27, 28, 53]. In [35], Praba et al. defined a
novel rough set called minimal soft rough set by using minimal soft description of the objects. They
also analyzed the relation between modified soft rough set and minimal soft rough set. They proposed a
lattice structure on minimal soft rough sets. Uncertainty measures associated with neighborhood based
soft covering rough graphs such as roughness measure, entropy measure and granularity is proposed
in [40]. Li and Zhu [26] introduced the lattice structures of fixed points of the lower approximations
of two types of covering-based rough sets in which they discussed that under what conditions two
partially ordered sets are some lattice structures. They defined two types of sets called the fixed
point set of neighborhoods and the fixed point set of covering, respectively. Fixed points of covering
upper and lower approximation operators are introduced in [13], in which by using some results about
the Feynman paths, they have shown that the family of all fixed points of covering upper and lower
approximation operators is an atomic frame and a complete lattice, respectively.

Z-soft rough covering models introduced by Zhan et al. [49] are important generalizations of
classical rough set theory to deal with data structure and more complex problems of real world.
Different kinds of uncertainty measures related to Z-soft rough covering sets and their limitations are
presented in [39]. So far, the existing study describes various forms of approximation operators and
their related properties both by means of soft graphs and soft neighborhoods [36, 39, 40, 50, 51].

In this paper, we introduce the notion of Z-soft rough covering fixed point set(
briefly,Z-SRCFP-set

)
induced by covering soft set CU over universe U. The Z-SRCFP-set is

equal to the one induced by the reduction of covering soft set. We discuss the conditions that the
family of Z-SRCFP-sets become lattice structure, which is an important algebraic system and can
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be used in investigating some generalized rough sets. For any two elements of Z-SRCFP-set , the
least upper bound is the join of such two elements and the greatest lower bound is the intersection
of these two elements. Further, the soft neighborhood of any element of the universe set U is the is
a join-irreducible element of Z-SRCFP-set. It is shown that for any covering soft set CU, the Z-
SRCFP-set is a complete and distributive lattice, and at the same time, it is also a double p- algebra.
Furthermore, when soft neighborhood forms a partition of the universe, then Z-SRCFP-set is both a
boolean lattice and a double Stone algebra. In this study, some main theoretical results are obtained
and investigated with the help of examples.

This paper is organized as follows. In Section 2, we review some fundamental and basic knowledge
about rough sets, covering soft sets, Z-soft rough covering models and lattices. In Section 3, we study
under what conditions that the Z-soft rough covering fixed point set of soft neighborhood becomes
some special lattice structures. In Section 4, we study some algebra related Z-soft rough covering fixed
point sets. Finally, we conclude our paper in Section 5.

2. Preliminaries

In this section, some basic ideas related to fixed points, soft sets, rough sets, soft rough sets and
Z-soft rough covering fixed point sets are being recalled which will help us in understanding rest of the
sections. Throughout this paper, U will represent a universe of discourse and E will represent the set
of parameters.

Definition 1. [27] Let E be the set of all parameters and Q ⊆ E. A pair (g,Q) is called a soft set over
the setU of universe, where g : Q→ P (U) is a set valued mapping and P (U) is the power set ofU.

Definition 2. LetU be a non-void set (universe of discourse). A non-empty sub-familyF (F ⊆ P (U))
is called a soft covering ofU if
(i) each element of F is non-empty, that is, for λ (τ) ∈ F , λ (τ) , ∅ for all τ ∈ R.
(ii)

⋃
τ∈R
{λ (τ) : λ (τ) ∈ F } = U, where P (U) is the power set ofU.

In this case, the pair (U, F ) is called soft covering approximation space
(
briefly, SCAS

)
.

Definition 3. [15] Let S = (µ,Q) be a soft set over U. Then, the pair P = (U, S ) is called soft
approximation space. Based on the soft approximation space P = (U, S ), we define the following two
sets

appr
P

(X) =
{
u ∈ U : ∃ ρ ∈ Q,

[
u ∈ µ (ρ) ⊆ X

]}
and

apprP (X) =
{
u ∈ U : ∃ ρ ∈ Q,

[
u ∈ µ (ρ) , µ (ρ) ∩ X , ∅

]}
, where X ⊆ U,

called soft P-lower approximation and soft P-upper approximation of X, respectively.
If apprP (X) = appr

P
(X) , X is said to be soft P-definable; otherwise X is called a soft P-rough set.

Definition 4. Let C be a covering of U. For any X ⊆ U, the sets XLC(X) = {x ∈ U|N(x) ⊆ X} and
XHC(X) = {x ∈ U|N(x) ∩ X , ∅} are called respectively the sixth type of covering lower and upper
approximations of X.

Proposition 1. [55,56] Let C be a covering ofU and ∅ be the empty set. For any X ⊆ U, the following
properties hold:
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(1) XLC(∅) = ∅;
(2) XLC(U) = U;
(3) XLC(X) ⊆ X;
(4) XLC(XLC(X)) = XLC(X);
(5)X ⊆ Y ⇒, XLC(X) ⊆ XLC(Y);
(6)∀K ∈ C, FL(K) = K, XLC(K) = K.

Definition 5. Let (µ,Q) be a full soft set. Then (µ,Q) is called a covering soft set if µ (ρ) , ∅ for all
ρ ∈ Q. In this case (µ,Q) is called a covering soft set overU, denoted by CU. Denote by B = (U,CU)
and call it a soft covering approximation space.

Definition 6. [39] Let B = (U,CU) be a soft covering approximation space and x ∈ U.
(i) C

B
(x) = {µ (ρ) ∈ CU : x ∈ µ (ρ)} is called a soft association of x.

(ii) N
B

(x) = ∩ {µ (ρ) ∈ CU : x ∈ µ (ρ)} = ∩C
B

(x) is called a soft neighborhood of x.

Definition 7. [51] Let B = (U,CU) be a soft covering approximation space. For any X ⊆ U, the soft
covering lower and soft covering upper approximation operators are, respectively, defined as:

ZW (X) = {x ∈ U : N
W

(x) ⊆ X},

ZB (X) = {x ∈ U : N
W

(x) ∩ X , ∅}.

If ZB (X) = ZB (X) , then X is called a Z-soft covering definable set. In opposite case, if ZB (X) =

ZB (X) , then X is called a Z-soft rough covering set.

Definition 8. [39] Let B = (U,CU) and W∗=
(
U,C∗

U

)
be two soft covering approximation spaces

such that
(i) for all β (θ) ∈ C

W
(x) , there exists β∗ (θ) ∈ C

W∗
(x) such that β (θ) ⊆ β∗ (θ);

(ii) for all β∗ (θ) ∈ C
W∗

(x) , there exists β (θ) ∈ C
W

(x) such that β (θ) ⊆ β∗ (θ) .
Then we say CU is finer than C∗

U
and denote it by CU � C∗U.

One can see that ifU is a finite universe and if B = (U,CU) is a soft covering approximation space.
Then (CU,�) is partially ordered.

Definition 9. [4] A relation ρ on a non-empty set X is called a partial order if (i) ρ is reflexive, that
is, xρx, for all x ∈ X, (ii) antisymmetric, that is, xρy and yρx imply x = y, for all x, y ∈ X and (iii)
transitive, that is, xρy and yρz imply xρz, for all x, y, z ∈ X.

Usually, the partially ordered relation is denoted by “ ≤ ”.

Definition 10. [4] A set X with the partial order relation “ ≤ ” is called a partially ordered set or
simply a poset. It is denoted by (X, ≤).

Definition 11. [4] A lattice is a poset (L , ≤) in which any subset {m, n} consisting of two members
has a least upper bound and a greatest lower bound. A lattice L is a complete lattice if ∧S and ∨S are
both in L for all S ⊆ L.

Definition 12. [4] A lattice L is a distributive lattice if for all, m, n ∈ L, we have l ∨ (m ∧ n) =

(l ∨ m) ∧ (l ∨ n) or l ∧ (m ∨ n) = (l ∧ m) ∨ (l ∧ n).
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Definition 13. [4] Let L be a bounded lattice having a least element 0 and a greatest element 1. For
a point m ∈ L, we say that an element n ∈ L is a complement of l if l ∨ m = 1 and l ∧ m = 0. If the
element a has a unique complement, we denote it by lc. A lattice L is a complemented lattice if each
element has a complement and L is a boolean lattice if it is both complemented and distributive lattice.

Definition 14. [4] An element l of a lattice L is called a join-irreducible if l = m ∨ n implies l = m or
l = n for every m, n ∈ L. And J(L) denotes all join-irreducible elements in L.

Definition 15. [4] Let L be a lattice having a least element. An element m∗ is a pseudocomplement of
m ∈ L, if m ∧ m∗ = 0 and for all n ∈ L, m ∧ n = 0 implies n ≤ m∗. A lattice is pseudocomplemented
if every member has a pseudocomplement. If L is a distributive pseudocomplemented, and it satisfies
the Stone identity m∗ ∨ m∗∗ = 1 for all m ∈ L, then L is called a Stone algebra.

Definition 16. [4] Let L be a lattice with a greatest element. An element m+ is a dual
pseudocomplement of m ∈ L, if m ∨ m+ = 1 and for all n ∈ L, m ∨ n = 1 implies m+ ≤ n. A lattice
is dual pseudocomplemented if each element has a dual pseudocomplement. If L is a distributive dual
pseudocomplemented, and it satisfies the dual Stone identity m+ ∧ m++ = 0 for every m ∈ L, then L is
called a dual Stone algebra.

Definition 17. [4] A lattice L is called a double p-algebra if it is pseudocomplemented and dual
pseudocomplemented. A lattice L is called a double Stone algebra if it is a Stone and a dual Stone
algebra.

3. Z-Soft rough covering fixed point sets

The concept of soft neighborhood of an element and Z-soft rough covering sets is introduced by
Zhan et al. [51]. In this section, we propose the concept of soft union reducible elements, soft union
irreducible elements and Z-soft rough covering fixed point sets. Some basic properties are established
and related examples are constructed.

Definition 18. Let B = (U,CU) be a soft covering approximation space, where CU = (σ,P) is a
covering soft set overU. An element σ (ρ) ∈ CU is called soft union reducible if σ (ρi) is the union of
some σ

(
ρ j

)
∈ CU − {σ (ρi)} for i , j. Any other element which is not soft union reducible, is called

soft union irreducible element.

Definition 19. Let B = (U,CU) be a soft covering approximation space, then the set of all soft union
irreducible elements of CU is called soft reduct of CU.

Example 1. Let U = {x1, x2, x3, x4} be a finite universe and let P =
{
ρ1, ρ2, ρ3, σ4

}
be the set of

parameters such that (σ,P) is covering soft set over U, see Table 1 such that σ
(
ρ1

)
= {x1} , σ

(
ρ2

)
=

{x2, x3} , σ (ρ3) = {x1, x2, x3} , σ (ρ4) = {x2, x4} and CU = {σ
(
ρ1

)
, σ

(
ρ2

)
, σ (ρ3) , σ (ρ4)} = {{x1} ,

{x2, x3} , {x1, x2, x3} , {x2, x4}}.
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Table 1. Tabular representation of soft set (σ,P) .
x1 x2 x3 x4

ρ1 1 0 0 0
ρ2 0 1 1 0
ρ3 1 1 1 0
ρ4 0 1 0 1

Clearly, σ (ρ3) = {x1, x2, x3} = σ
(
ρ1

)
∪ σ

(
ρ2

)
, where σ

(
ρ1

)
, σ

(
ρ2

)
∈ CU − {σ (ρ3)} showing that

σ (ρ3) is soft union reducible element in CU. The elements σ
(
ρ1

)
, σ

(
ρ2

)
and σ (ρ4) are soft union

irreducible elements in CU.

Proposition 2. Let B = (U,CU) be a soft covering approximation space. If σ (ρ) is a soft union
reducible element of CU. Then, CU − {σ (ρ)} is still a covering soft set overU.

Proposition 3. Let B = (U,CU) be a soft covering approximation space and σ (ρi) ∈ CU. Let σ (ρi) is
a soft union reducible element of CU and σ

(
ρ j

)
∈ CU − {σ (ρi)}. Then, σ

(
ρ j

)
is a soft union reducible

element of CU if and only if it is a soft union reducible element of CU − {σ (ρi)} for parameters ρi, ρ j.

Proof. Suppose σ
(
ρ j

)
is a soft union reducible element of CU −{σ (ρi) . Then, by definition, σ

(
ρ j

)
can

be expressed as a union of some sets in (CU − {σ (ρi)})− {σ
(
ρ j

)
} = CU − {σ (ρi) , σ

(
ρ j

)
}. It can further

be written as union of sets in CU − {σ
(
ρ j

)
. This implies that σ

(
ρ j

)
is a soft union reducible element

of CU. Conversely suppose that σ
(
ρ j

)
is a soft union reducible element of CU. Then, σ

(
ρ j

)
can be

expressed as a union of some sets in CU − {σ
(
ρ j

)
, say σ (ρ1) , σ (ρ2) , ..., σ (ρn) . It is can be seen that

σ (ρr) ⊂ σ
(
ρ j

)
, r = 1, 2, ..., n. If all the sets among σ (ρ1) , σ (ρ2) , ..., σ (ρn) are not equal to σ (ρi),

then σ
(
ρ j

)
can be expressed as the union of sets σ (ρ1) , σ (ρ2) , ..., σ (ρn) in (CU − {σ (ρi)}) − {σ

(
ρ j

)
}

which shows that σ
(
ρ j

)
is a soft union reducible element of CU − {σ (ρi)}. If some one among σ (ρ1) ,

σ (ρ2) , ..., σ (ρn) is equal to σ (ρi) , say σ (ρ1) = σ (ρi) from that σ (ρi) is soft union reducible element
in CU, there are sets σ (θ1) , σ (θ2) , ..., σ (θm) ∈ CU − {σ (ρi)} such that σ (ρ1) is the union of σ (θ1) ,
σ (θ2) , ..., σ (θm). Because σ (ρ1) ⊂ σ

(
ρ j

)
, σ (θ1) , σ (θ2) , ..., σ (θm) cannot be equal to σ

(
ρ j

)
, so we

have σ
(
ρ j

)
= σ (ρ1) ∪ σ (ρ2)∪, ...,∪σ (ρn) = σ (θ1) ∪ σ (θ2)∪, ...,∪σ (θm) ∪ σ (ρ2)∪, ...,∪σ (ρn) and

σ (θ1) , σ (θ2) , ..., σ (θm) , σ (ρ2) , ..., σ (ρn) are not equal to either σ (ρi) or σ
(
ρ j

)
. It follows that σ

(
ρ j

)
is a soft union reducible element in CU − {σ (ρi)}. �

Definition 20. Let B = (U,CU) be a soft covering approximation space. Then, the set S f ix (CU) =

{X ∈ P (U) : ZB (X) = X} is called Z-soft rough covering fixed point set
(
brieflyZ-SRCFP-set

)
induced by covering CU.

Example 2. Let U = {x1, x2, x3, x4} be a finite universe and let P =
{
ρ1, ρ2, ρ3, ρ4

}
be the set of

parameters such that (σ,P) is covering soft set over U, see Table 2 and σ
(
ρ1

)
= {x1, x2} , σ

(
ρ2

)
=

{x1, x2, x3} , σ (ρ3) = {x3} , σ (ρ4) = U.
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Table 2. Tabular representation of soft set (σ,P) .
x1 x2 x3 x4

θ1 1 1 0 0
θ2 1 1 1 0
θ3 0 0 1 0
θ4 1 1 1 1

Let B = (U,CU) be a soft covering approximation space with CU = {{x1, x2} ,

{x1, x2, x3} , {x3} , {x1, x2, x3, x4}}. Then, for x ∈ U we have N
B

(x) = ∩{σ (ρ) ∈ CU : x ∈ σ (ρ)}.
That is, shows N

B
(x1) = {x1, x2} = N

W
(x2) , N

B
(x3) = {x3} ,NB

(x4) = U. Let X = {x1, x2} ⊆ U,

then ZB (X) = {x ∈ U : N
W

(x) ⊆ X} = {x1, x2} = X. In this case, X is a member of Z-soft covering
rough fixed point set induced by covering CU. Similarly, when X = {x1, x2, x3} then ZB (X) = X,
showing that X ∈ S f ix (CU) and Soft Reduct= {{x1, x2} , {x3} , {x1, x2, x3, x4}}. One can easily verify that
ZRedUctB (X) = X. Thus, ZRedUctB (X) = ZB (X)

The following proposition shows that the Z-soft rough covering fixed point set induced by any
covering soft set overU is equal to the one induced by the reduction of the covering soft set.

Proposition 4. Suppose CU is a covering soft set overU, then S f ix (CU) = S(Reduct f ix) (CU).

Proof. By definition, S f ix (CU) = {X ∈ P (U) : ZB (X) = X} and S(RedUct f ix) (CU) = {X ∈ P (U) :
ZReductB (X) = X}. But according to Proposition 1, ZReductB (X) = ZB (X) for any X ∈ P (U) . Thus,
S f ix (CU) = S(Reduct f ix) (CU) . �

For any covering CU of U, the Z-soft rough covering fixed point set induced by any covering soft
set overU together with the set inclusion,

(
S f ix (CU) ,⊆

)
, is a partially ordered set.

The following proposition presents an equivalent characterization of the element of the Z-soft rough
covering fixed point set.

Proposition 5. For any subset X ofU, X ∈ S f ix (CU) if and only if
⋃
x∈X

N
B

(x) = X.

Proof. Suppose X ∈ S f ix (CU) = {X ∈ P (U) : ZB (X) = X}. Then ZB (X) = X. That is, ZB (X) = {x ∈
U : N

B
(x) ⊆ X} = X. As N

B
(x) ⊆ X for all x ∈ X. So

⋃
x∈X

N
B

(x) ⊆ X. Also, x ∈ N
B

(x) then X ⊆
⋃
x∈X

N
B
.

Therefore,
⋃
x∈X

N
B

(x) = X. Conversely, suppose that
⋃
x∈X

N
B

(x) = X. Then clearly
⋃
x∈X

N
B

(x) ⊆ X for all

x ∈ X. For any element y < X, y ∈ N
B
(y) * X. Hence S f ix (CU) = {x ∈ U|N

B
(x) ⊆ X} = X, That is,

X ∈ S f ix (CU). �

Since,
(
S f ix (CU) ,⊆

)
, is a partially ordered set, so we consider that whether this partially ordered

set is a lattice or not. In the following, we will investigate lattice structures of the partially ordered set(
S f ix (CU) ,⊆

)
.

Proposition 6. Suppose, X, Y ∈ S f ix (CU). Then,
(
S f ix (CU) ,⊆

)
is a lattice, where X ∨ Y = X ∪ Y and

X ∧ Y = X ∩ Y.

AIMS Mathematics Volume 7, Issue 7, 13278–13291.
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Proof. Suppose, X, Y ∈ S f ix (CU), if X ∪ Y < S f ix (CU), then there exists x ∈ X ∪ Y such that N
B

(x) *
X ∪ Y. Since x ∈ X ∪ Y , so x ∈ X or x ∈ Y . Hence N

B
(x) * X or N

B
(x) * Y , which is contradictory

with the fact X, Y ∈ S f ix (CU). Therefore, X ∪ Y ∈ X, Y ∈ S f ix (CU). Now for any X, Y ∈ S f ix (CU), if
X ∩ Y < S f ix (CU) , then there exists y ∈ X ∩ Y such that N

B
(x) * X ∩ Y . Since x ∈ X ∩ Y so x ∈ X and

x ∈ Y . Hence there exist three cases as follows:
(1) N

B
(y) * X and N

B
(y) * Y ,

(2) N
B
(y) * X and N

B
(y) ⊆ Y,

(3) N
B
(y) ⊆ X and N

B
(y) * Y . But all these three cases are contradictory with the fact that X,

Y ∈ S f ix (CU). Therefore, X ∩ Y ∈ S f ix (CU) .Thus,
(
S f ix (CU) ,⊆

)
is lattice. �

Remark 1. In above Proposition, ∅ and U are the least and greatest elements of
(
S f ix (CU) ,⊆

)
,

respectively. Therefore,
(
S f ix (CU) ,⊆

)
is a bounded lattice.

The following proposition shows that the neighborhood of any element of the universe belongs to
the Z-soft rough covering fixed point set.

Proposition 7. Let CU is a covering soft set overU. Then, for all x ∈ U, N
B
(x) ∈ S f ix (CU).

Proof. For any y ∈ N
B
(x), we have N

B
(y) ⊆ N

B
(x), which implies y ∈ {z ∈ U : N

B
(z) ⊆ N

B
(x)} =

ZB (X). Hence N
B
(x) ⊆ ZB (X). But by Proposition 1, ZB (X) ⊆ N

B
(x). Thus, ZB (X) = N

B
(x), i.e.,

N
B
(x) ∈ S f ix (CU). �

The following proposition points out that the neighborhood of any element of the universe is a
join-irreducible element of the Z-soft covering rough fixed point set.

Proposition 8. Let CU is a covering soft set overU. Then, for any x ∈ U, N
B
(x) is a join-irreducible

element of the lattice
(
S f ix (CU) ,⊆

)
.

Proof. Suppose there exist X,Y ∈ S f ix (CU) such that N
B
(x) = X ∪ Y . Since x ∈ N(x), x ∈ X ∪ Y .

Therefore, x ∈ X or x ∈ Y. Furthermore, as X,Y ∈ S f ix (CU), then N
B
(x) ⊆ X ⊆ X ∪ Y = N

B
(x) or

N
B
(x) ⊆ Y ⊆ X ∪ Y = N

B
(x) Therefore, N

B
(x) = X or N

B
(x) = Y . Thus N

B
(x) is a join-irreducible

element of the lattice S f ix (CU) , for every x ∈ U. �

We have already shown that the set
(
S f ix (CU) ,⊆

)
is a lattice, where X,Y ∈ S f ix (CU) with X ∨ Y =

X ∪ Y and X ∧ Y = X ∩ Y . Now in the following we show that
(
S f ix (CU) ,⊆

)
, is a complete lattice.

Proposition 9. Suppose CU is a covering soft set over U and X, Y ∈ S f ix (CU). Then,
(
S f ix (CU) ,⊆

)
is a complete lattice.

Proof. Let G ⊆ ∪G, we need to prove that ∩G ∈ S f ix (CU) and ∪G ∈ S f ix (CU). If ∩G < S f ix (CU),
then there exists t ∈ ∩G such that N

B
(t)  ∩G, that is, there are two index sets I and J with I, J

⊆ {1, 2,···, |G|} with I ∩ J = ∅ and |I ∪ J| = |G| such that N
B
(t)  Xi and N

B
(t) ⊆ X j for any i ∈ I, j ∈ J,

where Xi, X j ∈ G. This is contradictory with the fact that the sets Xi(i ∈ I), X j( j ∈ J) ∈ S f ix (CU).
Hence ∩G ∈ S f ix (CU).

If ∪G < S f ix (CU), then there exists p ∈ ∪G such that N
B
(p)  ∪G, that is, there exists X ∈ G

such that p ∈ X and N(p) ∗ X, which is contradictory with the fact that X ∈ S f ix (CU). Hence ∪G ∈
S f ix (CU) . �
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The following proposition shows that the Z-soft rough covering fixed point set induced by any
covering soft set overU is a distributive lattice.

Proposition 10. Let CU is a covering soft set overU. Then,
(
S f ix (CU) ,⊆

)
is a distributive lattice.

Proof. Suppose X, Y and Z ∈ S f ix (CU) where X, Y, Z ⊆ U. It can easily be seen that X ∪ (Y ∩ Z)
= (X ∪ Y) ∩ (X ∪ Z), and X ∩ (Y ∪ Z) = (X ∩ Y) ∪ (X ∩ Z) showing that

(
S f ix (CU) ,⊆

)
is a distributive

lattice. �

4. Some algebra related to Z-soft rough covering fixed point sets

In the following, we show that Z-soft rough covering fixed point set (Z-SRCFP-set) induced by
any covering soft set CU over U is both a pseudocomplemented and a dual pseudocomplemented
lattice. That is to say any element of Z-soft rough covering fixed point of neighborhoods has
a pseudocomplement and a dual pseudocomplement. For any element, its pseudocomplement is
the lower approximation of its complement and dual pseudocomplement is the union of all the
neighborhood of its complement. We also discuss some algebras connected with (Z-SRCFP-set).

Proposition 11. Let CU is a covering soft set overU. Then,
(i) S f ix (CU) is a pseudocomplemented lattice, and X∗ = ZB (∼ X) for any X ∈ S f ix (CU);
(ii) S f ix (CU) is a dual pseudocomplemented lattice, and X+ = ∪x∈∼XN

B
(x) for any X ∈ S f ix (CU) ,where

∼ X is the complement of X inU.

Proof. (i) Suppose X ∈ S f ix (CU), then by Proposition 1, we have ZB
(
ZB (∼ X)

)
= ZB (∼ X),

showing that ZB (∼ X) ∈ S f ix (CU) . According to Proposition 1, ZB
(
ZB (∼ X)

)
⊆ ZB (∼ X) . Hence

X ∩
(
ZB (∼ X)

)
= ∅. Now suppose for any Y ∈ S f ix (CU), if X ∩ Y = ∅, then Y ⊆∼ X. According to

Proposition 1, Y = ZB(Y) ⊆ ZB(∼ X). Therefore, we have X∗ = ZB (∼ X) for any X ∈ S f ix (CU); that is,
S f ix (CU) is a pseudocomplemented lattice.
(ii) First, we prove ∪x∈∼XN

B
(x) ∈ S f ix (CU) for any X ∈ S f ix (CU). For any y ∈ ∪x∈∼XN

B
(x), there

exists z ∈∼ X such that y ∈ ZB(z). Thus N
B
(y) ⊆ N

B
(z), i.e.,N

B
(y) ⊆ ∪x∈∼XN

B
(x). Therefore, y ∈

ZB(∪x∈∼XN
B
(x)), that is, ∪x∈∼XN

B
(x) ⊆ ZB(∪x∈∼XN

B
(x)). According to Proposition 1, ZB(∪x∈∼XN

B
(x)) ⊆

(∪x∈∼XN
B
(x)). Consequently, ZB(∪x∈∼XN

B
(x)) = ∪x∈∼XN

B
(x), that is, ∪x∈∼XN

B
(x) ∈ S f ix (CU). It is

straightforward that X ∪ (∪x∈∼XN
B
(x)) = U. Secondly, we need to prove that for any Y ∈ S f ix (CU), if

X ∪ Y = U, then ∪x∈∼XN
B
(x) ⊆ Y . Then we have the following two cases to prove it.

Case 1. If ∪x∈∼XN
B
(x) = ∼ X, then ∪x∈∼XN

B
(x) ⊆ Y .

Case 2. If ∼ X ⊂ ∪x∈∼XN
B
(x), then ∼ X ⊂ Y . Suppose Y ⊂ ∪x∈∼XN

B
(x), then there exists y ∈ ∪x∈∼XN

B
(x)

such that y < Y , so y <∼ X, which implies there exists z ∈∼ X, such that y ∈ N
B
(z). Since ∼ X ⊂ Y,

z ∈ Y . So N
B
(z)  Y, that is, z < ZB(Y). In other words, ZB(Y) , Y , which is contradictory with

Y ∈ S f ix (CU). Hence ∪x∈∼XN
B
(x) ⊆ Y . Consequently, X+ = ∪x∈∼XN

B
(x) for any X ∈ S f ix (CU), that is,

S f ix (CU) is a dual pseudocomplemented lattice. �

Thus, we have seen that Z-soft rough covering fixed point set of neighborhoods induced by any
covering soft set over U is both a pseudocomplemented and a dual pseudocomplemented lattice.
Moreover, according to Definition17, it is obvious that S f ix (CU) is a double p-algebra.

Remark 2. Generally, the Z-soft rough covering fixed point set of neighborhoods neither a Stone
algebra nor a dual Stone algebra.
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Example 3. Let U = {1, 2, 3, 4} be a finite universe and let P =
{
ρ1, ρ2, ρ3, ρ4

}
be the set of

parameters such that (σ,P) is covering soft set over U, see Table 3 and σ
(
ρ1

)
= {x1, x2, x3} ,

σ
(
ρ2

)
= {x1} , σ (ρ3) = {x1, x3, x4} , σ (ρ4) = {x2, x3} .

Table 3. Tabular representation of soft set (σ,P) .
x1 x2 x3 x4

θ1 1 1 1 0
θ2 1 0 0 0
θ3 1 0 1 1
θ4 0 1 1 0

Let B = (U,CU) be a soft covering approximation space with CU =

{{x1, x2, x3} , {x1} , {x1, x3, x4} , {x2, x3}}. Then, for x ∈ U we have N
B

(x) = ∩{σ (ρ) ∈ CU : x ∈ σ (ρ)}.
Then N

B
(x1) = {x1}, N

B
(x2) = {x2, x3}, N

B
(x3) = {x3}, N

B
(x4) = {x1, x3, x4}. If X = {x2, x3}, then X∗

= ZB(∼ X) = {x1}, X∗∗ = ZB((∼ X∗)) = {x2, x3}, that is., X∗ ∪ X∗∗ , U. Therefore, S f ix (CU) is not
a Stone algebra. Similarly, X+ = ∪x∈∼XN

B
(x) = {x1, x3, x4} , X++ = ∪x∈∼X+ N

B
(y) = {x2, x3} , that is,

X+ ∩ X++ , ∅. Thus,S f ix (CU) is not a dual Stone algebra.

According to Example 3, the fixed point set of neighborhoods induced by any covering is not always
a double Stone algebra. In the following, we study under what conditions that the fixed point set of
neighborhoods induced by a covering is a boolean lattice and a double Stone algebra, respectively.

Proposition 12. If {N
B
(x) : x ∈ U} is a partition ofU, then S f ix (CU) is a boolean lattice.

Proof. According to Proposition 10, S f ix (CU) is a distributive lattice. Furthermore, S f ix (CU) is a
bounded lattice. In the following,we need to prove only that S f ix (CU) is a complemented lattice. In
other words, we need to prove that ∼ X ∈ S f ix (CU) for any X ∈ S f ix (CU). If ∼ X < S f ix (CU), that is,
∪x∈∼XN

B
(x) ,∼ X, then there exists y ∈ ∪x∈∼XN

B
(x) such that y <∼ X. Since y ∈ ∪x∈∼XN

B
(x), then there

exists z ∈∼ X such that y ∈ N
B
(z). Since {N(x)|x ∈ U} is a partition ofU, z ∈ N

B
(y). Therefore, N

B
(y)  

X, that is., ∪x∈∼XN
B
(x) , X, which is contradictory with X ∈ S f ix (CU). Hence, ∼ X ∈ S f ix (CU) for any

X ∈ S f ix (CU), showing that S f ix (CU) is a complemented lattice. Consequently, S f ix (CU) is a boolean
lattice. �

Proposition 13. If {N
B
(x)|x ∈ U} is a partition ofU, then S f ix (CU) is a double Stone algebra.

Proof. For any X ∈ S f ix (CU), we prove X∗ =∼ X = X+. Suppose for any y ∈∼ X there exists z ∈ X
such that z ∈ N

B
(y), that is, N

B
(y)  ∼ X. Since {N

B
(x)|x ∈ U} is a partition of U, then y ∈ N

B
(z), that

is, N
B
(z)  X. So z < ZB(X), which is contradictory with X ∈ S f ix (CU). Hence N

B
(y) ⊆∼ X. Then

y ∈ ZB(∼ X) and ∪x∈∼XN
B
(x) ⊆∼ X, that is, ∼ X ⊆ ZB(Xc). According to Proposition 3, ZB(∼ X) ⊆∼ X.

It is straightforward that ∼ X ⊆ ∪x∈∼XN
B
(x). Consequently, X∗ = ZB(∼ X) =∼ X = ∪x∈∼XN

B
(x) = X+.

Since ZB(∼ X) =∼ X, then ∼ X ∈ S f ix (CU). Similarly, we can prove that X∗∗ =∼∼ X = X = X++.
Therefore, X∗ ∪ X∗∗ = U, X+ ∩ X++ = ∅, showing that S f ix (CU) is both a Stone and a dual Stone
algebra. Consequently, S f ix (CU) is a double Stone algebra. �

According to Propositions 12 and 13, the the Z-soft rough covering fixed point set of soft
neighborhoods is both a boolean lattice and a double Stone algebra when the soft neighborhoods forms
a partition of the universeU.
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5. Conclusions

In our present paper, we introduce a new kind of partial order with the help of Z-soft rough covering
fixed point sets

(
briefly,Z-SRCFP- set

)
denoted by S f ix (CU) which is based on soft covering lower

approximation operators ZB (X). Z-soft rough covering fixed point set is also Z-soft rough covering
fixed point set of soft neighborhoods. It is shown that S f ix (CU) is a lattice where the least upper
bound of any two elements of the Z-soft rough covering fixed point set of soft neighborhoods is the
join of these two elements and the greatest lower bound is the intersection of these two elements.
For any covering soft set CU over U, we prove that the Z-Soft rough covering fixed point set of soft
neighborhoods is both a complete and a distributive lattice. It is also a double p-algebra. Especially,
when the soft neighborhoods form a partition of the universe, the Z-soft rough covering fixed point set
of soft neighborhoods is both a boolean lattice and a double Stone algebra.
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