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ABSTRACT This paper presents robust positioning methods that use range measurements to estimate
location parameters. The existing maximum correntropy criterion-based localization algorithm uses only the
l2 norm minimization. Therefore, the localization performance may not be satisfying because the l2 norm
minimization is vulnerable to the large error. Therefore, we propose the convex combination of l1 and l2 norm
because the l1 norm minimization is effective in the large noise condition. The mixed-norm maximum
Versoria criterion-based unscented Kalman filter, mixed-norm least lncosh unscented Kalman filter, mixed-
norm maximum Versoria criterion iterative reweighted least-squares, mixed-norm least lncosh iterative
reweighted least squares and closed-form localization approaches are proposed for mixed line-of-sight/
non-line-of-sight environments. The proposed mixed-norm unscented Kalman filter-based algorithms are
more superior to the other methods as the line-of-sight noise level increases by the use of the convex
combination of l1 norm and l2 norm. The iterative reweighted least sqaures-based methods employ a weight
matrix. The closed-formweighted least squares algorithm has an advantage that its computational complexity
is lower than that of other methods. Simulation and experiments illustrate the localization accuracies of the
proposed unscented Kalman filter-based methods are found to be superior to those of the other algorithms
under large noise level conditions.

INDEX TERMS Digital signal processing, distributed information systems, filtering theory, indoor
navigation, iterative algorithms, location awareness, mobile communication, parameter estimation, radio
navigation, robustness.

I. INTRODUCTION
In emitter positioning, the coordinates of the source are
predicted by utilizing the measurements of each sensor,
which include the time difference of arrival, time of arrival
(TOA), received signal strength, and angle of arrival. Point
target positioning is crucial in various research areas such
as mobile communications, telecommunications, radar and
sonar. Blocking or obstruction does not exist in line-of-sight
(LOS) situations. However, the LOS path between the source
and sensors may be obstructed in indoor and urban settings.
An outlier is defined as data that significantly differs from
other most clustered observations. When an outlier exists in
TOA localization, the time delay may be significantly larger
than the actual delay owing to the positively biasedmultipath;
thus, the localization performance can be severely degraded
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when using this false time delay. The goal of this study
is to provide a method for estimating location parameters
robustly against the outlier-contaminated non-LOS (NLOS)
noise.

A. RELATED WORK
Substantial studies have been conducted on localization
problems under LOS conditions [1]–[6]. However, despite
recent studies on positioning in NLOS environments, there
are relatively few investigations for the localization in
the NLOS environments. Location estimation under NLOS
conditions has been researched; for example, 1) mathematical
optimization [7]–[11], 2) robust statistics [12]–[18], 3) LOS
andNLOS sensor identification [19]–[21] and 4) robust adap-
tive filter, extendedKalman filter (EKF) or unscentedKalman
filter (UKF) [22]–[28]. The localization algorithm using
multiple heterogeneous devices has been proposed [29].
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This method makes more realistic assumption that users
have different kinds of devices. The positioning algorithm
employing the compartment model is proposed [30]. The
computational complexity is low because mini-batch singular
value decomposition method is used. However, it requires
the training-step and noise statistics. They should be adapted
again when the environment is changed. Also, the divergence
problem may exist because it is an iteration-based algorithm.
Furthermore, the target detection algorithm is just suboptimal
because it is not based on the likelihood-ratio testing. Also,
the positioning algorithm in which Huber M estimation and
particle filter are combined is investigated [31]. However, the
computational complexity would be intensive because they
use the particle filtering. In [32], the self-training procedure
based localization has been proposed where the requirement
of labeled data is avoided and the self-training procedure
does not need to train additional learners. The localization
and synchronization (LAS) techniques are developed using
the doppler and TOA measurements [33]. The LAS problem
is formulated as a maximum likelihood (ML) problem and
the optimal solution is calculated iteratively. The localization
methods in which received signal strength (RSS) and TOA
measurements are fused are developed [34]–[36] to overcome
mixed LOS/NLOS problems. However, the accuracy of
RSS-based systems is known to be inferior to the other
positioning methods such as time delay techniques. Also,
the channel parameters such as transmitted signal power
and pathloss exponent cannot be obtained conveniently. The
distribution of the path length (i.e., absolute time delay)
of the first-arriving multipath component (MPC) is derived.
This result is then used to attain the NLOS bias distribution.
This distribution is shown to match well with previously
assumed gamma and exponential NLOS bias models [37].
The Kalman filter has been widely used in localization and
tracking, but its positioning performance is severely degraded
in the presence of outliers. The Kalman filter is employed
twice for mitigating the NLOS error and estimating the
location and the identification step is incorporated into the
algorithm to overcome the weakness of Kalman filter in
NLOS contaminated situation [38]. Recently, the maximum
correntropy criterion (MCC) has receivedwide attention as an
outlier-resistant technique [22], [23]. Robust Kalman filters,
such as MCC-EKF and MCC-UKF, demonstrate superior
performance to those of the conventional Kalman and UKFs
under mixed LOS/NLOS conditions [22], [23]. However,
the performance of the MCC-based algorithm is unstable
and may diverge when a small kernel bandwidth is selected
because the exponential Gaussian kernel function is used.
Meanwhile, the MVC-based robust algorithm is not suscep-
tible to the weakness of the MCC-based method [39]–[41].
Accordingly, authors consider the MVC-based algorithm
for attenuating the adverse effects caused by NLOS mea-
surements. Specifically, the performance of MVC-based
robust algorithms can be improved at a large noise level by
exploiting a convex combination of the Versoria functions
with l1 and l2 norms.

The reason why the convex combination of Versoria
functions is employed as the cost function is as follows:
The l1 norm minimization is robust to large amplitude
noise or anomalies compared to the l2 norm minimization
[42], [43]. In general, when the heavy-tailed noise does
not exist or noise level is relatively low, the l2 norm
minimization method provides less misadjustment than
l1 norm minimization [42], [43]. With each advantage of the
l1 norm and l2 norm, the enhancement of estimation per-
formance is expected in the low signal-to-noise ratio (SNR)
regimes where the spurious peaks and impulsive noise occur
more frequently, preserving efficiency in the small noise
conditions. This mixed-norm minimization can be observed
in widely used robust algorithms, such as the M estimator,
where the l2 loss is minimized when the residual is small
and l1 loss is minimized when the residual is large [44]–[46].
The Versoria function has the heavier tail than that of the
Student’s t distribution with three degrees of freedom. The
tail of the Versoria function becomes thicker with the increase
of the diameter [45], [46]. Therefore, the Versoria function
is suitable for representing heavy-tailed data. The Versoria
cost function decreases as the magnitude of error is larger
and the solution is determined such that the squared error
is minimized. The lncosh cost function increases as the
magnitude of error is larger and the solution is determined
such that the magnitude of error is minimized. The mixed-
normVersoria function is displayed in Fig. 1(a). Furthermore,
the llncosh algorithm behaves like a hybrid of the l1 and
l2 norm minimization methods; its cost function is shown in
Fig. 1(b). However, the llncosh algorithm utilizes the least
mean squares (LMS) or affine projection LMS method to
minimize the cost function. Therefore, although the computa-
tional burden may be low, the convergence rate may be slow
and the misadjustment is relatively large compared to other
optimal statistical algorithms. Hence, the iterative reweighted
least-squares (IRLS) method is used to improve the accuracy
of the LMS-based llncosh methods by introducing a weight
matrix. The weight matrix is constructed as the inverse of
the noise variance; however, the transformed observation
variance of the NLOS sensor is generally unknown because
the noise variance of an NLOS transformed measurement
depends on the unknown measurement bias and NLOS
noise variance. To circumvent this problem, the variance of
the NLOS transformed observation is estimated using the
squared residual between the transformed observation and
least median of squares (LMedS) estimate of transformed
range. This noise variance estimation algorithm was devel-
oped inspired by the existing residual weighting (RWGH)
method [47]. The weight is smaller as the noise variance
increases and vice versa. Meanwhile, as in various existing
studies, we assume that the noise variance of the LOS
observation (inlier) is known a priori. The aforementioned
localization methods are iteration-based algorithms. They
require an initial guess solution and may diverge in some
adverse situations. Therefore, the closed-form localization
method is developed, where the LMedS solution is used to
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FIGURE 1. Cost function as a function of error for different σ

(a) Mixed-norm Versoria function (α: mixing constant=0.8, σ : kernel
bandwidth) (b) Mixed-norm lncosh function (α =0.8).

construct the weight matrix based on the RWGHmethod [47]
and the final solution is obtained using the well-known two-
step weighted least squares (WLS) method [2].

B. CONTRIBUTIONS
The main contributions can be summarized as follows:
• Robust UKF localization methods are developed, where
the l1/l2 mixed-normMVC is adopted for estimating the
location parameter. Note that the mixed-norm MVC has
not yet been investigated in the existing literatures.

• The mixed-norm MVC IRLS and llncosh IRLS
(LLIRLS)-based methods are developed, for which the
weight matrix is adopted. In general, Versoria function
maximization is performed via the LMS or affine
projection LMS method without the weight matrix. The
estimation performance of the LMS-based methods is
improved by using a weight matrix. To the best of
authors’ knowledge, our study using the weight matrix
in the MVC is the first case.

• The approximate variance of the NLOS transformed
observation is obtained via the squared residual. The
LMedS solution is obtained in advance and the variance
is approximated as the squared residual.With this weight
matrix, IRLS and closed-form solutions are obtained.

The l2 norm minimization is weak to the environment
in which the noise level is large or heavy-tailed noise
exists. Meanwhile, the l1 normminimization is robust against
the spurious peaks and impulsive noise which occur more
frequently as the noise level increases. Therefore, the mixed-
norm (combination of the l1/l2 norm) strategy is more
effective. Namely, themixed-norm algorithm is advantageous
in the large noise level or heavy-tailed noise condition.
However, the disadvantage of the mixed-norm UKF-based
algorithms is that it has a heavy computational complexity
and requires the appropriate selection of mixing constant.
Also, the IRLS-based methods have advantage in the low
noise condition because it has been designed ignoring the
second-order noise term. Furthermore, the computational
burden of the closed-form WLS method is lower than those
of other algorithms, thus it may be utilized in real-time
scenarios. The MVC and llncosh rules have been studied in
existing literature [24], [39]–[41]. However, to the best of
our knowledge, mixed-norm MVC and mixed-norm llncosh
methods have not yet been investigated in the existing
literature.

C. ORGANIZATION
This paper is organized as follows. Section II addresses the
mixed LOS/NLOS location estimation problem. Section III
briefly introduces existing methods. Section IV describes the
proposed robust localizationmethods, that is, themixed-norm
MVC UKF, mixed-norm llncosh UKF (LLUKF), mixed-
norm MVC IRLS, mixed-norm LLIRLS and closed-form
methods. Sections V and VI evaluate the root mean
square error (RMSE) performance based on the simulation
and experimental results. Finally, Section VII presents the
conclusions. In addition, notations used in this paper are
described for readability in the Table 1.

II. PROBLEM FORMULATION
The objective of the range-based emitter localization method
is to accurately predict the location of a point-target using
range measurements, to minimize the error criterion, i.e., the
MSE, the sum of the squared error or the mean absolute
error. The measurement equation in the context of the
source positioning under mixed LOS/NLOS conditions is
represented as

ri = di + ni =
√
(q1 − xi)2 + (q2 − yi)2 + ni, (1)

where ni is distributed by N(0, σ 2
1 )1{ri ∈ L}+ N(µ2, σ

2
2 )

1{ri ∈ Lc}, i = 1, 2, . . . ,M with M denoting the total
number of sensors, L is the sensor set which is in the LOS
state and Lc is the NLOS sensor set, respectively [48]–[51].
Additionally, 1{·} is an indicator function. The indicator
function represents a random variable for an event that
equals 1 when the event occurs and zero when the event
does not occur. The measurement error ni is a random
variable that follows a Gaussian distribution with N (0,σ 2

1 )
when the corresponding sensor belongs to the LOS sensor
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TABLE 1. Notation description.

set (L), whereas follows N (µ2,σ 2
2 ) when it belongs to

the NLOS set (Lc). In general, whether the sensor is in
the LOS or NLOS state cannot be known a priori in
most cases; thus, the state of the sensor is predicted via
statistical testing [52]. In addition, the mean and variance
of the outlier distribution cannot be obtained. Furthermore,
[q1, q2]

T represents the unknown emitter coordinates and
[xi, yi]

T represents the known coordinates of the ith receiver.
Moreover, ri is the distance observation between the point
emitter and the ith sensor and di is the true range between
the emitter and the ith receiver. Squaring (1) and rearranging
yield the following equation:

xiq1+yiq2−0.5q3+mi=0.5(xi
2
+yi

2
−r2i ), i=1, 2, . . . ,M,

(2)

where q3 = q21 + q
2
2,mi = −dini −

1
2n

2
i . By representing (2)

in a matrix form, we obtain the following

Aq+m = b, (3)

where m = [m1, · · · ,mM]T, q = [q1, q2, q3]
T,

A =

 x1 y1 −0.5
...

...
...

xM yM −0.5

 ,
and b = [b1, · · · , bM ]T =

1
2

 x21 + y
2
1 − r

2
1

...

x2M + y
2
M − r

2
M

 .
It should be noted that the proposed algorithms utilize a single
sample different from the previous study of the authors [41],
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[53]; its computational complexitymay be lower than those of
multiple measurement-based methods. In this study, a vector
and a matrix are denoted by a lowercase and an uppercase
boldface letters, respectively, and the operator [·]T denotes a
vector/matrix transpose.
Remark 1: Recently, the Kalman filter approach for esti-

mating simultaneously the source location and measurement
bias has been investigated, but the accuracy is not satisfactory.
In addition, the measurement bias is regarded as a constant
in this study, not through the entire period but for estimation
interval. Namely, the measurement bias may be different for
each estimation period.

III. PRELIMINARIES
Adaptive filters with the MVC and llncosh criterion have
been employed in the presence of outliers [24], [39], [40].
In addition, the Kalman filter with the MVC has been
proposed in the context of multiple observations [34]. The
rationale of adaptive filter and Kalman filtering exploiting the
MVC is to employ the Versoria function, where the Versoria
function decreases as the magnitude of the residual increases
and vice versa. The essence of the llncosh-based adaptive
filter and Kalman filtering is to minimize the lncosh function,
where the lncosh function decreases as the magnitude of
the residual decreases and vice versa. The standard Kalman
filter cannot be directly used because the range observation
in the TOA-based localization is nonlinear with respect to
the parameter to be estimated. Therefore, nonlinear Kalman
filters, such as the EKF or UKF, must be exploited. The
MCC-based and MVC-based EKF and UKF have been
investigated in previous studies [22], [23], [41]. However,
mixed-norm MVC-based UKF has not been investigated.
Hence, the mixed-norm MVC-based UKF is considered in
this study. The LMedS estimator has been used as the
robust estimation method. Because the accuracy of LMedS
algorithm is inferior to the other robust methods, it is used
to obtain the initial estimate of more complex and accurate
robust algorithms.

A. LMedS ESTIMATOR [12]–[14]
The LMedS method estimates the location parameters by
solving the following:

min medi e2i , i = 1, · · · ,K (4)

where e2i is the squared residual, K =
(M
p

)
(binomial

coefficient) and p denotes the number of elements of
the subset, respectively. The LMedS algorithm is used to
determine the initial point of the follow-up robust localization
method.

B. VERSORIA FUNCTION
The original Versoria function is represented as follows
[39], [40]:

V (ei) =
D3

D2 + e2i
=

2a

1+ τe2i
(5)

where ei is the residual defined as ei = ri − d̂i, d̂i is the
range estimate of the ith sensor,D = 2a is the diameter of the
generating adjoined circle of the Versoria function and τ =
(1/2a)2 is the Versoria shape parameter. The following loss
function is employed to obtain a robust solution [39]–[41]:

V (ei) =
σi

1+ ( ei
σi
)2
∝

1
1+ ( ei

σi
)2
, i = 1, · · · ,M . (6)

Note that the l2 norm in the denominator of the Versoria func-
tion (V (ei)). The estimation accuracy of l2 normminimization
is severely degraded under large noise conditions, where
spurious peaks and impulsive noise occur more frequently.
Therefore, the conventional Versoria function should be
modified by employing the convex combination of l1 and l2
Versoria functions.

C. EXISTING MVC UKF [23], [41], [54]
The UKF algorithm can be used in the highly nonlinear
and non-differentiable systems, improving the estimation
accuracy. The unscented transform is adopted in the Kalman
filter recursion and this is known as the UKF [55], [56]. The
state and measurement models exploited in this study are
represented as follows:

qk = qk−1 (7)

rk = h(qk )+ nk (8)

where qk is the state vector in the kth time step, h(·)
is the nonlinear Euclidean distance function and nk =
[n1,k · · · nM ,k ]T is the observation noise vector in the kth time
step. Unless otherwise stated, (7) and (8) are used as the state
and measurement equations throughout the remainder of the
paper. The existingMVCUKF employs the Versoria function
instead of the Gaussian kernel function of theMCCUKF. The
existing MVC UKF is summarized in Algorithm 1.

IV. PROPOSED ROBUST ALGORITHMS
In this section, the proposed robust algorithms are pre-
sented. The l1 norm minimization is more effective than
l2 norm minimization when outliers exist. Meanwhile, the
l2 minimization is better than the l1 norm minimization
in the LOS situation. Therefore, the estimation perfor-
mance of the proposed methods would be degraded when
the l1 norm minimization is overly emphasized in the
lightly outlier-contaminated environment or LOS situation.
Accordingly, the proposed methods utilize the appropriate
combination of l1/l2 norm minimization to tackle the heavy-
tailed noise. Also, the weight is employed in the IRLS-based
methods and closed-form algorithm to outperform non-
weighted algorithms. The weight is larger as the noise
variance is smaller and vice versa.

A. THE MIXED NORM-BASED MVC UKF
The l1/l2 mixed-norm-based MVC UKF is investigated to
improve the accuracy of l2 norm-based MVC UKF in the
large noise level. The mixed norm-based MVC UKF is
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Algorithm 1 Existing MVC-Based UKF
Initialize the state vector, q̂0|0 and the covariance matrix,
P0|0
1. Calculate the prediction sigma points
ℵ0,k−1|k−1 = q̂k−1|k−1
ℵs,k−1|k−1 = q̂k−1|k−1 + [

√
(n+ λ)Pk−1|k−1]s,

s = 1, · · · , n
ℵs,k−1|k−1 = q̂k−1|k−1 − [

√
(n+ λ)Pk−1|k−1]s,

s = n+ 1, · · · , 2n
where [

√
(n+ λ)Pk−1|k−1]s is the sth column of√

(n+ λ)Pk−1|k−1, q̂k−1|k−1 is the state estimation at
time index k − 1, Pk−1|k−1 is the error covariance matrix at
time index k− 1 and λ is a tuning parameter.
2. Propagate the sigma points through the nonlinear process
model ℵ∗s,k−1|k−1 = ℵs,k−1|k−1, s = 0, · · · , 2n.
3. Obtain predicted state and covariance:
q̂k|k−1 =

∑2n
s=0W

q
s ℵ∗s,k|k−1

Pk|k−1 =
∑2n

s=0W
P
s (ℵ∗s,k|k−1 − q̂k|k−1)(ℵ∗s,k|k−1 − q̂k|k−1)T

where the definitions of W q
s and WP

s can be found in [23]
and [55].
4. Calculate the update sigma points
5. Propagate the sigma points through the nonlinear
measurement model
rs,k|k−1 = h(ℵs,k|k−1), s = 0, · · · , 2n
6. Calculate the predicted measurement, covariance and
cross covariance matrices
r̂k|k−1 =

∑2n
s=0W

q
s rs,k|k−1

Prr,k|k−1 =
∑2n

s=0W
P
s (rs,k|k−1 − r̂k|k−1)(rs,k|k−1 −

r̂k|k−1)T + Rk

Pqr,k|k−1 =
∑2n

s=0W
P
s (ℵs,k|k−1− q̂k|k−1)(rs,k|k−1− r̂k|k−1)T

where Rk denotes the measurement error covariance matrix.
7. Calculate the pseudo measurement matrix
H̄k = PTqr,k|k−1P

−1
rr,k|k−1.

8. Calculate the modified P̄k|k−1 and R̄k

Dk =

[
q̂k|k−1

rk − r̂k|k−1 + H̄k q̂k|k−1

]
, Wk =

[
I
H̄k

]
,

ek = Dk −Wk q̂k−1|k−1, Vq,k = diag(V (e1,k ), · · · ,V (en,k )),
Vr,k = diag(V (en+1,k ), · · · ,V (en+M ,k ))
where el,k = q̂l,k|k−1 − q̂l,k−1|k−1 (l=1,· · · ,n),
q̂l,k|k−1 is the l th component of q̂k|k−1, en+i,k =

ri − r̂i,k|k−1 − h̄Ti,k (q̂k|k−1 − q̂k−1|k−1) (i=1,· · · ,M ), h̄Ti,k
is the ith row of H̄k , r̂i,k|k−1 is the ith component of r̂k|k−1,
V (el,k ) is the Versoria function defined as 1

1+(
el,k√

Pk|k−1(j,j)
)2

(l=1,· · · ,n), 1
1+(

el,k
σ1

)2
(l=n+1,· · · ,n+M ) and Pk|k−1(j, j) is

the jth diagonal component of Pk|k−1
P̄k|k−1 = V−1q,k , R̄k = V−1r,k
9.Update mean and error covariance
q̂k|k = q̂k|k−1 + K̄k (rk − r̂k|k−1)
Pk|k = (I− K̄kH̄k )Pk|k−1(I− K̄kH̄k )T + K̄kRkK̄k
where K̄k = P̄k|k−1H̄T

k (R̄k + H̄k P̄k|k−1H̄k )−1

similar to the existing MVC UKF, except that the mixed-
norm-based Versoria function is exploited instead of the

Algorithm 2 Mixed Norm-Based MVC UKF
1-7. Identical with Algorithm 1.
8. Utilize the mixed norm-based Versoria function defined as
follows:
Vq
mixed = diag[Vmixed(e1,k ), · · · ,Vmixed(en,k )]

where ej,k = q̂j,k|k−1 − q̂j,k−1|k−1 and q̂j,k|k−1 is the jth

component of q̂k|k−1.
Vmixed(ej,k ) =

α

(
1

1+(
ej,k√

Pk|k−1(j,j)
)2

)
+ (1− α)

(
1

1+
|ej,k |√

Pk|k−1(j,j)

)
,

j=1,· · · ,n

where α ∈ [0, 1] is a mixing constant.
Vr
mixed = diag[Vmixed(en+1,k ), · · · ,Vmixed(en+M ,k )]

Vmixed(en+i,k ) = α
(

1
1+(

en+i,k
σ1

)2

)
+ (1− α)

(
1

1+
|en+i,k |
σ1

)
,

i=1,· · · ,M

where en+i,k = ri − r̂i,k|k−1 − h̄Ti,k (q̂k|k−1 − q̂k−1|k−1) and
r̂i,k|k−1 is the ith component of r̂k|k−1.
P̄k|k−1 = (Vq

mixed)
−1, R̄k = (Vr

mixed)
−1

9. Identical with Algorithm 1.

l2-norm Versoria function. Note that statistical testing, with
which the LOS or NLOS state of the sensor is predicted, is not
required in the UKF-based method. This is the advantage
of the UKF-based method compared to the IRLS-based
algorithm and closed-form method, which require statistical
testing. Subsequently, the mixed norm-based MVC UKF is
summarized in Algorithm 2.

B. THE MIXED NORM-BASED MVC IRLS
The mixed norm minimization can be performed using the
MVC IRLS method. The cost function is defined as follows:

J =
1

2σ 2
bi

e2i 1(bi ∈ LOS)+
{
1−

α

1+ ( ei
σbi

)2

− (1− α)(
1

1+ | ei
σbi
|
)
}
1(bi ∈ NLOS) (9)

where σ 2
bi is the variance of transformedmeasurement bi, ei =

bi − aTi q and aTi is the ith row of A. Differentiating the cost
function with respect to q yields the following:

∂J
∂q
=

1

σ 2
bi

eiai1(bi ∈ LOS)+
{
α

( 2ei
σ 2bi

(1+ (
e2i
σ 2bi

))2

)
ai

+ (1− α)
( ei

σbi

(1+ |ei|
σbi

)2|ei|

)
ai

}
1(bi ∈ NLOS). (10)

Setting the partial derivative to zeros and concatenating each
equation yield the following equation:

ATW(b− Aq) = 0 (11)
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where W = diag[w1, · · · ,wM ], wi = 1
σ 2bi

=
1

σ 21 r
2
i
if the ith

sensor is predicted to be the LOS sensor. Whether the sensor
is in the LOS or NLOS state is predicted using the statistical
testing [52]. The weight is calculated when the corresponding
sensor is predicted to be an NLOS sensor as follows:

wi = α
( 2

σ 2bi

(1+ (
e2i
σ 2bi

))2

)
+ (1− α)

( 1
σbi

(1+ |ei|
σbi

)2|ei|

)
. (12)

Clearly, the noise variance of the NLOS transformed
observation (σ 2

bi ) depends on the unknown measurement bias
(µ2) and the outlier noise variance (σ 2

2 ); thus, the σ
2
bi of the

NLOS observation is estimated as follows:

σ 2
bi = E[(bi − E[bi])2] ' (bi − b̂i)2 (13)

where b̂i =
x2i +y

2
i −d̂

2
i

2 , d̂i =
√
(q̂1 − xi)2 + (q̂2 − yi)2 and

[q̂1, q̂2]T is the estimated position using the LMedS estimate
obtained in the first-step. This noise variance estimation
approach was adopted in the existing RWGH method [47].
Then, the WLS estimate can be obtained as follows:

q̂ = (ATWA)−1ATWb. (14)

Furthermore, the accuracy of the second-step estimate can be
improved using the well-known two-step approach [2], [3]
and the third-step can be expressed as follows:

q̂t = (HTC−1
ĥ

H)−1HTC−1
ĥ

ĥ (15)

where the subscript t denotes the third-step estimate,

ĥ =
[
[q̂]21 [q̂]

2
2 [q̂]3

]T
, (16)

H =

 1 0
0 1
1 1

 , (17)

Cĥ = diag[2q1 2q2 1](A
TWA)−1diag[2q1 2q2 1] (18)

' diag[2[q̂]1 2[q̂]2 1](ATWA)−1diag[2[q̂]1 2[q̂]2 1],

(19)

and [q̂]i (i=1,2,3) is the ith component of the second-step
estimate. The final emitter position estimate can be expressed
as follows:

q̂e =
[
sgn([q̂]1)

√
[q̂t]1 sgn([q̂]2)

√
[q̂t]2

]T
(20)

where sgn(·) denotes the sign function and [q̂t]i (i=1,2) is the
ith element of the third-step estimate. Again, the final estimate
is re-inserted into W and the above procedure is continued
until the solution converges. The mixed norm-based MVC
IRLS method is summarized in Algorithm 3.

Algorithm 3 Mixed Norm-Based MVC IRLS
1. Obtain the initial position using the LMedS method in the
first-step.
2. Construct the diagonal weight matrix employing the initial
position obtained from LMedS algorithm as follows:

wi =



1
σ 21 r

2
i

if | ri−d̂i
σ1
|≤ 4.8916;

α

( 2
σ2bi

(1+(
e2i
σ2bi

))2

)

+(1− α)
( 1

σbi

(1+ |ei|
σbi

)2|ei|

)
, if | ri−d̂i

σ1
|> 4.8916.

3. Obtain the second-step WLS estimate.
4. Calculate the third-step WLS estimate using the two-step
WLS method.
5. Construct updated weight matrix using the final estimate.
Iterate steps 3-5 until the solution converges. The threshold
(4.8916) is determined such that the false alarm probability
is set to 10−6 in this study, referring to the standard normal
table.

C. THE MIXED NORM-BASED UKF WITH LLNCOSH COST
CRITERION (MIXED NORM-BASED LLUKF)
The lncosh cost has been widely utilized in the robust adap-
tive filtering, but has not been employed in the mixed-norm
minimization context. The lncosh(e2) or lncosh(|e|) cost
increases as the magnitude of e increases, thus can be used
in the Versoria function by inserting lncosh(e2) or lncosh(|e|)
into the denominator of the original Versoria function. That
is, the following function is obtained:

Cmixed(ej,k ) = α
{

1

1+ lncosh(
e2j,k

Pk|k−1(j,j)
)

}

+ (1− α)
{

1

1+ lncosh( |ej,k |√
Pk|k−1(j,j)

)

}
(21)

where ej,k = q̂j,k|k−1 − q̂j,k−1|k−1 (j = 1, · · · , n),

Cmixed(en+i,k ) = α
{

1

1+ lncosh(
e2n+i,k
σ 21

)

}

+ (1− α)
{

1

1+ lncosh( |en+i,k |
σ1

)

}
(22)

where en+i,k = ri − r̂i,k|k−1 − h̄Ti,k (q̂k|k−1 − q̂k−1|k−1)(i =
1, · · · ,M ). Themixed-norm-based LLUKF is summarized in
Algorithm 4.

D. THE MIXED NORM-BASED IRLS WITH LLNCOSH COST
CRITERION (MIXED NORM-BASED LLIRLS)
The mixed norm minimization can be performed using the
IRLS method with lncosh cost function. The cost function is
defined as follows:

J =
1

2σ 2
bi

e2i 1(bi ∈ LOS)+
{
α(lncosh(

ei
σbi

)2)
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Algorithm 4 Mixed Norm-Based UKF With Llncosh Crite-
rion (Mixed-Norm LLUKF)
1-7. Identical with Algorithm 1.
8. Utilize the mixed norm-based Versoria function defined as
follows:
Cq
mixed = diag[Cmixed(e1,k ), · · · ,Cmixed(en,k )]

where ej,k = q̂j,k|k−1 − q̂j,k−1|k−1.

Cmixed(ej,k ) = α
{

1
1+lncosh(A1)

}
+ (1− α)

{
1

1+lncosh(A2)

}
,

j=1,· · · ,n

where A1 =
e2j,k

Pk|k−1(j,j)
,A2 =

|ej,k |√
Pk|k−1(j,j)

and α ∈ [0, 1] is a

mixing constant.
Cr
mixed = diag[Cmixed(en+1,k ), · · · ,Cmixed(en+M ,k )]

Cmixed(en+i,k ) = α
{

1
1+lncosh(B1)

}
+(1− α)

{
1

1+lncosh(B2)

}
,

i=1,· · · ,M

where B1 =
e2n+i,k
σ 21

,B2 =
|en+i,k |
σ1

and en+i,k = ri − r̂i,k|k−1 −

h̄Ti,k (q̂k|k−1 − q̂k−1|k−1).
P̄k|k−1 = (Cq

mixed)
−1, R̄k = (Cr

mixed)
−1

9. Identical with Algorithm 1.

+ (1− α)(lncosh|
ei
σbi
|)
}
1(bi ∈ NLOS) (23)

where σ 2
bi is the variance of transformedmeasurement bi, ei =

bi − aTi q and aTi is the ith row of A. Differentiating the cost
function with respect to q yields the following:

∂J
∂q
=

1

σ 2
bi

eiai1(bi ∈ LOS)+
{
α

(
2ei
σ 2
bi

tanh(
e2i
σ 2
bi

)
)
ai

+ (1−α)
(

ei
σbi |ei|

tanh(
|ei|
σbi

)
)
ai

}
1(bi∈NLOS). (24)

Setting the partial derivative to zeros and concatenating each
equation yield the following equation:

ATW(b− Aq) = 0 (25)

where W = diag[w1, · · · ,wM ], wi = 1
σ 2bi

=
1

σ 21 r
2
i
if

the ith sensor is predicted to be the LOS sensor, wi =

α

(
2
σ 2bi

tanh(
e2i
σ 2bi

)
)
+ (1− α)

(
1

σbi |ei|
tanh( |ei|

σbi
)
)
if the ith sensor

is predicted to be the NLOS sensor. Then, the WLS estimate
can be obtained as follows:

q̂ = (ATWA)−1ATWb. (26)

The remaining steps are omitted because they are the same
as those described in Section IV.B. The mixed norm-based
LLIRLS algorithm is summarized in Algorithm 5.

E. ROBUST CLOSED-FORM LOCALIZATION
In this section, the robust closed-form localization is pre-
sented. The proposed closed-form localization is composed

Algorithm 5 Mixed Norm-Based IRLS With Llncosh
Criterion (Mixed-Norm LLIRLS)
1. Obtain the initial position using the LMedS method in the
first-step.
2. Construct the diagonal weight matrix employing the initial
position obtained from LMedS algorithm as follows:

wi=



1
σ 21 r

2
i

if | ri−d̂i
σ1
|≤ 4.8916;

α

(
2
σ 2bi

tanh(
e2i
σ 2bi

)
)

+(1− α)
(

1
σbi |ei|

tanh( |ei|
σbi

)
)
, if | ri−d̂i

σ1
|> 4.8916.

3. Obtain the second-step WLS estimate.
4. Calculate the third-step WLS estimate using the two-step
WLS method.
5. Construct updated weight matrix using the final estimate.
Iterate steps 3-5 until the solution converges.

of three steps. The cost function is defined as follows:

J =
1

2σ 2
bi

e2i 1(bi ∈ LOS)+
1

2σ 2
bi

e2i 1(bi ∈ NLOS) (27)

where σ 2
bi is the variance of transformed observation bi, ei =

bi − aTi q and aTi is the ith row of A. Differentiating the cost
function with respect to q yields the following:

∂J
∂q
=

1

σ 2
bi

eiai1(bi ∈ LOS)+
1

σ 2
bi

eiai1(bi ∈ NLOS). (28)

Setting the partial derivative to zeros and concatenating each
equation yield the following equation:

ATW(b− Aq) = 0 (29)

where W = diag[w1, · · · ,wM ], wi = 1
σ 2bi

=
1

σ 21 r
2
i
if the ith

sensor is predicted to be the LOS sensor and wi ' 1
(bi−b̂i)2

if
the corresponding sensor is predicted to be the NLOS sensor.
When the sensor is predicted to be in the LOS state, theweight
(inverse of the noise variance of the sensor measurement)
can be easily computed because the variance of inlier (σ 2

1 )
is assumed to be known. However, as mentioned earlier,
the variance of NLOS sensor observation (σ 2

bi ) is dependent
on the unknown measurement bias (µ2) and outlier noise
variance (σ 2

2 ); thus, the variance of the NLOS transformed
observation is estimated using the squared residual [47] in
this study. Utilizing this weight matrix, theWLS estimate can
be acquired in the second-step and the third-step solution is
then obtained via the procedures described in Section IV.B.
Clearly, this algorithm has an explicit solution; thus, the
proposed closed-form method is advantageous in terms of
the divergence problem and computational complexity. The
closed-form localization is summarized in Algorithm 6.

V. SIMULATION RESULTS
The localization performances of the proposed mixed
norm-based UKF and IRLS methods were compared with
those of statistical similarity measure (SSM)-based Kalman
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Algorithm 6 The Closed-Form Localization
1. Obtain the LMedS estimate in the first-step.
2. Construct the diagonal weight matrix using the LMedS
solution as follows:

wi=


1

σ 21 r
2
i

if | ri−d̂i
σ1
|≤ 4.8916;

1
(bi−b̂i)2

, if | ri−d̂i
σ1
|> 4.8916.

3. Obtain the second-step WLS estimate.
4. Calculate the third-step WLS estimate and final estimate
using the two-step WLS method.

FIGURE 2. Deployment of sensors, where white circles denote sensors
and asterisks represent sources.

filter [28], robust EKF [38], and generalized MCC (GMCC)
EKF [57] in this section. The SSMKalman filter employs the
SSM vector to quantify the similarity between two vectors,
e.g., state vector and predicted state vector. TheMCCKalman
filter has been employed to eliminate outliers. However, the
Gaussian kernel is not always the best choice. Therefore,
the GMCC Kalman filter was investigated to achieve
better performance using the generalized Gaussian density
function.

A. SIMULATION SETTINGS
The simulation settings are presented in Table 2. Also, the
RMSE is defined in (30)

RMSE

=

√∑10
i=1

∑1000
k=1 [(q̂1

k(i)− q1(i))2 + (q̂2
k(i)− q2(i))2]

10× 1000
(30)

where [q̂1
k(i), q̂2

k(i)]T is the estimated location of the point
target in the ith position set and kth iteration. In addition,
q1(i) and q2(i) denote the i

th true Cartesian coordinates of the
emitter. Fig. 2 presents the arrangement of the sensors and the
sources, denoted by circles and asterisks, respectively.

FIGURE 3. Comparison of RMSEs of the proposed estimators with those
of existing methods as a function of standard deviation of NLOS noise for
different number of NLOS sensors (a) Sensors 8 and 9 are NLOS sensor,
measurement bias (µ2): 5 m, standard deviation of LOS noise (σ1): 0.3 m
(b) Sensors 7, 8 and 9 are NLOS sensor, measurement bias (µ2): 5 m,
standard deviation of LOS noise (σ1): 0.3 m (c) Sensors 6, 7, 8 and 9 are
NLOS sensor, measurement bias (µ2): 5 m, standard deviation of LOS
noise (σ1): 0.3 m.

B. GENERAL RESULTS
The localization accuracy with respect to the standard
deviation of the NLOS error for different number of NLOS
sensors was presented in Fig. 3. As shown in Fig. 3(a),
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TABLE 2. Simulation settings.

sensors 8 and 9 were NLOS sensors and the standard
deviation of the LOS noise (σ1) was 0.3 m. The measurement
bias (µ2) was set to 5 m. The standard deviation of the NLOS
noise (σ2) was set to a larger value than that of the LOS
measurement noise [48], [49]. As seen from Fig. 3(a), the
RMSEs of the mixed-norm IRLS-based methods were lower
than those of the other methods. In Fig. 3(b) and Fig. 3(c), the
RMSEs of the proposed mixed-norm UKF-based algorithms
were the lowest among the localization methods. Namely,
as the number of NLOS sensors increased, the localization
performance of the mixed-norm IRLS-based algorithms
degraded compared to the other methods. In contrast, the
RMSEs of the UKF-based methods were superior to those
of the other algorithms as the number of NLOS sensors
increased. This demonstrates that the proposed mixed-norm
based UKF algorithm was more effective as the number of
NLOS sensors increased because the l1 norm is robust against
spurious peaks or impulsive noise. However, the mixed-norm
IRLS-based methods were more efficient as the outlyingness
(number of NLOS sensors) was lower. As the number of
NLOS sensors increased, the localization performance of the
mixed-norm IRLS-based methods was degraded because the
small noise assumption used in modeling, e.g., neglecting
the second-order noise term, was violated. In addition, the
proposed mixed-norm LLUKF method outperformed the
existing algorithms irrespective of the number of NLOS
sensors. As the outlyingness increased, the accuracy of the
mixed-norm LLUKF method became higher than those of
the other algorithms. Moreover, the RMSEs of the robust
localization methods were relatively flat because they were
robust against the heavy-tailed noise. The Cramér-Rao lower
bound (CRLB) increased as the NLOS noise level increased
irrespective of the number of NLOS sensors. The CRLB
was calculated using the Monte-Carlo method because the
derivation of nonlinear and non-Gaussian distribution ismuch
difficult.

Fig. 4 presents the RMSEs with respect to the standard
deviation of LOS noise for different number of NLOS
sensors. As shown in Fig. 4(a), sensors 8 and 9 were assumed
to be NLOS sensor, whereas the other sensors were LOS
sensors. In addition, sensors 7, 8 and 9 were NLOS sensors
in Fig. 4(b) and sensors 6, 7, 8 and 9 were NLOS sensors in
Fig. 4(c). The RMSEs of all localization methods increased
as the standard deviation of LOS noise increased as shown

in Fig. 4(a)-(c). The RMSEs of the mixed-norm UKF-based
methods were similar to those of the other methods for the
low and moderate LOS noise levels; however, the mixed-
normUKF-based algorithms outperformed the other methods
in the regimes of large LOS noise. This observation can be
explained as follows. As the noise level of LOS observation
is larger, the spurious peak or impulsive noise increases.
Accordingly, the mixed-norm-based UKF algorithm would
be more effective than the other methods because the l1 norm
is robust against spurious peaks. The proposed method has
an advantage that the bandwidth is selected as the standard
deviation of observation.

Fig. 5 presents the RMSEswith respect to themeasurement
bias (µ2) for different number of NLOS sensors. As shown in
Fig. 5(a), sensors 8 and 9 were assumed to be NLOS sensor,
whereas the other sensors were LOS sensors. In addition,
sensors 7, 8 and 9 were NLOS sensors in the Fig. 5(b)
and sensors 6, 7, 8 and 9 were NLOS sensors, as shown
in Fig. 5(c). As shown in Figs. 5(a)-(c), as the outlyingness
increased, the localization performance of the mixed-norm
UKF-based method became superior to those of the other
algorithms. In Fig. 5(c), the RMSE was larger than the
previous results because the contamination ratio approached
the breakdown point.

Fig. 6(a) shows the RMSE with respect to the mixing
constant (α) when the contamination ratio was low (the
number of NLOS sensor was one). The RMSE decreased
as the mixing constant approached a unit value because
the l2 norm minimization is more efficient compared to
the l1 norm minimization. Furthermore, Fig. 6(b) illustrates
the RMSE in terms of the mixing coefficient when the
contamination ratio was moderate (the number of NLOS
sensor was four). At this time, the RMSE increased as the
mixing constant increased because l1 norm minimization is
robust to the impulsive noise than the l2 norm minimization.
Therefore, the trade-off between small and large mixing
constants is required and we determined the mixing constant
as 0.8 to assign the larger weight for the l2 normminimization
because the contamination ratio is usually below 0.5 (i.e., the
number of LOS sensor is larger than that of NLOS sensors).

Furthermore, we tested the robustness of the proposed
methods for the modeling error. That is, although the
measurement noise was modeled as the two-mode Gaus-
sian mixture distribution in this study, the NLOS error
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FIGURE 4. Comparison of RMSEs of the proposed estimators with those
of existing methods as a function of the standard deviation of LOS noise
for different number of NLOS sensors (a) Standard deviation of NLOS
noise (σ2): 1.5 m, measurement bias (µ2): 5 m, sensors 8 and 9 are NLOS
sensors, (b) Standard deviation of NLOS noise (σ2): 1.5 m, measurement
bias (µ2): 5 m, sensors 7, 8 and 9 are NLOS sensors, (c) Standard
deviation of NLOS noise (σ2): 1.5 m, measurement bias (µ2): 5 m,
sensors 6, 7, 8 and 9 are NLOS sensors.

distribution is difficult to be determined accurately. Recently,
it was reported that the NLOS error distribution of the
ultra-wideband signal follows the heavy-tailed skew-t dis-
tribution [58]–[60]. Accordingly, we tested whether the
proposed algorithms work effectively against the skew-t
NLOS error distribution. Fig. 7 shows the RMSEs with
respect to the degree-of-freedom of the skew-t NLOS
error distribution. The RMSEs of the proposed UKFs were

FIGURE 5. Comparison of RMSEs of the proposed estimators with those
of existing methods as a function of measurement bias for different
number of NLOS sensors (a) Standard deviation of NLOS noise (σ2):
1.5 m, standard deviation of LOS noise (σ1): 0.3 m, sensor 8 and 9 are
NLOS sensors, (b) Standard deviation of NLOS noise (σ2): 1.5 m, standard
deviation of LOS noise (σ1): 0.3 m, sensors 7, 8 and 9 are NLOS sensors,
(c) Standard deviation of NLOS noise (σ2): 1.5 m, standard deviation of
LOS noise (σ1): 0.3 m, sensors 6, 7, 8 and 9 are NLOS sensors.

lower than that of the existing methods because they
minimized the l1/l2 norms. The RMSEs of all localization
methods increased as the degree-of-freedom increased (the
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FIGURE 6. RMSEs of mixed-norm UKFs as a function of the mixing
constant (α) (a) Standard deviation of NLOS noise (σ2): 4 m, standard
deviation of LOS noise (σ1): 0.3 m, µ2: 5 m, sensor 9 is NLOS sensor,
(b) Standard deviation of NLOS noise (σ2): 4 m, standard deviation of LOS
noise (σ1): 0.3 m, µ2: 5 m, sensors 6, 7, 8 and 9 are NLOS sensors.

FIGURE 7. RMSEs of localization algorithms as a function of the
degree-of-freedom of the skew-t NLOS error distribution (standard
deviation of LOS noise (σ1): 0.3 m, skewness: 2, sensors 6, 7, 8 and 9 are
NLOS sensors).

Gaussianity becomes larger, i.e., heavy-tailedness is smaller)
because all robust algorithms were designed such that they
are more effective in the NLOS conditions compared to the
Gaussian distribution-based non-robust algorithms.

Summarizing the above simulation results, themixed-norm
IRLS-based methods were superior to the other methods

TABLE 3. Computational time of localization algorithms.

in the small noise conditions. As the standard deviation of
LOS noise increased, themixed-normUKFsweremoderately
superior to the other methods using the convex combination
of l1/l2 mixed-norm. Also, the mixed-norm UKF methods
were robust against the modeling error.

The differences between the proposed methods can be
listed as follows:

1) The UKF-based methods are superior to the IRLS-based
methods in the low SNR conditions because the IRLS-based
methods neglect the second-order noise term. In contrast,
the IRLS-based algorithms are slightly superior to the
UKF-based algorithms in high SNR conditions.

2) The UKF-based methods do not employ the weight
matrix. Instead, the UKF-based method suppresses the
adverse effects of outliers using the state error matrix and
measurement error matrix that are inversely proportional to
the convex combination of the l1 and l2 Versoria or lncosh
function.

3) The UKF-based method does not utilize the statistical
testing to identify the NLOS contaminated sensor unlike
the IRLS-based algorithm because the effects of outliers
are attenuated automatically using the Versoria or lncosh
functions.

4) The closed-form method has an advantage that its
computational complexity is low, preserving the moderate
estimation performance.

Finally, the computational time was compared. As shown
by Table 3, the computational time of IRLS-based methods
and closed-form method was smaller than the UKF-based
methods. That is, the IRLS-based algorithms and closed-form
method were competitive in terms of the localization per-
formance and computational complexity. The computational
time of the LMedSmethodwas added because the initial point
was computed using the LMedS algorithm.

VI. EXPERIMENT USING THE REAL DATA
In this section, the experimental results using the real data
are presented. The real data used in [61] was employed.
For details, refer to [61]. Eight sensors were used and their
positions were [8.47, 11.87, 0.93] m, [8.41, 7.85, 0.69] m,
[5.95, 7.45, 0.64] m, [5.45, 6.71, 1.3] m, [6.95, 0.05, 1.43] m,
[2.24, 0.05, 1.47] m, [3.06, 8.33, 1.42] m, [4.47, 11.21,
1.42] m. Also, the source location was [1.55, 3.49, 1.2] m.
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TABLE 4. RMSE using real data.

Unlike the simulation part, the 3-dimensional localization
was performed. Sensors 1, 2, 3 and 4 were NLOS sensors
and the remainders were LOS sensors. The trial number of
experiments was 30 times and ultra-wideband sensors were
used. As seen from Table 4, the localization performances
of the UKF-based algorithms were superior to those of
other algorithms. Meanwhile, the IRLS-based methods and
closed-form algorithm showed the moderate localization
performance. The difference between the simulation was that
the UKF-based methods used the optimal bandwidth by trial
and error to obtain the best performance.

VII. CONCLUSION
Novel robust localization algorithms were developed based
on the mixed-normMVCUKF, mixed-norm LLUKF, mixed-
norm LLIRLS, mixed-norm MVC IRLS and closed-form
algorithms. The proposed robust mixed-norm UKF-based
methods did not require the discrimination of LOS and NLOS
sensor. Namely, the mixed-norm-based UKF-based methods
did not require statistical testing. Themixed normUKF-based
methods were similar to the other methods in the small inlier
noise conditions, but outperformed the other methods in the
large LOS noise environments. This observation is caused by
the superiority of the l1 norm minimization against spurious
peaks and impulsive noise which increased as the noise level
increased.Meanwhile, the proposedmixed-norm IRLS-based
algorithms required the statistical testing and were superior
to the other methods in the high SNR regimes because it is
optimal under a sufficiently small noise conditions. However,
the localization performance of the IRLS-based techniques
was inferior to that of the other methods in large LOS
noise conditions. The IRLS-based methods required a weight
matrix and it was obtained inspired by the existing RWGH
method. In addition, a closed-form localization algorithm that
does not require an initial guess solution and does not have a
divergence problem was developed.
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