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Abstract This article discusses the stability of a two-species ecosystem composed of an ammensal

(x) and an adversarial (y) species that are continuously harvested. A mathematical model is defined

by a system of two nonlinear ordinary differential equations of first order. The considered system’s

boundedness is investigated. The local stability of the system is described using a variational matrix,

while the global stability is examined using Lyapunov’s function. The prerequisite for the system to

exist in bionomic equilibrium has been identified. The ideal harvesting technique is determined

using the maximal principle proposed by Pontryagin. In MATLAB simulations, the stability of

the deterministic system is demonstrated for the specified set of parameters.
� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Numerous ecological and biological processes are driven by

the impulsive energetic relationships between species and their
complex possessions. Ammensalism is one such affiliation. It is
a dynamic relationship between an ammensal and an adversar-

ial species. Ammensalism occurs when one species is harmed
by another that is unaffected. One is referred to as an ammen-
sal species, while the other is referred to as an adversary
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species. Ammensalism occurs naturally when cattle tramp the
grass; the grass is crushed but the cattle are not harmed or ben-
efited by this action. Due to its universality and significance,

this relationship has long been and will continue to be a dom-
inant theme in both ecology and mathematical ecology. A.
Lotka [1] and V. Volterra [2] independently developed the first

model to describe the size dynamics of two populations inter-
acting as a predator–prey system. Due to the inherent limita-
tions of the classical Lotka–Volterra models in accurately

describing a large number of realistic biological phenomena,
they should occasionally give way to more sophisticated mod-
els from both a mathematical and biological perspective. All of
these interactions were facilitated by bionomics of natural

resources. Harvesting has a significant effect on population
dynamics, as evidenced by the exploitation of biological
resources and harvesting of population species in fishery, for-

estry, agriculture, and wild life management.
Harvesting has a significant impact on a population’s

dynamic evolution. We know that the population’s long-run

stationary density can be much lower than the population’s
long-run stationary density in the absence of harvesting [3],
depending on the nature of the harvesting strategy used. In

general, a bionomic model is composed of two components:
a biology type that represents the behavior of a living system
and an economic model that connects the biological system
to market pricing and resources according to institutional lim-

itations. Bio economic models are mathematical equations that
are used to depict biological processes. In fishery and forestry
management, the logistic equation is the most frequently

employed function for capturing the essential characteristics
of population densities. However, there is a growing trend
toward the development of simulation models by biologists

and agricultural scientists. These models also approximate
the dynamical behavior of real-world systems, and their com-
plexity may limit their direct usage as components of optimal

control models.
Numerous researchers have examined the challenges associ-

ated with an ammensalism system that includes harvesting, with
a particular emphasis on economic harvesting practises. The

majority of authors have concentrated their efforts on optimal
exploitation, which is entirely motivated by harvesting profits.
Clark [4] provided an in-depth review of the difficulties and

approaches involved in bionomic exploitation of natural
resources. Brauer and Soudack conducted a research on these
models under conditions of consistent harvesting rates for both

species [5,6]. Chaudhuri [7,8] examined multi-species harvesting
models in depth, whereas Mesterton-Gibbons [9] examined an
optimal policy for maximising the present value of a combined
harvest of two biologically distinct species that would coexist

as predator and prey in the absence of harvesting. We evaluated
models for the combined harvesting of a two-species prey-
predator fishery. According to Ragozin and Brown [10], as well

as Chaudhuri and Ray [11]. Chattopadhyay examined the per-
sistence and global stability of a resource-based competitive sys-
tem with three species [12]. Dai and Tang [13] discussed a prey-

predator model with harvesting. Kar [14] examined harvesting
for predators and prey in a prey-dependent model with prey
refuge, as well as an optimal harvesting policy. Shiva Reddy

[15] presented a mathematical model for a three-species ecosys-
temwith two predators competing for the same prey and studied
the concept of stability using a variety of mathematical method-
ologies. Numerous authors have recently investigated the frac-
tional order Predator–Prey Model using the Harvesting and
covid models [16–29].

This article presents a novel approach to the joint harvest-
ing of two species that have an ammensalism relationship. The
following sections comprise the current study paper: Section 2

contains the mathematical model of the ecosystem. The sys-
tem’s boundedness is specified in Section 3. Section 4 illustrates
the presence of equilibrium points. Sections 5 and 6 determine

the system’s local and global stability at the interior steady
state. Section 7 discusses the requirements for the existence
of a bionomic equilibrium. Section 8 presents the ideal harvest-
ing policy and numerical simulations. Section 9 emphasizes the

concluding remarks.

2. Construction of Ammensal-Adversarial model

The nonlinear ordinary differential equations for this Ammen-
sal Model are formed by.

dx

dt
¼ a1x� a11x

2 � a12xy� q1E1x ð2:1Þ

dy

dt
¼ a2y� a22y

2 � q2E2y ð2:2Þ

Here xðtÞ represents the biomass density of Ammensal and y(t)

represents the biomass density of Adversarial. For species,
leta1,a2 be the natural growth rates of the species.a12 is the rate
of decrease of the Ammensal species owing to predation, a11,
are the rates of decline of two species due to natural resource

constraints, andq1, q2 the coefficients of catchability of the
Ammensal and Adversarial species.E1 and E2 represent the
potential harvesting attempts for both species.

3. Boundedness of the system

In this section, we shall provide some appropriate conditions

for the system’s boundedness.

Theorem 3.1. With initial conditions in the positive quadrant,
the system (2.1)–(2.2) has bounded solutions.

Proof: Considering,wðtÞ ¼ xðtÞ þ yðtÞ
Clearly, d w

dt
¼ dx

dt
þ dy

dt

d w

dt
¼ a1x� a11x

2 � a12xy� q1E1 þ a2y� a22y
2 � q2E2y

dw

dt
þ nw ¼ nþ a1 � q1E1ð Þx� a11x

2 þ a2 � q2E2ð Þy� a22y
2

� a12xy

6 nþ a1 � q1E1ð Þx� a11 þ a11
2

� �
x2 þ nþ a2 � q2E2ð Þy

� a22
a11
2

� �
y2

6 nþ a1 � q1E1ð Þ2
2 2a11 þ a12ð Þ þ nþ a2 � q2E2ð Þ2

2 2a22 þ a12ð Þ ¼ l

0 < w ½xðtÞ; yðtÞ� 6 l
n

1� e�ntð Þ þ w ½xð0Þ; yð0Þ� e�nt
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As t ! 1 the above inequality becomes,0 < wðtÞ 6 l
n

withnþ a1 > q1E1 and nþ a2 > q2E2.
Hence solutions of the system (2.1)–(2.2) are

nþ a1 > q1E1 and nþ a2 > q2E2 bounded and the set.

X ¼ x; yð Þ 2 Rþ
2 : 0 < w ¼ xþ y 6 l

n

n o

is referred to be a promoter of alternative solutions based on
positive starting circumstances.

4. Interior equilibria

It is a known fact that E1 0; 0ð Þ exists at any time, and another

equilibrium point that exists interior,E2 x �; y �ð Þ is given by.

x� ¼ 1

a11
a1 � a12

a2 � q2E2

a22

� �
� q1E1

� �
y� ¼ a2 � q2E2

a22

x� and y� are positive if a22 a1 � q1E1ð Þ > a12 a2 � q2E2ð Þ and
a2 > q2E2 respectively.

5. Local stability analysis

The purpose of this work was to investigate local stability at
available interior equilibrium E2 x�; y�ð Þ conditions when a
variational matrix was applied.

The varitional matrix at the interior equilibrium point is.

J x; yð Þ ¼ �a11x� �a12x�

0 �a22y�

� �

The characteristic equation is a11x� þ kð Þ a22y� þ kð Þ ¼ 0

and the roots of equations are k1 ¼ �a11x� andk2 ¼ �a22y�,
Hence the proposed system is locally asymptotically stable

occurs at the steady stateE2 x�; y�ð Þ.

6. An examination of global stability

By developing a relevant Lyapunov function, the global stabil-

ity, is to be discussed, of the considered Ammensal model in
(2.1)–(2.2).

Theorem ((6.1):). The proposed system globally asymptotic
stable at the equilibrium point E2ðx�; y�Þ for l is any positive

constant.

Proof: By the concept of Lyapunov function, consider.

V x; yð Þ ¼ x� x� � x� ln
x

x�

� �
þ l y� y� � y ln

y

y�

� �� �
l > 0

Nowdv
dt
¼ x�x�

x
dx
dt
þ l y�y�

y
dy
dt
.

dv

dt
¼ x� x�ð Þ a11x� þ a12y

� � a11x� a12y½ �
þ l y� y�ð Þ a22y� � a22y½ �

Choose l as any positive constant.

dv

dt
6 � a11 þ a12

2

� �
x� x�ð Þ2 � la22 þ a12

2

� �
y� y�ð Þ2 < 0

Hence E2 x�; y�ð Þ is globally asymptotically stable.
7. Bionomic equilibria

Bionomic equilibrium is a concept that integrates the ideas
of biological and economic equilibrium. When the total

income received from selling gathered biomass equals the total
cost of harvesting effort, the economic equilibrium is consid-
ered to have been established. Let c1; c2 the fishing costs per

unit effort for both ammensal and adversarial species respec-
tively. Let p1; p2 be the ammensal and adversarial species’
prices per unit biomass, respectively. As a result, at any time
t, the net income or financial rent isM ¼ M1 þM2.

WhereM1 ¼ p1q1x� c1ð ÞE1 is the net economic revenue for
ammensal species andM2 ¼ p2q2y� c2ð ÞE2 is the net economic
revenue for adversarial species at time t.

The bionomic equilibrium is calculated using the following

equations:a1x� a11x2 � a12xy� q1E1x ¼ 0,

a2y� a22y
2 � q2E2y ¼ 0

R ¼ q1q1x� c1ð ÞE1 þ q2q2y� c2ð ÞE2 ¼ 0

We investigate the following cases to determine their bio-
nomic equilibrium.

Case (i): If,c1 > q1q1x and c2 > q2q2y then the cost exceeds
the revenue for both species, the entire system will be
terminated.

Case (ii): If the cost of getting the adversarial species
exceeds the revenuec2 > q2q2y, then availability for the adver-
sarial species is not practicable. Ammensal species population
remains operative, i.e. (c1 > q1q1x) Thus, when E2 ¼ 0 and

c1 < q1q1x then we have,

xð Þ1 ¼ c1
p1q1

; yð Þ1 ¼ 1

a12
a1 � a11

c1
p1q1

� q1E1

� �

Case (iii): If the cost of ammensal species fishing exceeds the
revenue, the ammensal species fishing is not available (i.e.
closed) i.e., E1 ¼ 0 and only adversarial species fishing will

be allowed to continue. Therefore,

xð Þ1 ¼ 0 ; yð Þ1 ¼ c2
p2q2

Case (iv): If c1 < q1q1x andc2 < q2q2y. The revenue for the
two species will then be positive, and the entire fishery gets
operational, then we have.

xð Þ1 ¼ c1
p1q1

yð Þ1 ¼ c2
p2q2

E1ð Þd ¼
1

q1
a1 � a11

c1
p1q1

� a12
c2
p2q2

� �
E2ð Þd ¼

1

q2
a2 � a22

c2
p2q2

� �

Clearly E1ð Þd > 0 and E2ð Þd > 0 occurs for the following

inequalities:
a1 >

a11c1
p1q1

þ a12c2
p2q2

anda2 >
a22c2
p2d2

.

So that, the non-trivial point of bionomic equilibrium

xð Þ1; yð Þ1; E1ð Þ1; E2ð Þ1
� 	

exit.

8. Qualitative study of the best harvesting policy

The essential issue in establishing an optimal harvest pro-
gramme in a commercial fishery is establishing the ideal trade-
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off between current and future harvests [30–36]. As Clark [30]
points out, this challenge, which lies at the heart of resource con-
servation, is incredibly tough, perhaps not mathematically, but

certainly politically and philosophically. Time discounting is the
primary technique for resolving concerns of intertemporal eco-
nomic gains. Although much debate exists regarding the con-

cept’s societal justification [37], time discounting is a common
technique in company management. To calculate the ideal har-
vesting strategy, we consider the present value J of a continuous

time-stream of revenues denoted by.

J ¼
Z 1

0

e�dt p1q1x� c1ð ÞE1 tð Þ þ p2q2 � c2ð ÞE2 tð Þð Þdt ð8:1Þ

where d is the current annual discount rate. From Pon-
tryagin’s maximum principle, maximize (8.1) while keeping
the state equations (2.1)–(2.2) in mind. The control variable
E (t) is subjected to the constrains, 0.� EiðtÞ � Eið Þmax

The Hamiltonian is provided by.

H ¼ e�dt p1d1x� c1ð ÞE1 þð Þ þ p2d2 � c2ð ÞE2 þð Þf g
þk1fa1x� a11x

2 � a12xy� q1E1x

þ k2 a2y� a22y

2 � q2E2y
� 


ð8:2Þ
where k1 and k2 are the adjoint variables. In the H i.e. Hamil-

tonian function, the regulator variable EðtÞ occurs linearly.
The control restrictions are assumed to be non-binding, which
is implying that there is no best solution at Eið Þmax. At Eið Þmax,

there must have complete control. According to the maximal
principle of Pontryagin’s, we have.

@H

@E1

¼ 0;
@H

@E2

¼ 0;
dk1
dt

¼ � @H

@x
;
dk2
dt

¼ � @H

@y

Now; k1 ¼ e�dt p1 �
c1
q1x

�

� �
ð8:3Þ
Fig. 1 a. The population’s variation versus time, with x ¼ 5; y ¼ 3 an

parameters a1 = 3.15;a11 = 0.02; a12 = 0.02; q1 = 0.15; E1 = 5.84; a2
between the ammensal and adversial population for the parameters a1
a22 = 0.12; q2 = 0.2; E2 = 5.31.
k2 ¼ e�dt P2 � c2
q2y

�

� �
ð8:4Þ

dk1
dt

� a11x
�k1 ¼ �e�dtE1p1q1 ð8:5Þ

dk2
dt

� a22y
�k2 � a12x

�k1 ¼ �e�dtp2q2E2 ð8:6Þ

Solve (8.5) we get.

k1 ¼ B1e
a11x�t þ P1d1E1

dþ a11x� e
�dt ð8:7Þ

Solve (8.6) we get.

k2 ¼ B2e
a22y�t þ 1

d� a22y�ð Þ
P1d1E1

dþ a11x� � p2d2E2

� �

þ 1

a11x� þ a22y�
B1a12x

�ea11x
�t ð8:8Þ

where B1 and B2 are arbitrary constants.
From (8.3) and (8.7),The singular path as.

F1ðxÞ ¼ p1 �
c1
q1x

�

� �
þ B1e

a11x�þdð Þt þ P1d1E1

dþ a11x� ¼ 0

From (8.4) and (8.8),The singular path as.

F2ðxÞ ¼ p2 � c2
q2y

�

� �
þ B2e

a22y�þdð Þt

þ 1
d�a22y�ð Þ

P1d1E1

dþa11x�
� p2d2E2

h i
edt þ 1

a11x�þa22y�
B1a12x�e a11x�þdð Þt ¼ 0

There is a distinct positive root that exists.
y� ¼ yð Þd,x� ¼ xð Þd ifF y�ð Þ ¼ 0,F x�ð Þ ¼ 0 In the

interval0 < y� < K,0 < x� < K
d deviation between ammensal and adversarial populations, for the

= 2.5; a22 = 0.12; q2 = 0.2; E2 = 5.31. Fig. 1b. The phase portrait

= 3.15;a11 = 0.02; a12 = 0.02; q1 = 0.15; E1 = 5.84; a2 = 2.5;



Fig. 2 a. The population’s variation versus time, with x ¼ 3; y ¼ 2 and the deviation between ammensal and adversarial populations, for

the parameters a1 = 4.18; a11 = 0.11; a12 = 0.7459; q1 = 0.064; E1 = 9.4; a2 = 1.35; a22 = 0.11; q2 = 0.116; E2 = 7.5. Fig. 2b. he phase

portrait between the ammensal and adversial population for the parameters a1 = 4.18; a11 = 0.11; a12 = 0.7459; q1 = 0.064; E1 = 9.4;

a2 = 1.35; a22 = 0.11; q2 = 0.116; E2 = 7.5.
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If the inequality hold,F Kð Þ > 0,F 0ð Þ < 0,F0 x�ð Þ > 0 ,

F0 y�ð Þ > 0 forx� ¼ xð Þd , y� ¼ yð Þd then E1ð Þd ¼ 1
q1

a1 � a11½
c1

p1q1
� a12

c2
p2q2

�,and E2ð Þd ¼ 1
q2

a2 � a22
c2

p2q2

h i
Hence, when the optimal equilibrium.

xð Þd; yð Þd
� 

is determined, the optimal harvesting effect

E1ð Þd and E2ð Þd also be determined easily. It is noted

that ki tð Þ edt where i ¼ 1; 2 in an optimum equilibrium inde-
pendent of time, Hence ast ! 1, they remain the same.

9. Conclusions

This study resulted in the development of a particular model of

two distinct species (Ammensal and Adversarial) that is effec-
tive in that it contains a syneco-system in which both species
are harvested. With the help of the Routh–Hurwitz criteria

and the Lyapunov function, the local stability and global sta-
bility of a system are thoroughly addressed and studied. With
the use of Pontryagin’s maximal principle, the concept of bio-
nomic equilibrium, as well as the harvesting strategy, can be

calculated for this model. The numerical results obtained are
consistent with the analytical computations of an eco-system
model consisting of two species, and as a result, this determin-

istic model is considered stable. Model stability is illustrated in
Figs. 1 and 2, where the parameters of the system trajectory
converge to a point inside the system’s interior equilibrium

point.
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