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Objectives: Diseases of the middle ear can interfere with normal sound 
transmission, which results in conductive hearing loss. Since video 
pneumatic otoscopy (VPO) findings reveal not only the presence of mid-
dle ear effusions but also dynamic movements of the tympanic mem-
brane and part of the ossicles, analyzing VPO images was expected to be 
useful in predicting the presence of middle ear transmission problems. 
Using a convolutional neural network (CNN), a deep neural network 
implementing computer vision, this preliminary study aimed to create a 
deep learning model that detects the presence of an air-bone gap, con-
ductive component of hearing loss, by analyzing VPO findings.

Design: The medical records of adult patients who underwent VPO tests 
and pure-tone audiometry (PTA) on the same day were reviewed for 
enrollment. Conductive hearing loss was defined as an average air-bone 
gap of more than 10 dB at 0.5, 1, 2, and 4 kHz on PTA. Two significant 
images from the original VPO videos, at the most medial position on 
positive pressure and the most laterally displaced position on negative 
pressure, were used for the analysis. Applying multi-column CNN archi-
tectures with individual backbones of pretrained CNN versions, the per-
formance of each model was evaluated and compared for Inception-v3, 
VGG-16 or ResNet-50. The diagnostic accuracy predicting the presence 
of conductive component of hearing loss of the selected deep learning 
algorithm used was compared with experienced otologists.

Results: The conductive hearing loss group consisted of 57 cases (mean 
air-bone gap = 25 ± 8 dB): 21 ears with effusion, 14 ears with malleus-
incus fixation, 15 ears with stapes fixation including otosclerosis, one 
ear with a loose incus-stapes joint, 3 cases with adhesive otitis media, 
and 3 ears with middle ear masses including congenital cholesteatoma. 
The control group consisted of 76 cases with normal hearing thresholds 
without air-bone gaps. A total of 1130 original images including repeated 
measurements were obtained for the analysis. Of the various network 
architectures designed, the best was to feed each of the images into 
the individual backbones of Inception-v3 (three-column architecture) 
and concatenate the feature maps after the last convolutional layer from 
each column. In the selected model, the average performance of 10-fold 
cross-validation in predicting conductive hearing loss was 0.972 mean 
areas under the curve (mAUC), 91.6% sensitivity, 96.0% specificity, 

94.4% positive predictive value, 93.9% negative predictive value, and 
94.1% accuracy, which was superior to that of experienced otologists, 
whose performance had 0.773 mAUC and 79.0% accuracy on average. 
The algorithm detected over 85% of cases with stapes fixations or ossic-
ular chain problems other than malleus-incus fixations. Visualization of 
the region of interest in the deep learning model revealed that the algo-
rithm made decisions generally based on findings in the malleus and 
nearby tympanic membrane.

Conclusions: In this preliminary study, the deep learning algorithm cre-
ated to analyze VPO images successfully detected the presence of con-
ductive hearing losses caused by middle ear effusion, ossicular fixation, 
otosclerosis, and adhesive otitis media. Interpretation of VPO using the 
deep learning algorithm showed promise as a diagnostic tool to differ-
entiate conductive hearing loss from sensorineural hearing loss, which 
would be especially useful for patients with poor cooperation.

Key words: Air bone gap, Convolutional neural network, Machine learn-
ing, Malleus incus fixation, Middle ear effusion, Ossicular fixation, Otitis 
media, Otosclerosis, Pneumatic otoscope, Tympanic membrane.

(Ear & Hearing 2022;43;1563–1573)

INTRODUCTION

The pneumatic otoscope was first introduced by Dr. E. 
Siegle in 1864 to obtain better information on the mobility of 
the tympanic membrane (TM) especially in poorly cooperative 
patients (Schwartz 1980). It recently has been widely used as a 
useful and easy diagnostic tool for middle ear effusions (MEE) 
(Mains & Toner 1989; Jones & Kaleida 2003; Rosenfeld et al. 
2004; Harris et al. 2005; Cho et al. 2009; Lee et al. 2011; King 
& Couch 2015; Rosenfeld et al. 2016). By connecting a pneu-
matic otoscope to a high-resolution endoscope and video cam-
era to perform a video pneumatic otoscopy (VPO), clinicians 
can share their findings on a screen and record dynamic move-
ments as video (Cho et al. 2009; Lee et al. 2011). In addition, 
since the VPO findings reveal not only the presence of middle 
ear fluids but also dynamic movements of the TM and part of 
the ossicles, analyzing VPO images could also be useful for 
evaluating middle ear conditions other than MEE. When differ-
entiating conductive hearing loss in patients with intact TM, for 
example, the diagnostic accuracy of VPO in predicting malleus-
incus fixation was reported to be comparable to that of temporal 
bone CT (Lee et al. 2011).

Advances in machine learning technology allow compu-
tational models to learn from vast amounts of data, and their 
application is widening. The most commonly used algorithm in 
the field of computer vision is the convolutional neural network 
(CNN), whose architecture was inspired by the connectivity 
pattern of the neurons in the human visual cortex; it is espe-
cially useful for object finding and image recognition (Lecun et 
al. 1998; LeCun et al. 2015; Schmidhuber 2015). Since about 
2012, a growing number of studies in various medical fields 
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have reported promising results on automated diagnosis from 
medical images using deep learning (Cha et al. 2019; Kim et al. 
2019; Liu et al. 2019; Cho et al. 2020; Khan et al. 2020; Park 
et al. 2021; Byun et al. 2021). In a systematic review and meta-
analysis, the diagnostic performance of deep learning models 
was reported to be equivalent to that of health-care profession-
als (Liu et al. 2019).

Apart from replacing human experts, we can expect to use 
deep learning algorithms to detect pathological conditions that 
cannot be recognized by human vision. In this study, we hypoth-
esized that a deep learning algorithm would be able to interpret 
the VPO images to automatically detect the presence or absence 
of an air-bone gap (AB gap) shown in pure-tone audiometry 
(PTA). If the conductive component of hearing loss can be 
successfully distinguished from sensorineural hearing loss via 
office-based pneumatic otoscopy, it would be useful in clinics 
without facilities for bone conduction hearing tests as well as 
for poorly cooperative patients such as people with disabilities 
or pediatric patients. Hence, the aim of this pilot study was to 
develop a deep learning model for detecting conductive hearing 
loss via VPO images, and to compare its performance with that 
of experienced clinical otologists.

MATERIALS AND METHODS

Patients and Dataset
The medical records of patients aged 18 years and older who 

underwent VPO tests and PTA on the same day from 2007 to 
2019 were reviewed for enrollment in Samsung Medical Center, 
a tertiary referral hospital. The pneumatic otoscopy was per-
formed in patients who complained of hearing loss and showed 
intact TM. Conductive hearing loss was defined as an average 
AB gap of more than 10 dB at 0.5, 1, 2, and 4 kHz on PTA. In 
the cases with conductive hearing losses (CHL group), cases 
confirmed with a specific causative diagnosis through an oto-
logic procedure or exploratory tympanotomy were enrolled for 
the analysis, as follows: MEE, ossicular fixation, otosclerosis, 
middle ear mass, congenital cholesteatoma, and adhesive otitis 
media. Since VPO can only be performed in ears with intact 
TMs, cases with TM perforations were not included. Incomplete 
VPO images with poorly visualized landmarks (i.e., cerumen 
covering the malleus or no visualization of posterior annulus of 
TM) in the video were excluded from the analysis. The control 
group (non-CHL group) consisted of cases with normal hearing 
thresholds without AB gaps.

This study was approved by the Institutional Review Board 
of Samsung Medical Center and performed in accordance with 
the Declaration of Helsinki (IRB No.2019-10-171). As it was a 
retrospective study using anonymous clinical data, written con-
sent was waived since it met the document exemption require-
ments for informed consent.

Video Pneumatic Otoscopy and Recording
Pneumatic otoscopy was performed using a HAWKE 

Pneumatic adaptor (model no. 119500) distributed by Karl Storz 
Endoscopy-America, Inc (El Segundo, CA, USA) (Fig.  1). 
The findings were displayed with a CCD camera (OTV-SP1) 
and a video monitor system (LMD-2140MD) manufactured by 
Olympus (Tokyo, Japan), and recorded with a video capture 
adaptor (miroVIDEO DC 30) by Pinnacle Systems (Mountain 
View, CA, USA). The video files were saved at a resolution of 

72 pixels per inch in MPEG format (352 × 240 pixels, 29.97 
frames per second) from 2007 to 2014, and in WMV format 
(320 × 240 pixels, 30 fps) afterwards.

All included VPO was performed by a single senior otologist 
and involved the following: (1) positioning of the pneumatic 
otoscope with a half-squeezed rubber bulb, (2) airtight sealing 
of the ear canal with an appropriate ear speculum, (3) gently 
applying initial positive pressure to cause medial movement of 
the TM, followed by negative pressure to pull the TM laterally, 
(4) repeatedly applying positive and negative pressure while 
recording the movements of the TM.

Image Preparation
A cycle of TM motion was defined based on the point at 

which the TM returned to its original position after applying pos-
itive and negative pressure once each. As in previous VPO stud-
ies (Cho et al. 2009; Lee et al. 2011), two significant images in 
each cycle were selected, namely at the most medial position on 
positive pressure (POS image) and the most lateral position on 
negative pressure (NEG image) (Fig. 2A). For each VPO video, 
up to 5 cycles were included in the analysis, in order (Fig. 2B).

Selected significant frames were extracted from the video 
using the Imageio library for PythonTM (Python Software 
Foundation, Wilmington, DE, USA). The images obtained were 
adjusted to an RGB image with three channels with a resolution 
of 200 pixels per inch, and were normalized by the method of 
mean subtraction.

Image augmentation was performed at a scale of 60 times. 
For all images, rotations of 0, 5, 10, 15, 30 degrees, left-right 
flips, and cropping with pixel shifts of 10, 13, and 16 were 
applied.

Deep Learning Algorithm: Training and 
Cross-Validation

Pretrained versions of CNN [Inception-v3, VGG-16, and 
ResNet-50 (Simonyan & Zisserman 2014; Szegedy et al. 2015; 
He et al. 2015; Szegedy et al. 2016)] were applied to classify 
VPO images into two diagnostic groups: CHL and non-CHL 
groups.

It was natural to come up with a deep learning model archi-
tecture that takes both POS and NEG images within a cycle 
simultaneously as inputs because clinicians can obtain infor-
mation from dynamic movements of TM between those images 

Fig. 1. Pneumatic adaptor with rubber bulb connected to an endoscope.
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(Cho et al. 2009; Lee et al. 2011). As a method of feeding mul-
tiple images in parallel into a deep learning model, a multi-
column CNN has been suggested and showed its effectiveness 
(Ciresan et al. 2012; Zhang et al. 2016; Jin et al. 2019; Choi et 
al. 2021). Therefore, we devised multi-column CNN models to 
train both POS and NEG images simultaneously, where the fea-
tures from dynamic input images of each column are abstracted 
independently and combined by various arithmetic operations 
(concatenate, summation, or subtraction) at the near-endpoint.

To find the most effective multi-column learning model, 
various CNN architectures were trained using Inception-v3 
(Fig. 3). At first, POS and NEG images were fed into the indi-
vidual backbones of Inception-v3, and the feature maps after 
the last convolutional layers from each CNN backbone (a col-
umn) were concatenated (Model 1). Thus, Model 1 tries to learn 
simultaneously on multiple CNN backbones (multi-column 
architecture) with a single loss function. The main advantage 
of the multi-column architecture is that the CNN models can 
capture representations of the data by considering multiple 
image inputs simultaneously. Model 2 employed element-wise 
summation or subtraction using the last convolution output fea-
ture maps of each POS and NEG image column instead of the 
channel-wise concatenation as in Model 1. Lastly, in Model 3, 
an additional column of difference images from POS and NEG 
images was added, and the feature maps from the three columns 
were summed or concatenated to build a final classifier (Fig. 3). 
Then, a selected learning model was tested on additional net-
works of which backbones were VGG-16 and ResNet-50.

The training set included 90% of all images, and the test set 
contained the remaining 10%. For unbiased learning, training 
images were randomly selected to include diagnoses of conduc-
tive hearing loss selected as randomly as possible. Tenfold cross-
validations were performed due to the small amount of input data.

Computing was performed on Linux machines with CPU 
Intel Xeon Processors E5-2620 v4 @ 2.10GHz and GPU 
NVIDIA GeForce GTX 1080Ti.

Assessment of Performance
The performance of the model was assessed by the areas 

under the curve (AUC) of the receiver operating characteristic 
(ROC) curve reflecting the sensitivity and specificity of model 
predictions. The 95% confidence intervals (CIs) of AUCs 
were also calculated. After reading the Excel file containing 
the prediction results into Python using the Pandas library, a 
ROC curve was drawn and the AUC was calculated using the 
Matplotlib and the sklearn package. Sensitivity, specificity, 
positive predictive value (PPV), and negative predictive value 
(NPV) were calculated from the point of the maximum Youden 
index (sensitivity + specificity − 1) of the ROC curves.

The diagnostic accuracy of the algorithm was compared to 
that of three experienced clinical otologists who had been practic-
ing in the otology field for more than 8 years. One of these experts 
(Otologist 1) had been using VPO in routine clinical practice, 
while the others (Otologist 2 and 3) used VPO tests occasionally 
when needed. At first, all selected test images, with paired POS 
and NEG images, were randomly presented to the human experts 
without clinical information to record their decisions about the 
presence or absence of conductive hearing loss. Next, the original 
VPO videos of those cases were presented in a separate section in 
the same way, and diagnostic accuracy was calculated.

For visual interpretability, the regions of interest for the mod-
els to make predictions were visualized as heat maps using an 
explainable AI technique, Gradient-weighted Class Activation 
Mapping (Grad-CAM) (Selvaraju et al. 2017).

RESULTS

Dataset
A total of 133 ears were included in this study. There were 57 

in the CHL group (mean AB gap, mABG ± SD = 25 ± 8 dB): 21 
ears with MEE (mABG 25 dB), 14 with malleus-incus fixation 
(mABG 21 dB), 15 with stapes fixation including otosclerosis 
(mABG 26 dB), 1 with incus-stapes joint loosening (ABG 37 

Fig. 2. Selected images from a VPO video. A, POS and NEG images of a case without conductive hearing loss. B, Multiple POS images, one for each repeated 
cycle, in a case with conductive hearing loss. NEG image, most lateral image in negative pressure on pneumatic otoscopy; POS image, most medial image in 
positive pressure on pneumatic otoscopy; VPO, video pneumatic otoscopy.
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dB), 3 with adhesive otitis media (mABG 22 dB), and 3 with 
middle ear masses including congenital cholesteatoma (mABG 
35 dB) (Figs. 4, 5). There were 76 in the non-CHL group. There 
was an average of 4.3 repeated measurement records for each 
case; 240 cycles were included in the CHL group and 325 in the 
non-CHL group (CHL: non-CHL = 1: 1.35). Two images, one 
POS and one NEG, from each cycle were extracted, and a total 
of 1130 original images were used in the analysis.

Performances of the Multi-Column CNN Models
The optimal hyper-parameters acquired from the experi-

ments were 0.001 for learning rate, 16 for the batch size, and 
Stochastic Gradient Descent for the optimizer when trained 
for 30 epochs without applying further fine-tuning or learning 
scheduling.

The classification performances of the models, measured in 
mean AUCs (mAUCs) of 10-fold tests, are shown in Figure 6. 
In the two-column CNN algorithms (Models 1 and 2), training 

with subtracted features performed better in predicting CHL 
(mAUC 0.971 ± 0.125) than feature concatenation or summa-
tion. In the three-column approach (Model 3), concatenated fea-
ture training gave the highest mAUC (0.972 ± 0.134, 95% CI: 
0.949 to 0.991) of all the models (Fig. 6).

Performances of the CNN Networks
The performance of Inception-v3, ResNet-50, and VGG-

16 with the Model 3 concatenation approach was shown in 
Figure 7. The average classification performances of three deep 
learning networks were as follows: 0.972 ± 0.049 (95% CI: 
0.949 to 0.991) with Inception-v3, 0.965 ± 0.061 (95% CI: 0.934 
to 0.987) with ResNet-50, and 0.952 ± 0.070 (95% CI: 0.909 to 
0.985) with VGG-16 (Fig. 7). Regarding the model complex-
ity, number of parameters were 24 million for Inception-v3, 
25 million for ResNet-50, and 138 million for VGG-16. The 
three-column concatenated feature training (Model 3) using 
Inception-v3 provided the best prediction (highest mAUC) with 

Fig. 3. Schematic diagram of multi-column deep learning models. The features of each image are abstracted independently through each column, and the last 
feature layers were joined arithmetically by the ways in Models 1 to 3, which were designed to identify the most effective learning model.
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the lowest complexity of all the models and was selected as a 
representative deep learning model.

Comparison With Experienced Otologists
The performance of the invited otologists was better with 

the original videos (mAUC 0.776) than with the selected still 
images (mAUC 0.697) (Fig.  8). The most accurate judgment 
was made by Otologist 1 using the original videos, with 98.7% 
specificity, 97.1% PPV, and 81.2% accuracy (Fig. 8) (Table 1). 
Overall, the accuracy of the deep learning algorithm was higher 
than that of the otologists (Fig. 9) (Table 1). The deep learning 
algorithm correctly predicted hearing loss in 13/15 (86.7%) of 

the cases with stapes fixations, while the otologists diagnosed 
only 1.6/15 (11.1%) of them, on average (Fig. 9).

Visualization of the region of interest in the deep learning 
model revealed that the algorithm made decisions generally 
based on findings for the malleus and nearby TM (Figs. 10, 11).

DISCUSSION

In this study, a deep learning algorithm for analyzing VPO 
images was developed, and its usefulness in detecting the pres-
ence of conductive hearing loss (AB gap > 10 dB in pure tone 
audiometry) was assessed. Two significant still VPO images, 
the most medial on positive pressure and the most lateral on 

Fig. 4. Cases with conductive hearing loss at negative pressure during video pneumatic otoscopy: A, middle ear effusion; B, malleus-incus fixation; C, stapes 
fixation; D, loose incus-stapes joint; E, adhesive otitis media; F, middle ear mass (congenital cholesteatoma involving the ossicular chain).

Fig. 5. Air-bone gaps of the cases according to the causative diagnosis. There was no significant difference among the diagnostic groups (p = 0.194 by one-way 
analysis of variance test). Black bars and numbers represent average air-bone gaps. Error bars indicate 1 SD.
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Fig. 6. The AUC of the ROC curves for the multi-column CNN models using Inception-v3 backbones. Mean AUCs were noted at the right-bottom of each 
graph. Sensitivity and specificity were calculated from the point of the maximal Youden index (red dots) of the ROC curves. The highest mAUC was observed 
in Model 3 concatenated features model. (ROC curves from 10-folds, thin lines; 1 SD, light-blue shadow; Youden index, sensitivity + specificity – 1). AUC 
indicates areas under the curve; CNN, convolutional neural network; ROC, receiver operating characteristic.

Fig. 7. The AUC of the ROC curves for the CNN networks (Inception-v3, ResNet-50, and VGG-16). Mean AUCs were noted at the right-bottom of each graph. 
Sensitivity and specificity were calculated from the point of the maximal Youden index (red dots) of the ROC curves. The highest mAUC was noted in the 
Inception-v3 network. (ROC curves from 10-folds, thin lines; 1 SD, light-blue shadow; Youden index, sensitivity + specificity – 1). AUC indicates areas under 
the curve; CNN, convolutional neural network; ROC, receiver operating characteristic.
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Fig. 8. The AUC of the receiver operating characteristic curves for the selected deep learning algorithm and the invited experts. The otologists were required to 
judge the presence or absence of conductive hearing loss from the selected still images (circles and thick sky-blue) and original VPO videos (squares and thick 
lines), in separate test sections. AUC indicates areas under the curve; VPO, video pneumatic otoscopy.

TABLE 1. The diagnostic accuracies of the selected deep learning model and the invited otologists in predicting the presence of  
conductive hearing loss via video pneumatic otoscopy video

 Deep Learning Otologist 1 Otologist 2 Otologist 3 Otologists on Average

Sensitivity 91.6 57.9 70.2 68.4 65.5
Specificity 96.0 98.7 81.6 86.9 89.0
Positive predictive value 94.4 97.0 74.1 79.6 81.8
Negative predictive value 93.8 75.8 78.5 78.6 77.5
Accuracy 94.1 81.2 76.7 78.9 79.0

Fig. 9. Bar graphs showing the percentages of correct predictions for the presence of air-bone gaps (blue-filled), by the deep learning algorithm and the human 
experts, according to causative diagnosis of conductive hearing loss.
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negative pressure, extracted from each of the original VPO 
videos were used in the analysis (Fig. 2). Among CNN models 
tested, the multi-column concatenated model with Inception-v3 
(Fig.  3) gave the highest mAUC of 0.972 (95% CI: 0.949 to 
0.991), 91.6% sensitivity, 96.0% specificity, 94.4% PPV, 93.9% 
NPV, and 94.1% accuracy (Figs. 6, 7), which was superior to 
that of the invited human experts, who had 0.773 mAUC and 
79.0% accuracy on average (Fig.  8). In stapes fixations, the 
algorithm correctly predicted over 86% of cases as having con-
ductive components of hearing loss (Fig. 9). To the best of our 
knowledge, the present study is the first to apply the pneumatic 
otoscopy to predict conductive component of hearing loss, as 
well as the first to develop a deep learning algorithm interpret-
ing VPO findings.

There has been several deep learning researches on medical 
images in otologic field (Cho et al. 2020; Park et al. 2021; Byun 
et al. 2021). For TM findings, previous studies have mainly used 
deep learning to classify static TM images, without applying 
pressure changes, into disease categories suggested by human 
specialists (Cha et al. 2019; Khan et al. 2020; Byun et al. 2021). 
In those studies, however, the best performance of the deep 
learning algorithms did not exceed that of the human special-
ists who set the gold standard. The present study attempted to 
detect functional abnormalities causing conductive hearing 
loss through the VPO findings, which is challenging for human 
experts and possibly more useful in clinical practice.

Previous studies have examined the usefulness of pneu-
matic otoscopy in diagnosis of conductive hearing loss due to 
malleus-incus fixations as well as otitis media with effusions 
(Schwartz 1980; Mains and Toner 1989; Rosenfeld et al. 2004; 
Harris et al. 2005; Lee et al. 2011). Although predicting mal-
leus-incus fixation by calculating geometric relations between 
the position of the umbo and annular rim in VPO were possible 
(Lee et al. 2011), it was still impossible to diagnose stapes fixa-
tions via human visual perception of the TM. In this study, we 
hypothesized that a deep learning model with a convolutional 
network could detect the presence of conductive component 
of hearing loss by referencing clues contained in VPO images. 
Interestingly, this preliminary study showed that CNN networks 
successfully predicted the presence of AB gaps even in otoscle-
rosis (Fig. 9).

We compared the performance of different deep learning 
models including VGG-16, ReNet50, and Inception-v3, and the 
results showed Inception-v3 with three-column concatenated 
features model generated the highest mAUC, although differ-
ences were not statistically significant (p > 0.05 by analysis 
of variance tests). In our data, the model performance was not 
related to the model complexity, as the number of parameters 
was the lowest in Inception-v3. Due to the familiarity and inter-
pretability of the deep learning models were considered similar 
in all our models, we selected the representative model with the 
highest mAUC (Fig. 7).

Fig. 10. Heat maps of the regions of interest of the deep learning algorithm in correctly predicted cases. OME indicates otitis media with effusion; POS image, 
most medial image in positive pressure on pneumatic otoscopy; NEG image, most lateral image in negative pressure on pneumatic otoscopy.
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Hearing loss in MEE is known to be due to a reduction of 
umbo velocity affecting mid-to-high frequency sounds, with 
the additional effect of an air-space reduction on low frequency 
sounds (Ravicz et al. 2004). In this study, the region of inter-
est to the algorithm was the umbo area, especially at negative 
pressures (Fig. 10B). It is plausible to look at the umbo in NEG 
images, in the light of a previous report showing that the posi-
tion of the umbo at negative pressure was significantly different 
between MEE and normal ear (Cho et al. 2009). Another dif-
ference in MEE was reported as the increased positive pressure 
causes the initial TM movement, but this unfortunately cannot 
be seen in VPO videos. This may provide a possible explanation 
for why areas of the malleus and pars flaccida somewhat distant 
from the umbo were observed during decision-making for POS 
images (Fig. 10B). If the examiner tended to increase the air 
pressure in performing VPO tests in MEE, those areas may have 
provided the deep learning algorithm with some clues.

In cases with malleus-incus fixation, the umbo movement 
was reported to significantly decrease compared to normal ears 
(Koike et al. 2005; Nakajima et al. 2005; Lee et al. 2011). As 

expected, the limited movement of the malleus could also be 
directly identified from the VPO images and was accurately pre-
dicted by both the deep learning model and the human experts 
(Fig. 9). In a case in which all the otologists incorrectly pre-
dicted no hearing loss, exploratory tympanotomy revealed a 
hypo-mobile malleus with absent incus. The algorithm correctly 
detected hearing loss in this case.

When the stapedial annular ligament is restrained, the mobil-
ity of the malleus can also be affected through changes of ossic-
ular movement pattern and umbo velocity (Zhao et al. 2002; 
Nakajima et al. 2005; Kanzara & Virk 2017). In this study, 
the deep learning algorithm correctly predicted hearing loss 
in 86.7% of otosclerosis cases, while the otologists diagnosed 
only 11.1% of those cases on average (Fig. 9). The heat maps 
show that the model made predictions based on the broad umbo 
regions in both the POS and NEG images (Fig. 10D), which 
may be explained by the effect of stapes fixation on malleus 
mobility described above. In two cases, where the algorithm did 
not predict conductive hearing loss, AB gaps were 25 dB and 
41.25 dB, which were not different from the correctly predicted 

Fig. 11. Heat maps of the regions of interest of the deep learning algorithm in examples of wrong predictions. Misclassification of a non-CHL group as a CHL 
group was observed in a tympanic membrane with tympanosclerotic plaque and healed perforation (A). The regions of interest are also visualized in examples 
where diseased ears were incorrectly assigned to the non-CHL group (B–C). ABG indicates air-bone gap; CHL, conductive hearing loss; NEG image, most 
lateral image in negative pressure on pneumatic otoscopy; POS image, most medial image in positive pressure on pneumatic otoscopy.
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cases (mABG 26.7 dB) (p > 0.05). Referring to the heat map, 
these wrong predictions might be caused by inadequate regions 
of interest (Fig. 11C).

The algorithm also gave a good performance in detecting 
the presence of conductive hearing loss caused by limitations of 
mobility such as in adhesive otitis media and benign tumor of 
the middle ear. However, cases with loose incus-stapes joint and 
congenital cholesteatoma eroding the incus-stapes joint were 
incorrectly predicted as normal hearing, presumably because of 
the lack of similar cases with hypermobility (Fig. 11B).

VPO is a practical test that can be performed in clinics by sim-
ply adding a VPO device to existing oto-endoscopic equipment. 
With two significant images at positive and negative pressures, 
the diagnostic accuracy of the deep learning algorithm was higher 
than that of otologists when predicting the conductive component 
of hearing loss due to middle ear diseases including MEE, ossicu-
lar fixation, adhesive otitis media, and middle ear mass. It can be 
useful in clinics without facilities for bone conduction hearing 
tests, as well as for pediatric patients who are not cooperative in 
audiometry or tuning fork tests. In patients complaining of hear-
ing loss, the possible presence of conductive hearing loss may 
be assessed with VPO during the initial endoscopic evaluation 
before audiometry. Given the cost and unsatisfactory sensitiv-
ity of high-resolution CT in assessing ossicular chain mobility 
or otosclerosis, automated prediction of AB gap can be a useful 
supplementary tool especially for diagnosing ossicular fixations. 
As a new evaluation tool, possible clinical burdens of prediction 
errors of this application would be minimal.

Since this was an early pilot study in interpreting VPO find-
ings using deep learning algorithms, many steps remain. First, 
the main limitation of the study was the unsatisfactory number 
of recorded VPO cases. To overcome the possibility of underfit-
ting or overfitting, the image data extracted from repeated mea-
surements was augmented by cropping, rotation, and flipping, 
and 10-fold cross-validation was adopted. In addition, wherever 
possible a variety of cases causing conductive hearing loss were 
included in the analysis. Nevertheless, there still remains a pit-
fall: it was difficult for the algorithm to learn rare cases that were 
not sufficiently included in the cases (e.g. a case of hypermobility 
due to ossicular chain discontinuity was misjudged as normal). 
Second, another limitation of VPO videos was that air pres-
sure changes and tactile information could not be quantified or 
recorded as images. If the pressures used to cause the TM move-
ments could be measured, then that would possibly improve the 
performance of the algorithm as well as the accuracy of human 
specialists. Third, there may be an issue of test standardization 
before the algorithm can be considered for general application. 
In this study, intertest variability was expected to be low as all 
the included tests were performed by a single senior otologist. 
We believe that a guideline for standard VPO testing method can 
be discussed and shared in academia, and resolve this issue in 
a short time. In addition, further research through prospective 
multi-center data collection is desirable for external validation, 
which can help overcome potential bias in modeling and show 
more robust results. Lastly, if multiple video frames could be put 
into the deep learning algorithm thanks to further increases in 
computing capacity, additional information regarding the tem-
poral pattern of movement might improve its performance.

This pilot study showed that use of the deep learning algo-
rithm to interpret VPO images could help differentiate conduc-
tive hearing loss from sensorineural hearing loss. We hope that, 

if it can be applied to future clinical practice, it will be particu-
larly useful in primary clinics without facilities for bone con-
duction hearing tests as well as in poorly cooperative patients 
such as people with disabilities or pediatric patients.
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