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Abstract: This analysis is interested in the dynamic flow of incompressible triple diffusive fluid flow-
ing through a linear stretched surface. The current study simulates when Boussinesq approximation
and MHD are significant. As for originality, a comparative study of all the results for opposing
and assisting flow cases is provided. Lie-group transformation is utilized to determine symmetry
depletions of partial differential equations. The transformed system of ordinary differential equations
is solved using the Runge-Kutta shooting technique. The impacts of magnetic parameter, buoyancy
ratio parameter of temperature and concentration, and Lewis number on velocity, temperature,
and concentration are depicted through graphs. We observed that the magnetic field parameter
decelerates in velocity distribution for both fluid flow cases. Additionally, the same phenomenon
was noticed with the buoyancy ratio parameters on both salt concentration distributions. Finally,
the influence of heat and mass transfer rates decreases for both fluid flow cases with an increase in
Lewis number.

Keywords: lie group transformations; triple diffusive convection; buoyancy forces; MHD

MSC: 76D05; 76W05; 76-10

1. Introduction

The flow of mass and heat transfer has many applications in science, industry, tech-
nical processes, and many theoretical or experimental disciplines. As examples, take
aerospace, power generation, automotive, materials, and chemical processing indus-
tries [1–3]. Magneto-hydro dynamics (MHD) is one of the branches of physics used to
analyze the fluids dynamics with the help of magnetic effects. Its applications have been
extensive in numerous disciplines ranging from the study of solar winds [4] to MHD-driven
biomedical sensors [5] and actuators [6,7]. Massoudi et al. [8] examined the impacts of
a nanofluid’s thermal radiation and magnetic field inside a nonagon inclined cavity em-
bedded in a porous medium. Massoudi et al. [9] used a MHD W-shaped inclined cavity
saturated with Ag/Al2O3 hybrid nanofluid for uniform heat generation/absorption. Lie
theory is a field of group theory that deals with continuous symmetry. It has a component
which is close to identity transformation. Sophie Lie devised symmetry analysis, also
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known as Lie group analysis, to identify point transformations that allow a differential
equation to be transferred to itself. Almost every known accurate integration technique for
ordinary and differential equations is gathered in this transformation [9]. The Lie group
transformation is a method of determining all aspects of a differential equation that does
not require any extempore hypotheses or foreknowledge of the equation.

For most nonlinear differential equations, the approximate solutions are numerical due
to the complexity of the problems [10]. He et al. [11] discussed on new analytical methods
for cleaning up the solution of nonlinear equations. Massoudi et al. [12] studied numerical
techniques on magneto natural convection of SWCNT nanofluid inside a T-inverted cavity.
There are many general methods for solving linear and nonlinear partial differential equa-
tions. The Lie group theory, explained in [13], is the usual approach. Symmetry groups
are invariant transformations that do not change the structure of the equations. Using
this transformation, one can find the exact solution of differential equations developed
by Sophie Lie about one century ago. Nowadays, the method is used widely. It creates a
new solution from an existing one, rather than looking for so-called similar solutions [14].
This transformation has an n-independent variable partial differential system that can be
converted to a system of n− 1 independent variables, and if n = 2, then the situation is
considered best. It is one of the most effective tools for developing similarity transforma-
tions. Scaling transformation is the most common tool used to apply to the boundary layer
equation in fluid dynamics. By reducing the number of independent variables, this trans-
formation converts a system of nonlinear coupled partial differential equations regulating
fluid motion into a system of coupled ordinary differential equations. Using nanofluid,
Uddin et al. [15] utilized this transformation to analyze the boundary layer in MHD fluid
flow on a stretched surface. MHD heat transfer in thermal slip using a semi-infinite domain
and Carreau fluid was discussed by Rehman et al. [16]. Using this transformation, many
researchers gave exact solutions to their problems [17,18].

The fluid motion created by the buoyancy forces is called free convection. Heat
transfer in free convection depends on fluid circulation over and around the object, which
is induced by temperature gradients, which create density gradients. In heat transfer, many
applications were developed, such as food heating processing and cooling systems in which
free convection is assertive. The sterilization process of food in cans and meat freezing
are controlled by free convection. In the presence of a chemical reaction, researchers [19]
analyzed an unsteady free convection MHD flow around a vertical cone in porous media
with variable heat and mass flux. A lot of research is carried out in the area of free
convection MHD flow [20–25].

In general, free convection is merely due to heat transfer and not in the mode of forced
flow. In gas or liquid, the density differences are induced by temperature differences.
Due to its numerous applications, the convective process has grown important over the
last century. Bernard started the convective process experiments after that carried out by
Rayleigh [26]. Triple diffusive free convection [27] develops when a fluid is applied to
three density gradients with different diffusion rates. In this study, the triple diffusion is
formulated by the diffusion of heat and species concentrations, a linear stability analysis for
triple diffusive convection in Oldroyd-B fluid is carried out, and the expression of Rayleigh
number for stationary and oscillatory convection is achieved [28]. Patil [29] examined a
quadratic mixed convective nanofluid flow over a wedge by considering viscous dissipation.
He observed that the rate of heat transfer increases with an increase in Biot number. In
the normal mode theory, introducing a Maxwell fluid to a saturated porous layer causes
triple diffusive convection [30]. In a time-dependent model, Khan et al. [31] investigated a
triple diffusive natural convective flow along with a vertical plate. The heat transfer rate
increased as the volume fraction distribution of nanoparticles increased. Triple diffusive
convective importance was analyzed [32–38].

Few works have been performed using Lie group transformation analysis, as per the
authors’ knowledge of the literature in most practical uses; however, the components of
mass and heat are inextricably linked. The heat and mass diffusion components, on the
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other hand, are invariably coupled in most real-world applications. This fact prompted us
to investigate the combined impacts of mass diffusion and heat on magnetohydrodynamic
free-convective flow in the boundary layer. As far as we can tell, the findings of this work
appear to be perfectly consistent with previous research, and due to their simplicity, easily
transferable to relevant applications.

2. Mathematical Model and Formulation

The rate of mass change and heat transfer performance of an electrically conducting
viscous fluid in a steady, triple-diffusive, two-dimensional hydro-magnetic flow follow.
A uniformly strong magnetic field B is introduced perpendicular to the flow direction.
Except for the influences of density variation on concentration and temperature, all liquid
properties are assumed to be uniform. The surface temperature should be maintained at Tw,
higher than the constant. With the help of Lie group transformation analysis, we studied a
triple-diffusive, free-convective, 2D, steady laminar flow through a stretching surface and
its incompressible fluid flow model.

Under the pre-defined assumptions mentioned above, the governing equations are
expressed as shown below [18].

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

= ϑ
∂2u
∂y2 +

[
gβT(T − T∞) + gβc1(C− C1∞) + gβc2(C− C2∞)− σB2

ρ
u
]

, (2)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 , (3)

u
∂C1

∂x
+ v

∂C1

∂y
= DS1

∂2C1

∂y2 , (4)

u
∂C2

∂x
+ v

∂C2

∂y
= DS2

∂2C2

∂y2 . (5)

Along the boundary conditions

u = uw, v = 0, T = Tw, C1 = C1w, C2 = C2w at η= 0,
u→ u∞, T → T∞, C1 → C1∞, C2 → C2∞ as η → ∞.

(6)

To non-dimensionalize the above-mentioned Equations from (1) to (5) together with
Equation (6), the following similarity transformations are considered.

u = u√
aϑ

, u = v√
aϑ

, x = x√
ϑ/a

, y = y√
ϑ/a

θ = T−T∞
Tw−T∞

, φ1 = C1−C1∞
C1w−C1∞

, φ2 = C2−C2∞
C2w−C2∞

.
(7)

We substitute above non-dimensional quantities into Equations (1)–(5), along with
the boundary conditions (6), and then complete simplification results in the following
non-dimensional differential equations:

∂u
∂x

+
∂v
∂y

= 0, (8)

u
∂u
∂x

+ v
∂u
∂y

=
∂2u
∂y2 −

σB2

ρa
u + λθ + NC1φ1 + NC2φ2, (9)

u
∂θ

∂x
+ v

∂θ

∂y
=

1
Pr

∂2θ

∂y2 , (10)

u
∂φ1

∂x
+ v

∂φ1

∂y
=

DS1

ν

∂2φ1

∂y2 , (11)
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u
∂φ2

∂x
+ v

∂φ2

∂y
=

DS2

ν

∂2φ2

∂y2 . (12)

With the boundary conditions

u = x, v = 0, θ = 1, φ1 = 1, φ2 = 1 at η= 0,
u→ 0, θ → 0, φ1 → 0, φ2 → 0 as η → ∞,

(13)

where λ = gβT∆T
a
√

aϑ
, NC1 =

gβC1
∆C1

a
√

aϑ
, NC2 =

gβC2 ∆C2

a
√

aϑ
are the thermal, salt_1, and salt_2 solutal

buoyancy ratios.

3. Scaling Transformations

The stream function ψ is introduced before scaling modifications are applied, as
demonstrated below [17]:

u =
∂ψ

∂y
and v = −∂ψ

∂x
(14)

Replace the above Equation (14) in to (8)–(12) together with the boundary conditions (13).
Obviously, Equation (8) is satisfied by them. Additionally, remaining equations are trans-
formed as below:

∂ψ

∂x
∂2ψ

∂x∂y
− ∂ψ

∂x
∂2ψ

∂y2 =
∂3ψ

∂y3 −
σB2

ρa
∂ψ

∂y
− λθ + NC1φ1 + NC2φ2, (15)

∂ψ

∂y
∂θ

∂x
− ∂ψ

∂x
∂θ

∂y
=

α

ν

∂2θ

∂y2 , (16)

∂ψ

∂y
∂φ1

∂x
− ∂ψ

∂x
∂φ1

∂y
=

DS1

ν

∂2φ1

∂y2 , (17)

∂ψ

∂y
∂φ2

∂x
− ∂ψ

∂x
∂φ2

∂y
=

DS2

ν

∂2φ2

∂y2 . (18)

With the boundary conditions

∂ψ
∂y = x, ∂ψ

∂x = 0, θ = 1, φ1 = 1, φ2 = 1 at η = 0,
∂ψ
∂y → 0, θ → 0, φ1 → 0, φ2 → 0 as η → ∞.

(19)

Additionally,

eε(r2−r3)
∂ψ∗

∂y∗
= 1, eε(r1−r3) = 0, e−εr4 θ∗ = 0. (20)

We suppose that ε, as a smaller scale transformation parameter. Then, the transformation
F (a specified set of Lie-group transformation analysis) is reflected as shown below:

F : x∗ = xeεr1 , y∗ = yeεr2 , ψ∗ = ψeεr3 ,
θ∗ = θeεr4 , φ1

∗ = φ1eεr5 , φ2
∗ = φ2eεr6 ,

(21)

where r1, r2, r3, r4, r5, r6 are real numbers. The point of the transformation defined through
(21) is to convert the coordinates as (x, y, ψ, θ, φ1, φ2) to (x∗, y∗, ψ∗, θ∗, φ1

∗, φ2
∗). With the

help of Lie group analysis mentioned in (15), Equations (15)–(18) are transformed as:

eε(r1+2r2−2r3)
[

∂ψ∗

∂x∗
∂2ψ∗

∂x∗∂y∗ −
∂ψ∗

∂x∗
∂2ψ∗

∂y∗2

]
= eε(3r2−r3) ∂3ψ∗

∂y∗3 − σB2

ρa eε(r2−r3)

−λeεr4 θ + NC1eεr5 φ1 + NC2eεr6 φ2,
(22)

eε(r1+r2−r3−r5)

[
∂ψ∗

∂y∗
∂θ∗

∂x∗
− ∂ψ∗

∂x∗
∂θ∗

∂y∗

]
=

a
ν

eε(2r2−r4)
∂2θ∗

∂y∗2 , (23)
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eε(r1+r2−r3−r5)

[
∂ψ∗

∂y∗
∂φ1
∗

∂x∗
− ∂ψ∗

∂x∗
∂φ1
∗

∂y∗

]
=

DS1

ν
eε(2r2−r5)

∂2φ1
∗

∂y∗2 , (24)

eε(r1+r2−r3−r6)

[
∂ψ∗

∂y∗
∂φ2
∗

∂x∗
− ∂ψ∗

∂x∗
∂φ2
∗

∂y∗

]
=

DS2

ν
eε(2r2−r6)

∂2φ2
∗

∂y∗2 . (25)

Equations (22)–(25) will remain invariant after the translation, if the exponent of this
converted system of equations which satisfies the resulting linear equations is as follows:

r1 = 2r2 − 2r3 = 3r2 − r3 = r2 − r3 = r4 = r5 = r6, (26)

r1 + r2 − r3 − r4 = 2r2 − r4, (27)

r1 + r2 − r3 − r5 = 2r2 − r5, (28)

r1 + r2 − r3 − r6 = 2r2 − r6. (29)

By solving above linear Equations (26)–(29) simultaneously, we find:

r1 = r1, r2 = 0, r3 = r1, r4 = 0, r5 = 0, r6 = 0. (30)

Substituting the above values (30) into the scaling transformations given in (21), we get:

F : x∗ = xeεr1 , y∗ = y, ψ∗ = ψeεr1 , θ∗ = θ, φ1
∗ = φ1, φ2

∗ = φ2. (31)

The Taylor series expansions are:

x∗ − x = xεr1, y∗ − y = 0, ψ∗ − ψ = ψεr1, θ∗ − θ = 0,
φ1
∗ − φ1 = 0, φ2

∗ − φ2 = 0.

A simple algebraic expression for the above transformations (31) with the help of
Taylor series expansion leads to a mono parametric group of transformations in the form of
the characteristic equation given below:

dx
xr1

=
dy
0

=
dψ

ψr1
=

dθ

0
=

dφ1

0
=

dφ2

0
. (32)

From Equation (32), we can easily obtain new similarity transformations as:

y = η, ψ = x f (η), θ = θ(η), φ1 = φ1(η), φ2 = φ2(η), (33)

where η is the similarity variable and f , θ, φ1, φ2 are the dependent variables. Now, we
substitute the above quantities specified in Equation (33) into PDEs (16)–(18) in boundary
conditions mentioned in (19). We obtain the set of ordinary differential equations as:

f ′′′ + f f
′′ − ( f ′)2 −M f ′ + λθ + NC1φ1 + NC2φ2 = 0, (34)

θ′′ + Pr f θ′ = 0, (35)

φ1
′′ + Le1 f φ1

′ = 0, (36)

φ2
′′ + Le2 f φ2

′ = 0. (37)

Together with the boundary conditions:

f ′ = 1, f = 0, θ = 1, φ1 = 1, φ2 = 1 at η = 0,
f ′ → 0, θ → 0, φ1 → 0, φ2 → 0 as η → ∞,

(38)
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with the predefined parameters

M = σB2

ρa , λ = gβT∆T
a
√

aϑ
, NC1 =

gβC1
∆C1

a
√

aϑ
, NC2 =

gβC2 ∆C2

a
√

aϑ
,

Pr = ν
α , Le1 = ν

DS1
, Le2 = ν

DS2
.

Furthermore, λ > 0 and λ < 0 represents buoyancy assisting flow and buoyancy
opposing flow, respectively.

4. Numerical Results and Discussion

The effects of triple diffusive free convective magnetohydrodynamic fluid flow in
a linearly stretching sheet were studied numerically. Lie group transformation analysis
converts a collection of nonlinear partial differential equations and boundary situations
into a set of ODEs. BVP4C resolved the system of the reduced nonlinear ODEs with
corresponding boundary conditions in MATLAB. Table 1 shows a great correlation between
the present results and the results of Ferdows et al. [17].

Table 1. Comparison values of Nusselt number θ′(0) for various values of Prandtl number when
M = λ = Nc1 = Nc2 = Le1 = Le2 = 0.

Pr
θ′(0)

Ferdows et al. [17] Present Results

1 0.9547 0.9546
2 1.4715 1.4711
3 1.8691 1.8672

The influences of M on the velocity f ′(η), temperature θ(η), salt_1, and salt_2 con-
centration fields φ1(η), φ2(η) on assisting flow (λ > 0) and opposing flow (λ < 0) are
shown in Figures 1–4. As illustrated in Figure 1, f ′(η) the surface decreases in assisting and
opposing flows. It can be seen that increasing the value of the magnetic field parameter
decreases the momentum boundary layer thickness. This is because the strong magnetic
field inside the boundary layer increases the Lorentz force, which strongly resists flow
in the opposite direction. It is also worth noting that the presence of a magnetic field
reduces velocity near the wall while increasing velocity far away. The effects of magnetic
parameters on temperature and concentration distributions are shown in Figures 2–4. As
the value rises, the fluid becomes warmer, raising the temperature. The thickness of the
thermal boundary layer is always increased by the presence of a magnetic field, and the
concentration field is likewise increased by the magnetic parameter.

The influences of the Prandtl number are seen in Figures 5–8. The dimensional velocity
profile grows as the Prandtl number increases in the opposing flow case and reduces in
the helping flow case, as seen in Figure 5. In contrast, in the natural convective flow of a
regular fluid over a vertical surface, the thickness of the hydrodynamic boundary layer
reduces as the Prandtl number grows, and the vertical flow velocity drops. It is worth
noting that, unlike in the classical analysis of natural convection on a vertical surface, where
the Prandtl number appears in the energy equation, the Prandtl number appears in the
momentum equation in the present analysis and thus has a different effect on the velocity
profiles than in the classical velocity profiles. The same phenomenon can be seen in the
salt_1 and salt_2 concentration profiles (see Figures 7 and 8). The temperature profile falls
as the Prandtl number grows, as shown in Figure 6. An increase in the Prandtl number
reduces the thermal boundary layer thickness, since the Prandtl number signifies the ratio
of momentum diffusivity to thermal diffusivity. In heat transfer problems, Pr controls the
thicknesses of the momentum and thermal boundary layers.
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Figure 1. M on velocity.

Figure 2. M on temperature.
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Figure 3. M on salt_1 concentration.

Figure 4. M on salt_2 concentration.
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Figure 5. Pr on velocity.

Figure 6. Pr on velocity temperature.
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Figure 7. Pr on salt_1 concentration.

Figure 8. Pr on salt_2 concentration.

Figures 9–16 illustrate the effects of buoyancy ratio parameters on velocity, tempera-
ture, and salt_1 and salt_2 concentration distributions. Increasing the values of buoyancy
ratio parameters increases the velocity for smaller values of η, as shown in Figures 9 and 13.
From the graphical representations of Figures 10–12 and 14, Figure 15, Figure 16 it is no-
ticed that an increase in buoyancy ratio decreases the temperature and salt_1 and salt_2
concentration profiles in both assisting and opposing cases.
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Figure 9. Nc1 on velocity.

Figure 10. Nc1 on temperature.
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Figure 11. Nc1 on salt_1 concentration.

Figure 12. Nc1 on salt_2 concentration.
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Figure 13. Nc2 on velocity.

Figure 14. Nc2 on temperature.
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Figure 15. Nc2 on salt_1 concentration.

Figure 16. Nc2 on salt_2 concentration.
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The velocity, temperature and concentration distributions f ′(η), θ(η), φ1(η) and φ2(η)
for various values of Lewis numbers Le2 and Le1 can be observed in Figures 17–24 for both
the flow circumstances. In helping flows, the dimensionless concentration increases with
increasing Lewis numbers inside the concentration boundary layer, whereas buoyancy
opposes and resists flows. Lewis number determines the thickness of the concentration
boundary layer physically. That is, the greater the Lewis number, the thinner the concentra-
tion boundary layer will be. For Lewis numbers, the dimensionless wall concentrations
decline quickly to zero in both buoyancy assisting and opposing flows, and the inside
wall concentration is equivalent to the ambient concentration. In fluid flow instances,
the thickness of the thermal boundary layer decreases while the momentum boundary
layer increases.

Figure 17. Le2 on velocity.

It is recognized that the friction factor rate was enhanced in both flow cases for an
increase in Lewis numbers Le1 and Le2. However, the influences of θ′(0), φ1

′(0), φ′2(0)
decreased in both the flow cases with an increase in Lewis number. The friction factor
coefficient decreased with increases in buoyancy ratio parameters Nc1 and Nc2, but the
opposite behavior was observed in the cases of Nusselt and Sherwood numbers. The
skin friction coefficient increased for an increase in magnetic field parameter, whereas
the opposite phenomena could be observed in both cases’ mass and heat transfer rates.
Finally, the Prandtl number increased the friction factor in assisting flow and decreased it
in opposing flow. The same behavior can also be observed φ′2(0) in both the assisting flow
(λ > 0) and opposing flow (λ < 0) cases.

The f
′′
(0), θ′(0) and φ′(0) plots for different values of the magnetic field parameter

M are shown in Figures 25–27. Figure 25 shows that as the value of M increases, f
′′
(0)

is enhanced at a rate of 0.290386 (λ > 0) or 0.26876 (λ < 0). Similarly, for assisting
and opposing flows, heat and mass transfer coefficients decrease at rates of −0.0235 and
−0.02999, and −0.02286 and −0.02946, respectively. Due to the buoyancy force, surface
shear stress is greater in assisting flow than in opposing flow.



Mathematics 2022, 10, 2456 16 of 31

Figure 18. Le2 on temperature.

Figure 19. Le2 on salt_1 concentration.
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Figure 20. Le2 on salt_2 concentration.

Figure 21. Le1 on velocity.



Mathematics 2022, 10, 2456 18 of 31

Figure 22. Le1 on temperature.

Figure 23. Le1 on salt_1 concentration.
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Figure 24. Le1 on salt_2 concentration.

Figure 25. Surface plots of the f
′′
(0) for dissimilar values of M.
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Figure 26. Surface plots of the θ′(0) for dissimilar values of M.

Figure 27. Surface plots of the φ′(0) for different values of M.

The skin friction coefficient θ′(0) and φ′(0) plots for different Pr values are shown in
Figures 28–30. As Pr grows, f

′′
(0) increases in assisting flow and falls in opposing flow,

as seen in Figure 28. The Sherwood number φ′(0) exhibits opposite behavior (Figure 30).
However, in both fluid flow cases, θ′(0) is increased (Figure 29).
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Figure 28. Surface plots for the f
′′
(0) for dissimilar values of Pr.

Figure 29. Surface plots for the θ′(0) for dissimilar values of Pr.
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Figure 30. Surface plots for the φ′(0) for dissimilar values of Pr.

Figures 31–33 depict the friction factor coefficient, θ′(0), and φ′(0) plots for different
values of Nc1. Figure 31 represents that for increasing values of Nc1, the friction factor
coefficient decreases in assisting and opposing flow cases. The rates of θ′(0) and φ′(0) rise
as the Prandtl number increases in both cases.

Figure 31. Surface plots for the f
′′
(0) for dissimilar values of Nc1.
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Figure 32. Surface plots for the θ′(0) for dissimilar values of Nc1.

Figure 33. Surface plots for the φ′(0) for dissimilar values of Nc1.

The f
′′
(0), θ′(0) and φ′(0) plots for various values of the buoyancy ratio parameter

Nc2 are shown in Figures 34–36. Figure 34 shows that when Nc2 increases, the skin friction
coefficient decreases at a rate of −0.31689 (λ > 0) or −0.32663 (λ < 0). For assisting and
opposing flow, the Nusselt and Sherwood numbers escalate rates of 0.019164 and 0.022813,
and 0.022813 and 0.026919, respectively.
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Figure 34. Surface plots for the f
′′
(0) for dissimilar values of Nc2.

Figure 35. Surface plots for the θ′(0) for dissimilar values of Nc2.
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Figure 36. Surface plots for the φ′(0) for dissimilar values of Nc2.

Figures 37–40 illustrate the shear stress, Nusselt number, and salt_1 and salt_2 Sher-
wood number plots for different values of Lewis number Le1. Figure 37 shows that for
increasing values of Le1, the skin friction coefficient increases at 0.045962 (assisting flow)
and 0.048975 (λ < 0) rates. The θ′(0) is decreased at the rates of −0.00653 and −0.00881 in
the fluid flow cases. The salt_1 Sherwood number for the Lewis number is increased in
assisting and opposing flow cases, whereas the reverse trend can be observed for salt_2
Sherwood in both cases.

Figure 37. Surface plots for the f
′′
(0) for dissimilar values of Le1.
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Figure 38. Surface plots for the θ′(0) for dissimilar values of Le1.

Figure 39. Surface plots for the φ1
′(0) for dissimilar values of Le1.
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Figure 40. Surface plots for the φ′2(0) for dissimilar values of Le1.

Figures 41–44 illustrate the shear stress, Nusselt number, and salts_1 and salt_2 Sher-
wood number plots for different values of Lewis number Le2. Figure 41 shows that increas-
ing values of Le2 f

′′
(0) escalate in both fluid flow cases. The Nusselt number is decreased

in both flow cases. Finally, the salt_1 Sherwood number decreased and the salt_2 Sherwood
number increased in both assisting and opposing flow cases.

Figure 41. Surface plots for the f
′′
(0) for dissimilar values of Le2.
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Figure 42. Surface plots for the θ′(0) for dissimilar values of Le2.

Figure 43. Surface plots for the φ1
′(0) for dissimilar values of Le2.
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Figure 44. Surface plots for the φ′2(0) for dissimilar values of Le2.

5. Concluding Remarks

A steady, incompressible, and laminar boundary layer was used to investigate the
effects of triple diffusion on boundary layer flow, heat, and mass transfer through a linearly
stretching sheet. Numerical findings for surface θ′(0) and φ′(0) were provided for various
values of the governing parameters. The following are the investigation’s principal findings:

1. The friction factor rate is enhanced in both fluid flow cases for increases in Lewis
numbers Le1 and Le2.

2. The friction factor coefficient decreases with increases in buoyancy ratio parame-
ters Nc1 and Nc2, but the opposite behavior can be observed for the Nusselt and
Sherwood numbers.

3. In the assisting flow case, the dimensionless concentration rises as the Lewis number
rises; for buoyancy, the opposing flow case also remains the same.

4. The magnetic field parameter decreased the velocity distribution by the effect of
Lorentz force.

5. In both assisting and opposing flow instances, the Prandtl number increases the skin
friction coefficient in assisting flow and decreases it in opposing flow in heat and mass
transfer rates.

6. Limitations and Future Scope
6.1. Limitations

1. The flow was considered as not time-dependent and incompressible.
2. The turbulence due to the hematite nanoparticles interaction was neglected.
3. Away from the object’s surface, viscous effects can be considered negligible, and

potential flow can be assumed.
4. The viscosity, conductivity, and density properties were constant.

6.2. Future Scope

1. Triple diffusion analysis can include variable viscosity and nonlinear convection
flow properties.

2. Variable conductivity and unsteady nonlinear flow characteristics of various flow
characteristics with chemical species in the triple diffusion process.
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3. The investigations mentioned above could also be extended by using various tech-
niques, such as mess-free methods, the finite-difference scheme, the spectral element
method, the finite element method, the Keller-box method, homotopy analysis, and
spectral methods.
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