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SUMMARY

Evaluation of the therapeutic potential of RNAi for
HIV infection has been hampered by the challenges
of siRNA delivery and lack of suitable animal models.
Using a delivery method for T cells, we show that
siRNA treatment can dramatically suppress HIV in-
fection. A CD7-specific single-chain antibody was
conjugated to oligo-9-arginine peptide (scFvCD7-
9R) for T cell-specific siRNA delivery in NOD/
SCIDIL2rg�/� mice reconstituted with human lym-
phocytes (Hu-PBL) or CD34+ hematopoietic stem
cells (Hu-HSC). In HIV-infected Hu-PBL mice, treat-
ment with anti-CCR5 (viral coreceptor) and antiviral
siRNAs complexed to scFvCD7-9R controlled viral
replication and prevented the disease-associated
CD4 T cell loss. This treatment also suppressed en-
dogenous virus and restored CD4 T cell counts in
mice reconstituted with HIV+ peripheral blood mono-
nuclear cells. Moreover, scFvCD7-9R could deliver
antiviral siRNAs to naive T cells in Hu-HSC mice
and effectively suppress viremia in infected mice.
Thus, siRNA therapy for HIV infection appears to be
feasible in a preclinical animal model.

INTRODUCTION

The potency and specificity of gene silencing by RNA interfer-

ence (RNAi) has raised hopes of developing a new class of
drugs to treat several diseases, including HIV infection (Manju-

nath et al., 2006; Rossi et al., 2007; Scherer et al., 2007; Shan-

kar et al., 2005). Many studies have shown the effectiveness of

RNAi in suppressing HIV replication in cell lines as well as in

primary human T cells and macrophages, the prime targets

of HIV (Lee et al., 2005; Novina et al., 2002; ter Brake et al.,

2006). Although the propensity of HIV for mutation is a con-

straint, this can be overcome through the use of siRNAs that

target highly conserved viral sequences and/or host genes

important for viral replication but relatively nonessential for

immune and/or cellular function, such as the viral coreceptor

CCR5 (Brake et al., 2008; Song et al., 2003a; von Eije et al.,

2007).

Despite the promise shown in in vitro studies, for RNAi to be-

come clinically useful, many parameters, including delivery to

susceptible cells, antiviral efficacy, and toxicity, need to be

tested in vivo. A major impediment for this is the lack of a suitable

small animal model that simulates human HIV infection. Immuno-

deficient mice transplanted with human peripheral blood leuko-

cytes (PBLs) or pieces of human fetal tissues containing hemato-

poietic stem cells (HSCs) can support HIV infection (Shacklett,

2008). However, the usefulness of these models is limited

by the short time frame of chimerism and the lack of systemic

spread of the virus after local infection of tissue implants.

Recently, immunodeficient mouse strains bearing a targeted

mutation in the common IL-2 receptor gamma chain (IL2rg�/�)

have been shown to serve as excellent models for HIV infection

(Berges et al., 2006, 2008). NOD/SCIDIL2rg�/� mice support

long-term multilineage hematopoiesis from transplanted

human CD34+ hematopoietic stem or progenitor cells (Hu-HSC

model) (Ishikawa et al., 2005; Watanabe et al., 2007), as well
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as short-term expansion of injected human PBLs that become

activated in a xenogenic response (Hu-PBL model) (Nakata

et al., 2005).

Another challenge is the delivery of siRNA to relevant cell types

in vivo. Systemic delivery of siRNA to T cells, the major targets of

HIV-1, is particularly difficult because they are resistant to siRNA

uptake even by conventional lipid-based transfection in vitro

(Goffinet and Keppler, 2006). Although T cells can be transduced

by viral vectors expressing shRNA, achieving stable transgene

expression is a challenge (Rossi et al., 2007). Moreover, their

use carries the risk of induction of immune response to the vector

itself, as well as the unpredictable effects of viral integration on

host gene expression in the case of retro- and lentiviral vectors.

Similar problems can be envisaged in generating T cells from

transduced CD34+ HSCs. Recently, antibody fragment-prot-

amine fusion proteins were used to deliver siRNAs into tumors

implanted in mice engineered to express T cell surface antigens

(Peer et al., 2007; Song et al., 2005). However, the applicability of

these approaches for siRNA delivery to primary T cells in HIV-1

infection remains untested.

We used a single-chain antibody (scFv) to the pan T cell protein

CD7 (Peipp et al., 2002), a surface antigen present on the majority

of human T cells. Because this receptor is rapidly internalized af-

ter antibody binding, it has been exploited for the targeted deliv-

ery of several monoclonal antibody (mAb)-toxin conjugates to T

cell lymphomas and leukemias in both preclinical studies and

clinical trials (Bremer et al., 2005; Frankel et al., 1997; Lazarovits

et al., 1993; Peipp et al., 2002). Although the exact function of

CD7 is unknown, CD7-deficient murine T lymphocytes respond

normally to stimuli (Bonilla et al., 1997), and engaging CD7 on

human T cell lines appears to have no deleterious effect on their

proliferation and viability (Bremer et al., 2005; Peipp et al., 2002).

In an earlier study, we showed that fusion of nine arginine resi-

dues to a neuronal cell-targeting peptide enabled siRNA delivery

to neuronal cells (Kumar et al., 2007). Here, we modified the CD7

scFv to include a Cys residue at its C-terminal end (scFvCD7Cys),

which allowed conjugation to a nona-d-arginine (9R) peptide for

targeted delivery of siRNA payloads into T cells. We demonstrate

the feasibility of this approach for T cell-specific siRNA delivery to

suppress HIV infection in humanized mice.

RESULTS

Oligo-9-Arginine-Conjugated scFvCD7 Delivers siRNA
Specifically to CD7-Expressing Human T Cells
scFvCD7 was expressed with an additional Cys residue at its

C-terminal end (scFvCD7Cys) and purified from bacterial

lysates. Pretreatment with recombinant scFvCD7Cys com-

pletely blocked binding of PE-labeled anti-CD7 antibody but

not antibodies to other T cell surface molecules, including CD3

and CD4 (Figure 1A). Binding of PE-anti-CD7 was restored by

12 hr after treatment with scFvCD7Cys, suggesting rapid inter-

nalization and turnover of the receptor (Figure 1B). To enable

siRNA binding, we conjugated scFvCD7Cys to a 9R peptide at

the C terminus (scFvCD7-9R). Electrophoretic gel mobility-shift

assay confirmed efficient siRNA binding to scFvCD7-9R at a min-

imal protein to nucleic acid ratio of about 2:1 (Figure 1C).
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scFvCD7-9R was able to transduce FITC-siRNA into primary

human CD3+ T cells, with efficiencies of nearly 95% with no

apparent toxicity (Figure 1D, upper panels). No uptake was ob-

served with FITC-siRNA alone or when combined with

scFvCD7Cys, 9R, or scFvCD7Cys mixed with 9R. Transfection

efficiencies with a commercial lipid reagent were 4-fold lower

than with scFvCD7-9R. T cell-specific delivery of siRNA was

confirmed by the absence of siRNA in similarly treated CD7� B

cells (CD19+) and monocyte-derived macrophages (CD14+)

(Figure 1D, lower panel). When PHA-activated human peripheral

blood mononuclear cells (PBMCs) were treated with scFvCD7-

9R/siCD4 complexes and surface CD4 expression was exam-

ined 60 hr later, the mean fluorescent intensity (MFI) of CD4

was reduced by almost one log unit on CD3+ T cells

(Figure 1E). The silencing was specific because CD8 expression

remained unaffected. CD4 expression was not reduced with

scFvCD7-9R/siLuc, siCD4 alone, or with 9R or scFvCD7Cys

(data not shown). Thus, scFvCD7-9R provides a reagent to

Figure 1. scFvCD7 Binds to CD7, and Conjugation of scFvCD7 to 9R

Allows siRNA Binding and Delivery to T Cells In Vitro

(A) Purified human CD3+ T cells were stained with antibodies to CD3, CD4, and

CD7 before or after treatment with scFvCD7Cys.

(B) CD7 expression was assessed at indicated times after preincubation with

scFvCD7Cys.

(C) siRNA was incubated with scFvCD7-9R or unconjugated scFvCD7Cys at

the indicated molar ratios for 15 min and electrophoresed on 1% agarose

gels. The position of the nonbound siRNA is indicated.

(D) Purified human CD3+ T cells (upper panels), CD19+ B cells (bottom panel),

and differentiated CD14+ monocyte-derived macrophages (bottom panel)

were treated with FITC-labeled siRNA alone (gray, filled histograms) or siRNA

mixed with the indicated reagents (black, open histograms).

(E) PHA-activated PBMCs were treated with anti-huCD4 siRNA complexed to

scFvCD7-9R. CD4 and CD8 expression levels on CD3+ T cells were monitored

60 hr later (black histograms). Grey, filled histograms depict control PBMCs

treated similarly with scFvCD7-9R/siLuc.



deliver siRNA and silence target gene expression specifically in

human T cells.

Intravenous Administration of scFvCD7-9R/siRNA
Silences Target Gene Expression in T Cells
in Hu-PBL Mice
The ability of scFvCD7-9R to deliver siRNA to T cells in vivo was

studied in the NOD/SCIDIL2rg�/� Hu-PBL mouse model, which

supports a high level of human peripheral blood leukocyte en-

graftment as early as 1 week after transplantation (Figure S1A

available online). Hu-PBL mice were intravenously (iv) injected

with scFvCD7-9R/siRNA complexes on two consecutive days,

and CD4 expression on peripheral blood T cells was examined

60 hr later. CD4 expression was significantly reduced on siCD4-

treated but not control siLuc-treated mice (Figure 2A, mean level

of peripheral CD3+CD4+ T cells was 7.5% ± 0.7% in treated mice

and 59.5% ± 10.7% in control mice, n = 3, p < 0.05). Again, CD8+

T cell levels were unchanged, confirming that silencing was re-

stricted to the targeted gene (28.5% ± 3.5% versus 23.3% ±

4.9%, respectively, in treated and control mice, n = 3, p > 0.05).

T cells from other organs, including liver and spleen, also showed

comparable CD4 knockdown (Figure 2B). When PBMCs from

scFvCD7-9R/siCD4-treated mice were infected with the T cell-

tropic HIVIIIB ex vivo, HIV-1 p24 levels were significantly reduced

in the culture supernatants, confirming reduced permissibility to

viral infection (Figure 2C). We also determined the duration of

gene silencing in vivo. Silencing was maximal during the first 3

days but was progressively lost, and by day 9, CD4 expression

returned to 70% of normal levels (Figure 2D).

Systemic Delivery of Antiviral siRNA/scFvCD7-9R
Complex Protects Hu-PBL Mice from HIV-1 Challenge
T cells in Hu-PBL mice express CCR5 and are susceptible to

R5-tropic strains of HIV (Fais et al., 1999; Nakata et al., 2005),

with infection resulting in a progressive loss of CD4 T cells

(Berges et al., 2006). A combination of siRNAs targeting the cel-

lular CCR5 and two to three conserved viral gene sequences has

been proposed as an optimal strategy to prevent the emergence

of escape mutants (Brake et al., 2008; von Eije et al., 2007). Thus,

Hu-PBL mice were treated with CCR5 siRNA (Song et al., 2003a)

to block viral entry, challenged with HIVBaL 2 days later, and fur-

ther treated by weekly administration of a combination of siRNAs

targeting CCR5 (to prevent viral spread) and conserved target

sequences in the viral Vif and Tat genes (to block viral replication)

(Lee et al., 2005; Surabhi and Gaynor, 2002) (Figure 3A). All

siRNAs were complexed to scFvCD7-9R prior to injection. As

early as 10 days after infection, CD4 T cell levels declined precip-

itously in all of the mock- and control siLuc-treated mice, with

CD4+CD3+ T cell percentages dropping to as low as 2% and

CD8+CD3+ percentages concomitantly increasing to over 95%

(Figures 3B and 3C). In sharp contrast, in three out of four antivi-

ral siRNA-treated mice, CD4 T cell levels remained essentially

normal even 4 weeks after infection (Figures 3B and 3C). Consis-

tent with changes in the CD4 T cells, viral replication (assessed

by serial measurement of serum p24 antigen levels by ELISA)

was high in the mock- and control siLuc-treated mice but unde-

tectable in three of the four relevant siRNA-treated mice (Fig-

ure 3D). In the single test mouse that was not protected, the
CD4 T cell loss exhibited slower kinetics (CD4/CD3 ratio of 0.6

at day 10 as opposed to a mean value of 0.016 in control mice),

and, correspondingly, the serum p24 levels tended to be lower.

In a separate experiment, we also compared the protection

afforded by siCCR5 alone versus combination therapy. Hu-

PBL mice were treated with scFvCD7-9R complexed to either

Figure 2. scFvCD7-9R-Mediated siRNA Uptake and Gene Silencing
in T Cells In Vivo in Hu-PBL Mice

(A and B) NOD/SCIDIL2rg�/�mice reconstituted with human PBMCs were in-

jected iv with siLuc (control) or siCD4 (test) complexed to scFvCD7-9R twice,

16 hr apart, and human CD3+ T cells in the peripheral blood, spleen, and liver

were analyzed for CD4 and CD8 expression 60 hr later. Representative dot

plots from one mouse (A) and cumulative data from 3 mice (B) are shown.

Asterisks indicate significant and ‘‘ns’’ no significant differences between

test and control groups. p < 0.05.

(C) PBMCs isolated from groups of Hu-PBL mice were PHA-stimulated and

infected with HIVIIIB. Culture supernatants collected on day 10 after infection

were tested for p24 antigen levels in triplicate by ELISA.

(D) Mice were treated with siRNA 20 days after reconstitution as in (A) three

times at 16 hr intervals, and CD4 and CD8 expression in peripheral blood T

cells were determined on days 3, 6, and 9 after the last injection.

Error bars indicate the standard deviation.
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siCCR5 or the triple siRNA combination as in Figure 3A. All

control mice displayed near complete loss of CD4+ T cells

and high levels of plasma p24 by day 13, whereas the CD4 ra-

tios were preserved both in mice treated with siCCR5 alone

and the triple siRNA combination (Figure 3E). However, unlike

the triple siRNA-treated group, plasma p24 antigen became

detectable in all mice that received only siCCR5 (Figure 3F),

although the mean level was reduced by one log unit com-

pared to control mice (1530 ± 1163 pg/ml as opposed to

17410 ± 11410 pg/ml, p = 0.03). Thus, prevention of viral entry

does contribute to protection, but more robust control of viral

infection requires virus-specific siRNAs along with siCCR5.

Taken together, our results suggest that treatment with

scFvCD7-9R/siRNA can prevent HIV replication and the con-

sequent CD4 T cell loss in vivo.

Intravenous Treatment with Antiviral siRNA/scFvCD7-
9R Complex Prevents CD4 T Cell Loss in Hu-PBL Mice
Reconstituted with PBMCs from HIV+ Patients
For potential use of RNAi as a therapeutic, it is important to test

its efficacy in an established infection. However, in the Hu-PBL

model, exogenous viral challenge leads to a rapid decline in

Figure 3. Intravenous Treatment with siRNAs Com-

plexed to scFvCD7-9R Prevents HIV Infection in

Hu-PBL Mice

(A) Protocol for scFvCD7-9R/siRNA administration and immu-

nological and virological monitoring of Hu-PBL mice infected

with HIVBaL.

(B–D) Hu-PBL mice were treated iv with siCCR5 or control si-

Luc 14 days after reconstitution. Two days later, the mice were

ip infected with HIVBaL and subsequently either mock treated

(n = 2) or treated with a combination of siCCR5/Vif/Tat (test,

n = 4) or siLuc (control, n = 4) complexed to scFvCD7-9R as

indicated in (A), and CD3, CD4, and CD8 T cell levels were

monitored by flow cytometry. Representative dot plots from

one test and one control mouse are shown in (B), and cumula-

tive data are shown in (C). Quadrants at each time point were

drawn in comparison with corresponding isotype controls.

Numbers in (B) represent CD4+ or CD8+ percentages as a pro-

portion of total CD3+ T cells. Error bars indicate standard

deviations.

(D) Serum p24 levels were measured by ELISA at the indicated

times after viral challenge. Horizontal lines indicate median

values.

(E and F) Hu-PBL mice were treated with siLuc (control) or

siCCR5 or siCCR5/Vif/Tat combination (siTRIPLE) complexed

to scFvCD7-9R as in (A) and CD4+ T cell ratios and plasma p24

levels tested as above.

CD4 T cells, making it difficult to assess postinfec-

tion treatment efficacy. Thus, as an alternate strat-

egy to mimic established infection, we reconsti-

tuted mice with PBLs from a HIV-seropositive

donor (Figure 4A). This approach also enabled us

to evaluate whether the siRNAs targeting the con-

served vif and tat viral sequences, which could pro-

tect against the lab strain of HIV-1, were effective

against the multiple viral quasispecies likely to be

present in infected individuals. Mice were reconsti-

tuted with PBLs from a HIV-positive donor who had been on

HAART for 4 years and exhibited viral loads below detection level

and a CD4/CD3 ratio of 0.34 (Figure 4B, input) and treated with

a combination of siRNAs targeting CCR5, Vif, and Tat with the

regimen indicated in Figure 4A. Similar to the experimental infec-

tion model, mice treated with control siLuc showed severe CD4 T

cell depletion 10 days after engraftment (mean CD4/CD3 ratios

of 0.14, n = 4) (Figures 4B and 4C). In contrast, CD4 T cell levels

did not decline in the antiviral siRNA-treated mice, but instead

expanded because of xenogenic activation resulting in a steady

increase in numbers to about 60% of total CD3 T cells up to the

second week. In fact, CD4/CD3 ratios 3.5 weeks after transplan-

tation were higher (mean = 0.47) than the input (0.34), suggesting

that siRNA treatment can potentially reverse the CD4 T cell loss

associated with HIV disease. Because the serum p24 ELISA

levels were below detection even in the control mice (probably

because of the low numbers of input CD4 T cells), we measured

plasma viral RNA copy numbers. Viral loads were highly reduced

in scFvCD7-9R/antiviral siRNA-treated mice as compared to

control mice (Figure 4D). Thus, multiplexed siRNAs can serve

as an effective antiviral treatment analogous to combination anti-

retroviral therapy in a clinical setting.
580 Cell 134, 577–586, August 22, 2008 ª2008 Elsevier Inc.



scFvCD7-9R Silences Target Gene Expression in Naive
T Cells in Hu-HSC Mice
Although Hu-PBL mice offer a suitable acute infection model to

test antiviral efficacy because the T cells are activated by xeno-

genic stimulation, the model precludes testing of siRNA delivery

to naive and resting T cells. Thus, we also tested whether

scFvCD7-9R is able to deliver siRNA to T cells in mice engrafted

with human HSCs. In this model, multilineage immune cell recon-

stitution occurred 12 weeks after HSC transplantation, with aver-

age levels of 50% human CD45+ lymphocytes in the peripheral

blood that included CD3+ T cells, CD19+ B cells, CD14+ mono-

cytes, and CD11c+ dendritic cells (Figure S1B and Figure 5A).

T cells in these mice are predominantly naive unactivated

(CD45RAhi, CCR7hi, CD62Lhi, CD27hi, and CCR5lo) in contrast

to T cells from Hu-PBL mice, which display a predominantly

activated phenotype (Gorantla et al., 2007) (Figure S1C). When

Hu-HSC mice were treated with scFvCD7-9R/siCD4, a substan-

tial reduction in CD4 expression was seen in CD3-gated T cells

(Figures 5B and 5C). Moreover, even a single administration of

siCCR5 reduced target mRNA levels in splenic T cells harvested

Figure 4. Intravenous Treatment with siRNA/scFvCD7-9R Com-

plexes Prevents CD4 T Cell Loss and HIV-1 Amplification in Mice

Reconstituted with HIV-Seropositive Donor PBMCs

(A) Protocol for siRNA/scFvCD7-9R administration and immunological and

virological monitoring.

(B and C) Mice transplanted with PBMCs from a HIV-seropositive donor were

treated iv with scFvCD7-9R complexed to either siLuc (control) or siCCR5/Vif/

Tat (test) as indicated in (A), and CD4 T cell levels were monitored by flow

cytometry. Representative dot plots from one mouse in each group are shown

in (B), and cumulative data from four mice are shown in (C). Numbers indicated

in (B) represent CD4+ percentages as a proportion of total CD3+ T cells.

(D) Viral copy numbers in plasma were measured by the Amplicor test on day

17 after reconstitution with donor PBMCs.

Error bars indicate the standard deviation.
from Hu-HSC mice 24 hr after treatment by greater than 50% in

comparison to control siLuc-treated mice (Figure 5D). When

these cells were PHA stimulated and infected with HIVBaL ex vivo,

the p24 levels in serial culture supernatants were significantly

lower in the cell cultures of siCCR5-treated mice (Figure 5E).

Thus, scFvCD7-9R can mediate siRNA delivery in vivo into naive

human T cells that are normally refractory to nucleic acid uptake.

scFvCD7-9R/siRNA Treatment Controls HIV Viremia
in Hu-HSC Mice
In the Hu-HSC model, the constant replenishment of multiline-

age human hematopoietic cells permits establishment of chronic

infection. We therefore tested whether delivery of siRNA to naive

T cells in Hu-HSC mice could confer long-term protection after

HIV challenge. Hu-HSC mice were infected with HIVBAL and

treated with a combination of two antiviral siRNAs siVif/Tat or

control siLuc complexed to scFvCD7-9R with repeat administra-

tions every 4–5 days. All control mice displayed viremia by the

first week, which persisted throughout the 7 week observation

period (Figure 5F, upper panel). Viral RNA copies as high as

1.92 ± 0.5 3 105/ml plasma were detected in infected mice in

conjunction with a decline in peripheral blood human CD4

T cell numbers (Figure 5F, lower panel). However, possibly be-

cause of the constant de novo supply of naive T cells, the extent

of CD4 T cell decline was not as rapid or drastic as in the Hu-PBL

model. The viremia levels dropped after attaining peak levels be-

tween 19 and 40 days, akin to the establishment of viral set point

in chronic persistent HIV infection (Berges et al., 2006). In con-

trast to control mice, animals that received the siVif/Tat were re-

markably competent in controlling infection during the 7 weeks

of observation (Figure 5F, upper panel). Correspondingly, the

mean CD4 levels in test mice were similar to those in uninfected

mice (89% ± 0% versus 81.8% ± 12.4%, respectively, at day 40

after challenge). Even the single mouse in the test group that re-

corded a drop in CD4 T cells displayed a peak plasma viral load

nearly 30-fold less than that of the control siLuc-treated mice.

Thus, antiviral siRNAs can effectively control viral infection and

T cell loss, which are key features of clinical AIDS. The findings

in Hu-HSC mice are particularly relevant from the therapeutic

standpoint because resting T cells harboring integrated HIV

provirus are an important latent reservoir that can rekindle viral

replication after interruption of HAART (Chun et al., 1997; Finzi

et al., 1999).

scFvCD7-9R/siRNA Complexes Do Not Induce
Toxicity in Target Cells
In vitro exposure of PBMCs to scFvCD7-9R/siRNA was nontoxic

as assessed by lack of Annexin-V positivity (Figure 6A), as well as

the normal proliferative response of treated cells to stimulation

with PHA or anti-CD3/CD28 beads (Figure 6B). To assess the

possible activation of T cell-specific toll-like receptor (TLR)

signaling pathways, we incubated purified CD4 T cells from

a healthy donor with various TLR agonists under conditions

known to induce IFN-g (Caron et al., 2005) in the presence of

scFvCD7-9R/siRNA complexes. No significant differences in

IFN-g levels were discernable in supernatants from treated

or control cultures, even with agonists for the endosomally

localized TLRs (Figure 6C).
Cell 134, 577–586, August 22, 2008 ª2008 Elsevier Inc. 581



We also tested whether scFvCD7-9R/siRNA treatment affects

the levels of miRNAs predominantly expressed in T cells (Wu

et al., 2007). We could not detect any alterations in the expres-

sion levels of miR-142-3p, miR-150, miR-181a, and miR-16 in

CD3+ T cells purified from Hu-HSC mice after three injections

of scFvCD7-9R/siRNA (Figure 6D).

Human T cell-specific gene targets of miRNA have not been

definitively identified. However, c-Myb RNA has been shown to

be a target for the abundantly expressed miR-150 in mouse

T cells (Xiao et al., 2007). Human c-Myb RNA also contains

miR-150 seed sequence in the 30 UTR and is a predicted target

for miR150. Normally, c-Myb protein is undetectable in naive

human T cells and is induced upon activation (Lipsick and Boyle,

1987). Thus, we tested for c-Myb protein levels in human CD3+

T cells purified from Hu-HSC mice after three consecutive siRNA

administrations, before (resting T cells) and after activation

in vitro with PHA. The expression pattern of c-Myb protein was

similar in cells from control and treated mice, becoming detect-

able only after activation and with no difference in the level of ex-

pression upon treatment, indicating that siRNA treatment did not

perturb the expression pattern of c-Myb protein (Figure 6E).

Thus, multiple administrations of synthetic siRNA/scFvCD7-9R

complex do not appear to affect miRNA regulation in the treated

cells.

DISCUSSION

We have developed a new nonviral method for systemic delivery

of antiviral siRNAs to T cells. Our results show that scFvCD7-9R

is able to mediate efficient siRNA delivery to suppress HIV infec-

tion in both activated (Hu-PBL model) and naive (Hu-HSC model)

T cells. These findings overcome a critical barrier of in vivo deliv-

ery, significantly enhancing the prospect of siRNA-based thera-

peutics for HIV infection.

Since the first demonstration of in vivo gene silencing by hydro-

dynamic injection of siRNA (Song et al., 2003b), there has been

Figure 5. scFvCD7-9R Mediates siRNA

Delivery to Naive T Cells in Hu-HSC Mice

and Suppresses HIV Replication In Vivo

(A) Peripheral blood from Hu-HSC mice was ex-

amined for the presence of human CD4 and CD8

T cells 12 weeks after reconstitution.

(B and C) Hu-HSC mice were iv injected twice,

16 hr apart, with siCD4 (test) or control siLuc com-

plexed to scFvCD7-9R, and peripheral blood

T cells were tested for CD4 and CD8 expression

before and 3 days after treatment. Representative

dot plots from one mouse in each group are shown

in (B), and cumulative data from three mice are

shown in (C). Numbers indicated in (B) represent

the percentage of total CD3+ T cells. In (C), the

reduction in surface CD4 or CD8 levels was calcu-

lated as a percentage of the initial expression level

before siRNA injection.

(D) Splenocytes isolated from Hu-HSC mice 1 day

after a single injection with scFvCD7-9R/siLuc

(control) or siCCR5 (test) were examined for

CCR5 mRNA levels by qPCR, with b-actin mRNA

levels used for normalization.

(E) Splenocytes in (D) were PHA stimulated and

infected with HIVBaL at a moi of 3, and p24 antigen

levels in culture supernatants were assayed in trip-

licate by ELISA at the indicated time points.

Error bars indicate the standard deviation.

(F) Hu-HSC mice were either mock treated (n = 3)

or treated iv with siLuc (Control, n = 3) or siVif/Tat

(Test, n = 4) complexed to scFvCD7-9R 22 weeks

after reconstitution. Eighteen hours later, the con-

trol and test animals were ip infected with HIVBaL

and further treated with scFv/siRNA every 4–5

days. Viral copy numbers in plasma measured by

the Amplicor test (upper panel) and CD4+CD3+ T

cell percentages monitored by flow cytometry

(lower panel) at various times are shown. The

gray dotted line in the upper panel represents

the limit of detection of the Amplicor test. CD4 T

cell ratios were calculated as a ratio of the entire

CD3 population (CD4+CD3+:CD3+), and mean

ratios (horizontal gray bars) at 40 days after chal-

lenge are shown. Individual animals in each group

are represented by distinct symbols.
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Figure 6. scFvCD7-9R/siRNA Treatment Does Not

Induce Toxicity

(A) scFvCD7-9R/siLuc-treated or mock-treated PBMCs stim-

ulated with PHA were stained with Annexin-V on four consec-

utive days of culture. Twenty-four hour staurosporine-treated

cultures served as positive control.

(B) PBMCs treated with scFvCD7-9R/siLuc were stimulated

with PHA or antiCD3/CD28 beads for 3 days and pulsed

with 3H-thymidine for 18 hr. Fold stimulation was calculated

by division of the counts incorporated in the presence of to

those in the absence of stimulating agent.

(C) Purified human CD4+ T cells were stimulated with anti-CD3

mAb in the absence (no treatment) or presence of Pam3CSK4

(TLR2 ligand), Poly I:C (TLR3), LPS (TLR4), Flagellin (TLR5),

CLO97 (TLR8/9), or anti-CD3/CD28 Dynabeads. IFN-g was

quantified by ELISA in 48 hr culture supernatants. Error bars

indicate the standard deviation of triplicate cultures.

(D) Expression profiles of miRNA in CD3+ T cells purified from

Hu-HSC mice treated thrice with scFvCD7-9R/siCCR5 are de-

picted. Expression level was normalized to that of small non-

coding RNA U6B. Mean of triplicate runs with two animals

each ± SD is shown.

(E) CD3+ T cells purified from Hu-HSC mice treated as in (D)

were examined for c-Myb protein levels either immediately

or after 48 hr in culture with PHA. The numbers below repre-

sent the ratios of band intensities of c-Myb normalized to

that of b-actin.

Error bars in all cases indicate the standard deviation.
a concerted effort to develop more practical delivery strategies

suitable for human therapy. A promising approach is to use

targeting antibodies that undergo internalization after binding to

surface receptors. To carry siRNA, antibodies can be coated on

liposomes packaged with siRNA or fused to positively charged

proteins or peptides that bind nucleic acids by charge interac-

tions. Accordingly, an immunoliposome coated with antitransfer-

rin scFv has been used to deliver HER-2 siRNA to tumor cells both

in vitro and in vivo (Hogrefe et al., 2006). Similarly, a HIV

gp140 scFv fused to protamine could deliver siRNA to HIV-

infected targets including primary T cells in vitro (Song et al.,

2005). A scFv-protamine fusion protein targeting the leukocyte-

specific LFA-1 also delivered siRNA to primary human T cells

in vitro (Peer et al., 2007). In both studies, siRNA delivery to trans-

planted tumor cells expressing the targeted ligands was demon-

strated in vivo, suggesting that the antibody-based approach

may make in vivo siRNA delivery feasible. Our study confirms

and extends these observations by using this strategy to deliver

antiviral siRNA in the context of an actual HIV infection. Our re-

sults show that siRNA binding capability can be conferred to

scFvs by external disulphide conjugation to a 9R moiety. In addi-

tion to being relatively simple, this approach may also have an

edge over recombinant fusion proteins because expression of

the positively charged residues might interfere with proper fold-

ing of the antibody during purification. Moreover, it allows use

of the d isoform of the peptide, which is relatively resistant to deg-

radation by serum proteases (Hamamoto et al., 2002). It is note-

worthy that conjugation of the anti-CD7 antibody to 9R, a cell

penetrating peptide (Kim et al., 2006), did not affect its high level

of T cell selectivity. Thus, it appears that after siRNA binding, the
9R component itself has no role in siRNA delivery, which is an

advantage as nonspecific transport into unintended cells is

avoided.

Animal models for HIV-1 have suffered from either the lack of

a system that precisely mirrors human HIV infection or, in the

case of primate models, scarcity of the species, high cost, and

the need to use the related but distinct simian virus for infection.

We (L.S.) and others have recently developed gamma chain null

mice that support long-lasting HIV infection with both macro-

phage and T cell tropic strains of HIV (Berges et al., 2008; Wata-

nabe et al., 2007). Using the NOD/SCIDIL2g�/� mice, we found

that HIV infection could be controlled both in a prophylactic

setting, where viral challenge was performed after initiation of

siRNA treatment, and in a postinfection therapeutic setting,

where mice were reconstituted with PBLs from a human subject

with an established HIV infection. Of note, knockdown of CCR5

before viral challenge was not enough to completely block viral

infection, underscoring the importance of blocking multiple

stages of viral replication by combinations of siRNAs targeting

both host and viral genes. In a therapeutic setting, delivery to

naive and/or resting T cells will be important to ensure that siRNA

is present in cells at the time of activation when they become

most vulnerable to infection. This is also important for controlling

viral resurgence in latently infected memory T cells. Thus, the

successful delivery of siRNA to naive T cells to control HIV infec-

tion in Hu-HSC mice attests to the versatility of our delivery strat-

egy for clinical application.

It has been suggested that for a chronic infection like AIDS,

a sustained antiviral state is best achieved by a gene therapy

approach where vector-mediated delivery of shRNA to
Cell 134, 577–586, August 22, 2008 ª2008 Elsevier Inc. 583



hematopoietic stem cells allows stable endogenous synthesis of

siRNA in the repopulating progeny cells (Rossi et al., 2007). HIV

resistance has been demonstrated ex vivo in progeny T cells de-

rived from shRNA transduced HSCs transplanted into SCID/Hu

mice (Anderson et al., 2007; Banerjea et al., 2003; Brake et al.,

2008; Lee et al., 2005; Rossi et al., 2007; Scherer et al., 2007;

ter Brake et al., 2006). However, obtaining stable transgene ex-

pression in sufficient numbers of expanded progeny, which is

critical for HIV-resistance, has proved difficult to achieve in vivo

(Levine et al., 2006; Rossi et al., 2007). A phase I clinical trial

of a triple combination vector expressing an anti-tat/rev shRNA,

a nucleolar-localizing TAR decoy, and an anti-CCR5 ribozyme

has been launched recently that should shed light on the effec-

tiveness of this approach and clarify concerns about toxicity re-

lated to shRNA expression, vector integration, and the induction

of interferon responses (Anderson et al., 2007). Given the high

mutability of HIV, another obvious disadvantage of vector-driven

expression of a few specifically selected but fixed shRNA se-

quences is that the protection would be compromised if escape

mutants arise. In contrast, exogenous delivery of siRNA with

the strategy described here not only delivers siRNA to a large

proportion of T cells but also provides freedom to vary siRNA

combinations to keep pace with the mutating virus if the need

arises.

Nonspecific activation of the immune system and off-targeting

effects have been reported with synthetic siRNA; however, re-

cent studies suggest that this can be overcome by optimizing

the sequence or by chemical modifications (Svoboda, 2007).

Although overexpression of shRNA in vivo has been reported

to affect miRNA biogenesis and function, leading to lethality in

mice (Grimm et al., 2006), a recent study suggests that repeated

administration of synthetic siRNA targeting the liver did not affect

liver-specific miRNA expression or function (John et al., 2007).

We also found that siRNA treatment did not affect the expression

of several T cell-expressed miRNAs. However, unlike for mouse

liver-specific siRNAs, the gene targets for human T cell-ex-

pressed miRNAs have not been definitively identified; hence,

we could only test one predicted target of miR-150 and found

no changes in c-Myb protein levels after siRNA treatment.

Thus, the risk of saturating endogenous miRNA pathway by ex-

ogenous siRNA appears to be minimal, although confirmation by

a more comprehensive microarray and/or proteome analysis

may be required. The possibility of generating an immune re-

sponse to the antibody used as the delivery vehicle is also a con-

cern that needs to be addressed. However, many mAbs have

been successfully used in clinical therapy without adverse ef-

fects and can also be ‘‘humanized’’ in order to reduce potential

toxicity (Marasco and Sui, 2007). Further, since liposomal or

polymeric nanoparticles can accommodate a lot more siRNA,

use of siRNA-encapsulated nanoparticles coated with CD7

scFv as a targeting agent could reduce the number of injections

or dosage. Although our own preparation did not induce TLR

activation, the data need to be reinforced by further testing in

nonhuman primate models.

Another important issue in the treatment of HIV infection is the

ability to target macrophages and dendritic cells. In this context,

it has been recently reported that an antibody to LFA-1 may be

able to target all leukocytes, although its potential for efficient
584 Cell 134, 577–586, August 22, 2008 ª2008 Elsevier Inc.
siRNA delivery in vivo without adverse effects on leukocyte func-

tion remains to be tested (Peer et al., 2007). Similarly, targeting

approaches for siRNA delivery to other HIV-susceptible cell

types could conceivably be used in combination with

scFvCD7-9R. The availability of a preclinical animal model for

HIV infection, as shown in this study, should allow rapid testing

of these strategies, as well as other potential problems, such

as viral escape and toxicity, that have to be resolved before

RNAi therapy can be translated for clinical use.

EXPERIMENTAL PROCEDURES

siRNAs

siRNAs targeting firefly luciferase (siLuc) (Kumar et al., 2007), the HIV genes Vif

(Lee et al., 2005) and Tat (Surabhi and Gaynor, 2002), the human T cell receptor

CD4 (Novina et al., 2002), and coreceptor CCR5 (Song et al., 2003a) were pur-

chased from Dharmacon.

Purification of scFvCD7 Single-Chain Antibody

and Conjugation to Oligo-9R

scFvCD7 coding sequence was PCR amplified from the pAK400scFvCD7-

GFP plasmid (Peipp et al., 2002) with primers to introduce a C-terminal cyste-

ine residue and the amplified scFvCD7Cys was cloned into the pET 26b(+) vec-

tor (Novagen). The recombinant protein was purified by FPLC with Bio Scale

Mini Profinity immobilized metal affinity chromatography (Bio-Rad) and then

refolded as described (Wan et al., 2006). Cell-specific binding was verified

by preincubation of 5 3 105 CD3+ T cells purified from human PBMC for

30 min on ice with purified scFvCD7Cys (20 mg/ml). Cells were then washed

and stained with anti-human CD7-PE, CD3-FITC, and CD4-PECy5 antibodies

(BD-PharMingen), and flow cytometric analysis followed. In some experi-

ments, the scFvCD7Cys-treated cells were cultured at 37�C and stained at dif-

ferent times for surface CD7 expression with anti-CD7-PECy5.

For the generation of scFvCD7-9R, scFvCD7Cys (1 mg/ml) was mixed with

Cys(Npys)-(D-Arg)9 peptide (9R, Anaspec) in 0.1 M phosphate buffer (pH 5.5)

at a molar ratio of 10 to 1 and gently stirred for 4 hr at room temperature (Zeng

et al., 2006). Unconjugated 9R was removed by dialysis with a membrane with

a MWCO of 10,000. Typically, conjugation efficiencies of around 75% were

achieved as measured by a thiol and sulfide quantization assay kit (Molecular

probes, data not shown).

siRNA Binding and Silencing Experiments

So that siRNA binding could be tested, 100 pmole of siRNA was incubated with

different amounts of scFv CD7-9R for 15 min and analyzed by agarose gel

electrophoresis. So that delivery could be tested, PBMCs derived CD3+ T

cells, CD19+ B cells, or CD14+ monocyte-derived macrophages were seeded

in 96-well plates at 2 3 105 cells/well and treated 24 hr later with 200 pmol si-

FITC bound to scFvCD7-9R at a molar ratio 5:1. After 4 hr, the cells were

washed and incubated for an additional 16 hr at 37�C and subjected to flow

cytometry. For gene-silencing experiments, scFvCD7-9R complexed with

400 pmole of siCD4 at a molar ration of 5:1 was added to 5 3 105 phytohemag-

glutinin (PHA)-stimulated PBMC, and surface CD3, CD4, and CD8 levels were

assessed after 60 hr of treatment.

For the assessment of possible toxicity, PBMC were PHA activated (4 mg/ml)

in the absence or presence of scFvCD7-9R/siLuc and stained with Annexin V

at different time points. Staurosporine (Sigma) treatment (1 mM for 24 hr) was

used as positive control. So that the effect on cell proliferation could be eval-

uated, PBMCs were activated with either PHA or CD3/CD28 T cell Expander

Dynabeads (Invitrogen, one bead per cell) in the absence or presence of

scFVCD7-9R/siLuc for 3 days and tested for 3H-thymidine incorporation.

Generation of Hu-PBL and Hu-HSC Mice

All work with animals was approved by the Institutional Review Board at the

Immune Disease Institute. NOD.cg-PrkdcscidIL2rgtm/Wjl/Sz (NOD/SCIDIL2rg�/�)

mice were from the Jackson Laboratory (Bar Harbor, ME). Hu-PBL mice were

generated as described (Nakata et al., 2005). In brief, 107 PBMCs freshly isolated



from HIV-seronegativedonors were injected intraperitoneally (ip) (in 0.5 ml RPMI)

into 4- to 6-week-old mice. In some experiments, the mice were injected with

PBMCs from HIV-seropositive donors. Cell engraftment was tested 3–5 days af-

ter transplantation by staining of the mouse PBMCs for human CD45+-, CD3+-,

CD4+-, and CD8+-positive cells.

Hu-HSC mice were generated as described (Ishikawa et al., 2005). One- to

two-day-old neonatal mice were irradiated (100 rads) and injected iv with

T cell-depleted cord blood cells containing 3 3 104 CD34+ cells per mouse.

Transplanted mice were tested for engraftment 12 weeks later as described

above.

Mouse Experiments with scFvCD7/siRNA Delivery

Human cell-engrafted mice were iv injected with scFvCD7-9R/siRNA com-

plexes at a 5:1 molar ratio at a dose of 50 mg siRNA per injection in 5% glucose

in a volume of 200 ml. In infection experiments, Hu-PBL mice were ip injected

on day 16 after transplantation with 10,000 TCID50 of HIVBaL in a 100 ml volume.

Hu-HSC mice were infected similarly with 30,000 TCID50 22 weeks after trans-

plantation with HSCs. PBMCs recovered from the mice at different times were

analyzed by flow cytometry for gene silencing and antiviral effects. Quantita-

tive PCR for CCR5 mRNA levels in T cells from Hu-PBL mice isolated with

the Dynal T cell Negative Isolation kit (Invitrogen) was performed with the

primers listed in Table S1. Plasma p24 levels were measured with the p24

antigen ELISA kit (NEN, Perkin Elmer). Viral loads in EDTA-treated plasma

samples were determined with the Roche Amplicor Monitor v1.5 assay (Roche

Diagnostics).

HIV-1 Infection of Primary Cells In Vitro

Human cells isolated from the spleens of reconstituted mice were PHA

activated for 3 days prior to infection with HIV-1BaL or HIV-1IIIB at a multiplicity

of infection (moi) of 3. Supernatants were assayed by p24 ELISA at different

times.

Analysis of TLR Pathway Activation

CD4+ T cells purified from healthy donor PBMCs by negative selection with

MACS technology were cultured in 48-well plates at 1 3 106 cells/ml in the

presence of 2 mg/ml anti-CD3 mAb (clone OKT3, e-Bioscience) with 5 mg/ml

Pam3CSK4, 10 mg/ml Flagellin, 5 mg/ml CLO97 (all from Invivogen), 10 mg/ml

poly I:C, 10 mg/ml LPS (from Sigma Aldrich), or CD3/CD28 Dynabeads at

1 bead/T cell as described (Caron et al., 2005). scFvCD7-9R complexed to

800 pmol siLuc was added to one set of cultures. Levels of IFN-g in 48 hr

culture supernatants were measured with the Quantikine Human IFN-g Immu-

noassay (R&D Systems).

Analysis of Cellular miRNA Levels and Function

CD3+ T cells were isolated from the spleens of Hu-HSC mice untreated or

given three administrations, 16 hr apart, of scFvCD7-9R/siCCR5 (50 mg/ injec-

tion) with the Dynal T cell Negative Isolation kit, and small RNAs were extracted

with the miRNeasy mini kit (QIAGEN). The small RNAs were poly(A) tailed and

subjected to 30RACE RT-PCR-based real-time PCR with miR RT-oligo dT and

miRNA-specific or U6B RNA-specific primers as described (Wu et al., 2007).

Table S1 shows the primers used in this assay. For estimation of intracellular

c-Myb levels as a measure of miR-150 function, whole-cell lysates from

splenic CD3+ T cells before or after activation with PHA (4 mg/ml) for 48 hr

were electrophoresed on 10% SDS-polyacrylamide gels (20 mg protein/

lane). Western blotting was performed with antibodies to human b-actin (Cell

Signaling Technology) and human c-Myb (Santa Cruz Biotechnology), and

band intensities were estimated with the National Institutes of Health (NIH)

Image J 1.37v software.

Statistical Analysis

All statistical analyses comparing groups of mice were performed by one-way

analysis of variance and then Bonferroni’s post hoc test. Student’s t and Mann

Whitney tests were used for other experiments. p < 0.05 was considered

significant.
SUPPLEMENTAL DATA

Supplemental Data include one figure and one table and can be found with this

article online at http://www.cell.com/cgi/content/full/134/4/577/DC1/.
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