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Abstract

In this paper, we prove the Hyers–Ulam–Rassias stability of homomorphisms in quasi-Banach algebras.
This is applied to investigate isomorphisms between quasi-Banach algebras.
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1. Introduction and preliminaries

In 1940, S.M. Ulam [23] gave a talk before the Mathematics Club of the University of Wis-
consin in which he discussed a number of unsolved problems. Among these was the following
question concerning the stability of homomorphisms.

We are given a group G and a metric group G′ with metric ρ(·,·). Given ε > 0, does there
exist a δ > 0 such that if f :G → G′ satisfies ρ(f (xy), f (x)f (y)) < δ for all x, y ∈ G, then
a homomorphism h :G → G′ exists with ρ(f (x),h(x)) < ε for all x ∈ G?
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By now an affirmative answer has been given in several cases, and some interesting variations
of the problem have also been investigated. We shall call such an f :G → G′ an approximate
homomorphism.

In 1941, D.H. Hyers [5] considered the case of approximately additive mappings f :E → E′,
where E and E′ are Banach spaces and f satisfies Hyers inequality∥∥f (x + y) − f (x) − f (y)

∥∥ � ε

for all x, y ∈ E. It was shown that the limit

L(x) = lim
n→∞

f (2nx)

2n

exists for all x ∈ E and that L :E → E′ is the unique additive mapping satisfying∥∥f (x) − L(x)
∥∥ � ε.

No continuity conditions are required for this result, but if f (tx) is continuous in the real variable
t for each fixed x ∈ E, then L is linear, and if f is continuous at a single point of E then
L :E → E′ is also continuous. A generalization of this result was proved by J.M. Rassias [14–
16,18]. J.M. Rassias assumed the following weaker inequality∥∥f (x + y) − f (x) − f (y)

∥∥ � θ‖x‖p‖y‖q, ∀x, y ∈ E,

involving a product of different powers of norms, where θ > 0 and real p,q such that r = p+q �=
1, and retained the condition of continuity f (tx) in t for fixed x. J.M. Rassias [17] investigated
that it is possible to replace ε in the above Hyers inequality by a non-negative real-valued func-
tion such that the pertinent series converges and other conditions hold and still obtain stability
results. The stability phenomenon that was introduced and proved by J.M. Rassias is called the
Hyers–Ulam–Rassias stability. In all the cases investigated in this article, the approach to the
existence question was to prove asymptotic type formulas of the form L(x) = limn→∞ f (2nx)

2n , or
L(x) = limn→∞ 2nf ( x

2n ). However, in 2002, J.M. Rassias and M.J. Rassias [19] considered and
investigated quadratic equations involving a product of powers of norms in which an approxi-
mate quadratic mapping degenerates to a genuine quadratic mapping. Analogous results could
be investigated with additive type equations involving a product of powers of norms. The stabil-
ity problems of several functional equations have been extensively investigated by a number of
authors and there are many interesting results concerning this problem (see [2,4,6–13,21]).

Theorem 1.1. [14,15,18] Let X be a real normed linear space and Y a real complete normed
linear space. Assume that f :X → Y is an approximately additive mapping for which there exist
constants θ � 0 and p ∈ R −{1} such that f satisfies inequality∥∥f (x + y) − f (x) − f (y)

∥∥ � θ‖x‖p/2‖y‖p/2

for all x, y ∈ X. Then there exists a unique additive mapping L :X → Y satisfying

∥∥f (x) − L(x)
∥∥ � θ

|2p − 2| ‖x‖p

for all x ∈ X. If, in addition, f :X → Y is a mapping such that the transformation t → f (tx) is
continuous in t ∈ R for each fixed x ∈ X, then L is an R-linear mapping.
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Theorem 1.2. [16] Let X be a real normed linear space and Y a real complete normed lin-
ear space. Assume that f :X → Y is an approximately additive mapping for which there exist
constants θ � 0 and p,q ∈ R such that r = p + q �= 1 and f satisfies inequality∥∥f (x + y) − f (x) − f (y)

∥∥ � θ‖x‖p‖y‖q

for all x, y ∈ X. Then there exists a unique additive mapping L :X → Y satisfying∥∥f (x) − L(x)
∥∥ � θ

|2r − 2| ‖x‖r

for all x ∈ X. If, in addition, f :X → Y is a mapping such that the transformation t → f (tx) is
continuous in t ∈ R for each fixed x ∈ X, then L is an R-linear mapping.

Theorem 1.3. [17] Let X be a real normed linear space and Y a real complete normed linear
space. Assume that f :X → Y is an approximately additive mapping for which there exists a
constant θ � 0 such that f satisfies inequality∥∥∥∥∥f

(
n∑

i=1

xi

)
−

n∑
i=1

f (xi)

∥∥∥∥∥ � θK(x1, . . . , xn)

for all (x1, . . . , xn) ∈ Xn and K :Xn → R
+ ∪ {0} is a non-negative real-valued function such

that

Rn(x) =
∞∑

j=0

1

nj
K

(
njx, . . . , nj x

)
< ∞

is a non-negative function of x, and the condition

lim
m→∞

1

nm
K

(
nmx1, . . . , n

mxn

) = 0

holds. Then there exists a unique additive mapping Ln :X → Y satisfying∥∥f (x) − Ln(x)
∥∥ � θ

n
Rn(x)

for all x ∈ X. If, in addition, f :X → Y is a mapping such that the transformation t → f (tx) is
continuous in t ∈ R for each fixed x ∈ X, then Ln is an R-linear mapping.

We recall some basic facts concerning quasi-Banach spaces and some preliminary results.

Definition 1.4. [3,22] Let X be a real linear space. A quasi-norm is a real-valued function on X

satisfying the following:

(1) ‖x‖ � 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(2) ‖λx‖ = |λ| · ‖x‖ for all λ ∈ R and all x ∈ X.
(3) There is a constant K � 1 such that ‖x + y‖ � K(‖x‖ + ‖y‖) for all x, y ∈ X.

The pair (X,‖ · ‖) is called a quasi-normed space if ‖ · ‖ is a quasi-norm on X. The smallest
possible K is called the modulus of concavity of ‖ · ‖.

A quasi-Banach space is a complete quasi-normed space.
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A quasi-norm ‖ · ‖ is called a p-norm (0 < p � 1) if

‖x + y‖p � ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a quasi-Banach space is called a p-Banach space.

Given a p-norm, the formula d(x, y) := ‖x − y‖p gives us a translation invariant metric
on X. By the Aoki–Rolewicz theorem [22] (see also [3]), each quasi-norm is equivalent to some
p-norm. Since it is much easier to work with p-norms than quasi-norms, henceforth we restrict
our attention mainly to p-norms.

Definition 1.5. [1] Let (A,‖ · ‖) be a quasi-normed space. The quasi-normed space (A,‖ · ‖)
is called a quasi-normed algebra if A is an algebra and there is a constant C > 0 such that
‖xy‖ � C‖x‖‖y‖ for all x, y ∈ A.

A quasi-Banach algebra is a complete quasi-normed algebra.
If the quasi-norm ‖·‖ is a p-norm then the quasi-Banach algebra is called a p-Banach algebra.

In Section 2, we prove the Hyers–Ulam–Rassias stability of homomorphisms in quasi-Banach
algebras, associated to the Cauchy functional equation and the Jensen functional equation.

In Section 3, we investigate isomorphisms between quasi-Banach algebras.

2. Hyers–Ulam–Rassias stability of homomorphisms in quasi-Banach algebras

Throughout this section, assume that A is a quasi-normed algebra with quasi-norm ‖ · ‖A and
that B is a p-Banach algebra with p-norm ‖ · ‖B . Let K be the modulus of concavity of ‖ · ‖B .

We prove the Hyers–Ulam–Rassias stability of homomorphisms in quasi-Banach algebras,
associated to the Cauchy functional equation.

Theorem 2.1. Let r > 1 and θ be positive real numbers, and let f :A → B be a mapping such
that ∥∥f (x + y) − f (x) − f (y)

∥∥
B

� θ‖x‖r
A‖y‖r

A, (2.1)∥∥f (xy) − f (x)f (y)
∥∥

B
� θ‖x‖r

A‖y‖r
A (2.2)

for all x, y ∈ A. If f (tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists a unique
homomorphism H :A → B such that∥∥f (x) − H(x)

∥∥
B

� θ

(4pr − 2p)1/p
‖x‖2r

A (2.3)

for all x ∈ A.

Proof. Letting y = x in (2.1), we get∥∥f (2x) − 2f (x)
∥∥

B
� θ‖x‖2r

A (2.4)

for all x ∈ A. So∥∥∥∥f (x) − 2f

(
x

2

)∥∥∥∥
B

� θ

4r
‖x‖2r

A

for all x ∈ A. Since B is a p-Banach algebra,



C. Park / Bull. Sci. math. 132 (2008) 87–96 91
∥∥∥∥2lf

(
x

2l

)
− 2mf

(
x

2m

)∥∥∥∥
p

B

�
m−1∑
j=l

∥∥∥∥2j f

(
x

2j

)
− 2j+1f

(
x

2j+1

)∥∥∥∥
p

B

� θp

4pr

m−1∑
j=l

2pj

4prj
‖x‖2pr

A (2.5)

for all non-negative integers m and l with m > l and all x ∈ A. It follows from (2.5) that the
sequence {2nf ( x

2n )} is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence
{2nf ( x

2n )} converges. So one can define the mapping H :A → B by

H(x) := lim
n→∞ 2nf

(
x

2n

)

for all x ∈ A.
It follows from (2.1) that

∥∥H(x + y) − H(x) − H(y)
∥∥

B
= lim

n→∞ 2n

∥∥∥∥f

(
x + y

2n

)
− f

(
x

2n

)
− f

(
y

2n

)∥∥∥∥
B

� lim
n→∞

2nθ

4nr
‖x‖r

A‖y‖r
A = 0

for all x, y ∈ A. So

H(x + y) = H(x) + H(y)

for all x, y ∈ A. Moreover, letting l = 0 and passing the limit m → ∞ in (2.5), we get (2.3).
By the same reasoning as in the proof of Theorem of [20], the mapping H :A → B is R-linear.
It follows from (2.2) that

∥∥H(xy) − H(x)H(y)
∥∥

B
= lim

n→∞ 4n

∥∥∥∥f

(
xy

2n · 2n

)
− f

(
x

2n

)
f

(
y

2n

)∥∥∥∥
B

� lim
n→∞

4nθ

4nr
‖x‖r

A‖y‖r
A = 0

for all x, y ∈ A. So

H(xy) = H(x)H(y)

for all x, y ∈ A.
Now, let T :A → B be another Cauchy additive mapping satisfying (2.3). Then we have

∥∥H(x) − T (x)
∥∥

B
= 2n

∥∥∥∥H

(
x

2n

)
− T

(
x

2n

)∥∥∥∥
B

� 2nK

(∥∥∥∥H

(
x

2n

)
− f

(
x

2n

)∥∥∥∥
B

+
∥∥∥∥T

(
x

2n

)
− f

(
x

2n

)∥∥∥∥
B

)

� 2n+1Kθ

(4pr − 2p)1/p4nr
‖x‖2r

A ,

which tends to zero as n → ∞ for all x ∈ A. So we can conclude that H(x) = T (x) for all x ∈ A.
This proves the uniqueness of H . Thus the mapping H :A → B is a unique homomorphism
satisfying (2.3). �
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Theorem 2.2. Let r < 1
2 and θ be positive real numbers, and let f :A → B be a mapping sat-

isfying (2.1) and (2.2). If f (tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists a
unique homomorphism H :A → B such that

∥∥f (x) − H(x)
∥∥

B
� θ

(2p − 4pr)1/p
‖x‖2r

A (2.6)

for all x ∈ A.

Proof. It follows from (2.4) that∥∥∥∥f (x) − 1

2
f (2x)

∥∥∥∥
B

� θ

2
‖x‖2r

A

for all x ∈ A. Since B is a p-Banach algebra,

∥∥∥∥ 1

2l
f

(
2lx

) − 1

2m
f

(
2mx

)∥∥∥∥
p

B

�
m−1∑
j=l

∥∥∥∥ 1

2j
f

(
2j x

) − 1

2j+1
f

(
2j+1x

)∥∥∥∥
p

B

� θp

2p

m−1∑
j=l

4prj

2pj
‖x‖2pr

A (2.7)

for all non-negative integers m and l with m > l and all x ∈ A. It follows from (2.7) that the
sequence { 1

2n f (2nx)} is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence
{ 1

2n f (2nx)} converges. So one can define the mapping H :A → B by

H(x) := lim
n→∞

1

2n
f

(
2nx

)
for all x ∈ A.

The rest of the proof is similar to the proof of Theorem 2.1. �
We prove the Hyers–Ulam–Rassias stability of homomorphisms in quasi-Banach algebras,

associated to the Jensen functional equation.

Theorem 2.3. Let r < 1
2 and θ be positive real numbers, and let f :A → B be a mapping with

f (0) = 0 satisfying (2.2) such that∥∥∥∥2f

(
x + y

2

)
− f (x) − f (y)

∥∥∥∥
B

� θ‖x‖r
A‖y‖r

A (2.8)

for all x, y ∈ A. If f (tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists a unique
homomorphism H :A → B such that

∥∥f (x) − H(x)
∥∥

B
� K(1 + 3r )θ

(3p − 9pr)1/p
‖x‖2r

A (2.9)

for all x ∈ A.

Proof. Letting y = −x in (2.8), we get∥∥−f (x) − f (−x)
∥∥ � θ‖x‖2r

A
B
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for all x ∈ A. Letting y = 3x and replacing x by −x in (2.8), we get∥∥2f (x) − f (−x) − f (3x)
∥∥

B
� 3r θ‖x‖2r

A

for all x ∈ A. Thus∥∥3f (x) − f (3x)
∥∥

B
� K

(
3r + 1

)
θ‖x‖2r

A (2.10)

for all x ∈ A. So∥∥∥∥f (x) − 1

3
f (3x)

∥∥∥∥
B

� K(3r + 1)θ

3
‖x‖2r

A

for all x ∈ A. Since B is a p-Banach algebra,∥∥∥∥ 1

3l
f

(
3lx

) − 1

3m
f

(
3mx

)∥∥∥∥
p

B

�
m−1∑
j=l

∥∥∥∥ 1

3j
f

(
3j x

) − 1

3j+1
f

(
3j+1x

)∥∥∥∥
p

B

� Kp(3r + 1)pθp

3p

m−1∑
j=l

9prj

3pj
‖x‖2pr

A (2.11)

for all non-negative integers m and l with m > l and all x ∈ A. It follows from (2.11) that the
sequence { 1

3n f (3nx)} is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence
{ 1

3n f (3nx)} converges. So one can define the mapping H :A → B by

H(x) := lim
n→∞

1

3n
f

(
3nx

)
for all x ∈ A.

By (2.8),∥∥∥∥2H

(
x + y

2

)
− H(x) − H(y)

∥∥∥∥
B

= lim
n→∞

1

3n

∥∥∥∥2f

(
3n x + y

2

)
− f

(
3nx

) − f
(
3ny

)∥∥∥∥
B

� lim
n→∞

9rn

3n
θ‖x‖r

A‖y‖r
A = 0

for all x, y ∈ A. So

2H

(
x + y

2

)
= H(x) + H(y)

for all x, y ∈ A. Moreover, letting l = 0 and passing the limit m → ∞ in (2.11), we get (2.9).
It follows from (2.2) that

∥∥H(xy) − H(x)H(y)
∥∥

B
= lim

n→∞
1

9n

∥∥f
(
9nxy

) − f
(
3nx

)
f

(
3ny

)∥∥
B

� lim
n→∞

9nrθ

9n
‖x‖r

A‖y‖r
A = 0

for all x, y ∈ A. So

H(xy) = H(x)H(y)

for all x, y ∈ A.
Now, let T :A → B be another Jensen additive mapping satisfying (2.9). Then we have
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∥∥H(x) − T (x)
∥∥p

B
= 1

3pn

∥∥H
(
3nx

) − T
(
3nx

)∥∥p

B

� 1

3pn

(∥∥H
(
3nx

) − f
(
3nx

)∥∥p

B
+ ∥∥T

(
3nx

) − f
(
3nx

)∥∥p

B

)
� 2

9prn

3pn

Kp(1 + 3r )pθp

3p − 9pr
‖x‖2pr

A ,

which tends to zero as n → ∞ for all x ∈ A. So we can conclude that H(x) = T (x) for all x ∈ A.
This proves the uniqueness of H .

The rest of the proof is similar to the proof of Theorem 2.1. �
Theorem 2.4. Let r > 1 and θ be positive real numbers, and let f :A → B be a mapping with
f (0) = 0 satisfying (2.2) and (2.8). If f (tx) is continuous in t ∈ R for each fixed x ∈ A, then
there exists a unique homomorphism H :A → B such that

∥∥f (x) − H(x)
∥∥

B
� K(1 + 3r )θ

(9pr − 3p)1/p
‖x‖2r

A (2.12)

for all x ∈ A.

Proof. It follows from (2.10) that∥∥∥∥f (x) − 3f

(
x

3

)∥∥∥∥
B

� K(3r + 1)θ

9r
‖x‖2r

A

for all x ∈ A. Since B is a p-Banach algebra,

∥∥∥∥3lf

(
x

3l

)
− 3mf

(
x

3m

)∥∥∥∥
p

B

�
m−1∑
j=l

∥∥∥∥3j f

(
x

3j

)
− 3j+1f

(
x

3j+1

)∥∥∥∥
p

B

� Kp(3r + 1)pθp

9pr

m−1∑
j=l

3pj

9prj
‖x‖2pr

A (2.13)

for all non-negative integers m and l with m > l and all x ∈ A. It follows from (2.13) that the
sequence {3nf ( x

3n )} is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence
{3nf ( x

3n )} converges. So one can define the mapping H :A → B by

H(x) := lim
n→∞ 3nf

(
x

3n

)

for all x ∈ A.
The rest of the proof is similar to the proofs of Theorems 2.1 and 2.3. �

3. Isomorphisms between quasi-Banach algebras

Throughout this section, assume that A is a quasi-Banach algebra with quasi-norm ‖ · ‖A and
unit e and that B is a p-Banach algebra with p-norm ‖ · ‖B and unit e′. Let K be the modulus of
concavity of ‖ · ‖B .

We investigate isomorphisms between quasi-Banach algebras, associated to the Cauchy func-
tional equation.
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Theorem 3.1. Let r > 1 and θ be positive real numbers, and let f :A → B be a bijective mapping
satisfying (2.1) such that

f (xy) = f (x)f (y) (3.1)

for all x, y ∈ A. If f (tx) is continuous in t ∈ R for each fixed x ∈ A and limn→∞ 2nf ( e
2n ) = e′,

then the mapping f :A → B is an isomorphism.

Proof. Since f (xy) − f (x)f (y) = 0 for all x, y ∈ A, the mapping f :A → B satisfies (2.2). By
Theorem 2.1, there exists a homomorphism H :A → B satisfying (2.3). The mapping H :A → B

is defined by

H(x) = lim
n→∞ 2nf

(
x

2n

)
for all x ∈ A.

It follows from (3.1) that

H(x) = H(ex) = lim
n→∞ 2nf

(
ex

2n

)
= lim

n→∞ 2nf

(
e

2n
· x

)
= lim

n→∞ 2nf

(
e

2n

)
f (x)

= e′f (x) = f (x)

for all x ∈ A. So the bijective mapping f :A → B is an isomorphism. �
Theorem 3.2. Let r < 1 and θ be positive real numbers, and let f :A → B be a bijective
mapping satisfying (2.1) and (3.1). If f (tx) is continuous in t ∈ R for each fixed x ∈ A and
limn→∞ 1

2n f (2ne) = e′, then the mapping f :A → B is an isomorphism.

Proof. Since f (xy) − f (x)f (y) = 0 for all x, y ∈ A, the mapping f :A → B satisfies (2.2). By
Theorem 2.2, there exists a homomorphism H :A → B satisfying (2.6). The mapping H :A → B

is defined by

H(x) = lim
n→∞

1

2n
f

(
2nx

)
for all x ∈ A.

The rest of the proof is similar to the proof of Theorem 3.1. �
We investigate isomorphisms between quasi-Banach algebras, associated to the Jensen func-

tional equation.

Theorem 3.3. Let r < 1 and θ be positive real numbers, and let f :A → B be a bijective mapping
with f (0) = 0 satisfying (2.8) and (3.1). If f (tx) is continuous in t ∈ R for each fixed x ∈ A and
limn→∞ 1

3n f (3ne) = e′, then the mapping f :A → B is an isomorphism.

Proof. Since f (xy) − f (x)f (y) = 0 for all x, y ∈ A, the mapping f :A → B satisfies (2.2). By
Theorem 2.3, there exists a homomorphism H :A → B satisfying (2.9). The mapping H :A → B

is defined by

H(x) = lim
n→∞

1

3n
f

(
3nx

)
for all x ∈ A.

The rest of the proof is similar to the proof of Theorem 3.1. �
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Theorem 3.4. Let r > 2 and θ be positive real numbers, and let f :A → B be a bijective mapping
with f (0) = 0 satisfying (2.8) and (3.1). If f (tx) is continuous in t ∈ R for each fixed x ∈ A and
limn→∞ 3nf ( e

3n ) = e′, then the mapping f :A → B is an isomorphism.

Proof. Since f (xy) − f (x)f (y) = 0 for all x, y ∈ A, the mapping f :A → B satisfies (2.2).
By Theorem 2.4, there exists a homomorphism H :A → B satisfying (2.12). The mapping
H :A → B is defined by

H(x) = lim
n→∞ 3nf

(
x

3n

)
for all x ∈ A.

The rest of the proof is similar to the proof of Theorem 3.1. �
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