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1. Introduction and preliminaries

Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin in which
he discussed a number of unsolved problems, containing the stability problem of ho-
momorphisms. Hyers [2] proved the stability problem of additive mappings in Banach
spaces. Rassias [3] provided a generalization of Hyers’ theorem which allows the Cauchy
difference to be unbounded: Let f : E→ E′ be a mapping from a normed vector space E
into a Banach space E′ subject to the inequality

∥
∥ f (x+ y)− f (x)− f (y)

∥
∥≤ ε(‖x‖p +‖y‖p) (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. The inequality (1.1)
that was introduced by Rassias [3] provided a lot of influence in the development of a
generalization of the Hyers-Ulam stability concept. This new concept is known as Hyers-
Ulam-Rassias stability of functional equations. Găvruta [4] provided a further general-
ization of Th. M. Rassias’ theorem. Several mathematicians have contributed works on
these subjects (see [4–14]).

Rassias [15] provided an alternative generalization of Hyers’ stability theorem which
allows the Cauchy difference to be unbounded, as follows.
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Theorem 1.1. Let f : E→ E′ be a mapping from a normed vector space E into a Banach
space E′ subject to the inequality

∥
∥ f (x+ y)− f (x)− f (y)

∥
∥≤ ε‖x‖p‖y‖p (1.2)

for all x, y ∈ E, where ε and p are constants with ε > 0 and 0≤ p < 1/2. Then the limit

L(x)= lim
n→∞

f
(

2nx
)

2n
(1.3)

exists for all x ∈ E and L : E→ E′ is the unique additive mapping which satisfies

∥
∥ f (x)−L(x)

∥
∥≤ ε

2− 4p ‖x‖2p (1.4)

for all x ∈ E. If p < 0, then inequality (1.2) holds for x, y 	= 0, and (1.4) for x 	= 0. If p > 1/2,
then inequality (1.2) holds for all x, y ∈ E, and the limit

A(x)= lim
n→∞2n f

(
x

2n

)

(1.5)

exists for all x ∈ E and A : E→ E′ is the unique additive mapping which satisfies

∥
∥ f (x)−A(x)

∥
∥≤ ε

4p− 2
‖x‖2p (1.6)

for all x ∈ E.

In 1982–1994, a generalization of this result was established by J. M. Rassias with a
weaker (unbounded) condition controlled by (or involving) a product of different pow-
ers of norms. However, there was a singular case. Then for this singularity, a counterex-
ample was given by Găvruta [16]. The above-mentioned stability involving a product of
different powers of norms is called Ulam-Găvruta-Rassias stability by Sibaha et al. [17]
and Ravi and Arunkumar[18]. This stability is called Hyers-Ulam-Rassias stability in-
volving a product of different powers of norms by Park [10]. Note that both Ulam stabil-
ities specifically called: “Ulam-Găvruta-Rassias stability of mappings” and “Hyers-Ulam-
Rassias stability of mappings involving a product of powers of norms are identical in
meaning stability notions. Besides Euler-Lagrange quadratic mappings were introduced
by Rassias [19], motivated from the pertinent algebraic quadratic equation. Thus he in-
troduced and investigated the relative quadratic functional equation [20, 21]. In addition,
he generalized and investigated the general pertinent Euler-Lagrange quadratic mappings
[22]. Analogous quadratic mappings were introduced and investigated by the same au-
thor [23, 24]. Therefore, this introduction of Euler-Lagrange mappings and equations
in functional equations and inequalities provided an interesting cornerstone in analy-
sis, because this kind of Euler-Lagrange-Rassias mappings (resp., Euler-Lagrange-Rassias
equations) is of particular interest in probability theory and stochastic analysis by marry-
ing these fields of research results to functional equations and inequalities via the intro-
duction of new Euler-Lagrange-Rassias quadratic weighted means and Euler-Lagrange-
Rassias fundamental mean equations [21, 22, 25]. For further research developments in
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stability of functional equations, the readers are referred to the works of Park [6–13], Ras-
sias [15, 19–24, 26–36], J. M. Rassias and M. J. Rassias [25, 37–39], Rassias [40–43], Skof
[44], and the references cited therein.

Gilányi [45] showed that if f satisfies the functional inequality

∥
∥2 f (x) + 2 f (y)− f (x− y)

∥
∥≤ ∥∥ f (x+ y)

∥
∥, (1.7)

then f satisfies the Jordan-von Neumann functional inequality

2 f (x) + 2 f (y)= f (x+ y) + f (x− y) (1.8)

(see also [46]). Fechner [47] and Gilányi [48] proved the Hyers-Ulam-Rassias stability
of the functional inequality (1.7). Park et al.[11] proved the Hyers-Ulam-Rassias stability
of functional inequalities associated with Jordan-von Neumann-type additive functional
equations.

Jordan observed that �(�) is a (nonassociative) algebra via the anticommutator prod-
uct x ◦ y := (xy + yx)/2. A commutative algebra X with product x ◦ y is called a Jor-
dan algebra. A Jordan C∗-subalgebra of a C∗-algebra, endowed with the anticommu-
tator product, is called a JC∗-algebra. A C∗-algebra �, endowed with the Lie product
[x, y]= (xy− yx)/2 on �, is called a Lie C∗-algebra (see [6, 7, 13]).

This paper is organized as follows. In Section 2, we investigate isomorphisms and
derivations in C∗-algebras associated with the Cauchy-Jensen functional equation. In
Section 3, we investigate isomorphisms and derivations in Lie C∗-algebras associated
with the Cauchy-Jensen functional equation. In Section 4, we investigate isomorphisms
and derivations in JC∗-algebras associated with the Cauchy-Jensen functional equation.

2. Isomorphisms and derivations in C∗-algebras

Throughout this section, assume that A is a C∗-algebra with norm ‖ · ‖A, and that B is a
C∗-algebra with norm ‖ · ‖B.

Lemma 2.1 [11]. Let f : A→ B be a mapping such that

∥
∥ f (x) + f (y) + 2 f (z)

∥
∥
B ≤

∥
∥
∥
∥2 f

(
x+ y

2
+ z
)∥
∥
∥
∥
B

(2.1)

for all x, y,z ∈A. Then f is Cauchy additive, that is, f (x+ y)= f (x) + f (y).

In this section, we investigate C∗-algebra isomorphisms between C∗-algebras and lin-
ear derivations on C∗-algebras associated with the Cauchy-Jensen functional equation.

Theorem 2.2. Let r > 1 and θ be nonnegative real numbers, and let f : A→ B be a bijective
mapping such that

∥
∥μ f (x) + f (y) + 2 f (z)

∥
∥
B ≤

∥
∥
∥
∥2 f

(
μx+ y

2
+ z
)∥
∥
∥
∥
B

, (2.2)
∥
∥ f (xy)− f (x) f (y)

∥
∥
B ≤ θ

(‖x‖2r
A +‖y‖2r

A

)

, (2.3)
∥
∥ f (x∗)− f (x)∗

∥
∥
B ≤ θ

(‖x‖rA +‖x‖rA
)

(2.4)
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for all μ ∈ T1 := {λ ∈ C | |λ| = 1} and all x, y,z ∈ A. Then the mapping f : A→ B is a
C∗-algebra isomorphism.

Proof. Let μ = 1 in (2.2). By Lemma 2.1, the mapping f : A→ B is Cauchy additive. So
f (0)= 0 and f (x)= limn→∞ 2n f (x/2n) for all x ∈A.

Letting y =−μx and z = 0, we get

∥
∥μ f (x) + f (−μx)

∥
∥
B ≤

∥
∥2 f (0)

∥
∥
B = 0 (2.5)

for all x ∈ A and all μ∈ T1.So

μ f (x)− f (μx)= μ f (x) + f (−μx)= 0 (2.6)

for all x ∈ A and all μ ∈ T1. Hence f (μx) = μ f (x) for all x ∈ A and all μ ∈ T1. By the
same reasoning as in the proof of [8, Theorem 2.1], the mapping f : A→ B is C-linear.

It follows from (2.3) that

∥
∥ f (xy)− f (x) f (y)

∥
∥
B = lim

n→∞4n
∥
∥
∥
∥ f
(

xy

2n · 2n

)

− f
(
x

2n

)

f
(
y

2n

)∥
∥
∥
∥
B

≤ lim
n→∞

4nθ
4nr
(‖x‖2r

A +‖y‖2r
A

)= 0

(2.7)

for all x, y ∈A. Thus

f (xy)= f (x) f (y) (2.8)

for all x, y ∈A.
It follows from (2.4) that

∥
∥ f
(

x∗
)− f (x)∗

∥
∥
B = lim

n→∞2n
∥
∥
∥
∥ f
(
x∗

2n

)

− f
(
x

2n

)∗∥
∥
∥
∥
B

≤ lim
n→∞

2nθ
2nr
(‖x‖rA +‖x‖rA

)= 0

(2.9)

for all x ∈ A. Thus

f
(

x∗
)= f (x)∗ (2.10)

for all x ∈ A. Hence the bijective mapping f : A→ B is a C∗-algebra isomorphism. �
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Theorem 2.3. Let r < 1 and θ be nonnegative real numbers, and let f : A→ B be a bijective
mapping satisfying (2.2), (2.3), and (2.4). Then the mapping f : A→ B is a C∗-algebra
isomorphism.

Proof. The proof is similar to the proof of Theorem 2.2. �

Theorem 2.4. Let r > 1 and θ be nonnegative real numbers, and let f : A→ A be a mapping
satisfying (2.2) such that

∥
∥ f (xy)− f (x)y− x f (y)

∥
∥
A ≤ θ

(‖x‖2r
A +‖y‖2r

A

)

(2.11)

for all x, y ∈A.Then the mapping f : A→ A is a linear derivation.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f : A→ A is
C-linear.

It follows from (2.11) that

∥
∥ f (xy)− f (x)y− x f (y)

∥
∥
A = lim

n→∞4n
∥
∥
∥
∥ f
(
xy

4n

)

− f
(
x

2n

)
y

2n
− x

2n
f
(
y

2n

)∥
∥
∥
∥
A

≤ lim
n→∞

4nθ
4nr
(‖x‖2r

A +‖y‖2r
A

)= 0

(2.12)

for all x, y ∈A. So

f (xy)= f (x)y + x f (y) (2.13)

for all x, y ∈A. Thus the mapping f : A→ A is a linear derivation. �

Theorem 2.5. Let r < 1 and θ be nonnegative real numbers, and let f : A→ A be a mapping
satisfying (2.2) and (2.11). Then the mapping f : A→ A is a linear derivation.

Proof. The proof is similar to the proofs of Theorems 2.2 and 2.4. �

Theorem 2.6. Let r > 1 and θ be nonnegative real numbers, and let f : A→ B be a bijective
mapping satisfying (2.2) such that

∥
∥ f (xy)− f (x) f (y)

∥
∥
B ≤ θ · ‖x‖rA · ‖y‖rA, (2.14)

∥
∥ f
(

x∗
)− f (x)∗

∥
∥
B ≤ θ · ‖x‖r/2A · ‖x‖r/2A (2.15)

for all μ∈ T and all x, y ∈A. Then the mapping f : A→ B is a C∗-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f : A→ B is
C-linear.

It follows from (2.14) that

∥
∥ f (xy)− f (x) f (y)

∥
∥
B = lim

n→∞4n
∥
∥
∥
∥ f
(

xy

2n · 2n

)

− f
(
x

2n

)

f
(
y

2n

)∥
∥
∥
∥
B

≤ lim
n→∞

4nθ
4nr

· ‖x‖rA · ‖y‖rA = 0

(2.16)
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for all x, y ∈A. Thus

f (xy)= f (x) f (y) (2.17)

for all x, y ∈A.
It follows from (2.15) that

∥
∥ f
(

x∗
)− f (x)∗

∥
∥
B = lim

n→∞2n
∥
∥
∥
∥ f
(
x∗

2n

)

− f
(
x

2n

)∗∥
∥
∥
∥
B

≤ lim
n→∞

2nθ
2nr

· ‖x‖r/2A · ‖x‖r/2A = 0

(2.18)

for all x ∈ A. Thus

f
(

x∗
)= f (x)∗ (2.19)

for all x ∈ A. Hence the bijective mapping f : A→ B is a C∗-algebra isomorphism. �

Theorem 2.7. Let r < 1 and θ be nonnegative real numbers, and let f : A→ B be a bijective
mapping satisfying (2.2), (2.14), and (2.15). Then the mapping f : A→ B is a C∗-algebra
isomorphism.

Proof. The proof is similar to the proofs of Theorems 2.2 and 2.6. �

Theorem 2.8. Let r > 1 and θ be nonnegative real numbers, and let f : A→ A be a mapping
satisfying (2.2) such that

∥
∥ f (xy)− f (x)y− x f (y)

∥
∥
A ≤ θ · ‖x‖rA · ‖y‖rA (2.20)

for all x, y ∈A.Then the mapping f : A→ A is a linear derivation.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f : A→ A is
C-linear.

It follows from (2.20) that

∥
∥ f (xy)− f (x)y− x f (y)

∥
∥
A = lim

n→∞4n
∥
∥
∥
∥ f
(
xy

4n

)

− f
(
x

2n

)
y

2n
− x

2n
f
(
y

2n

)∥
∥
∥
∥
A

≤ lim
n→∞

4nθ
4nr

· ‖x‖rA · ‖y‖rA = 0

(2.21)

for all x, y ∈A. So

f (xy)= f (x)y + x f (y) (2.22)

for all x, y ∈A. Thus the mapping f : A→ A is a linear derivation. �

Theorem 2.9. Let r < 1 and θ be nonnegative real numbers, and let f : A→ A be a mapping
satisfying (2.2) and (2.20). Then the mapping f : A→ A is a linear derivation.

Proof. The proof is similar to the proofs of Theorems 2.2 and 2.8. �
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3. Isomorphisms and derivations in Lie C∗-algebras

Throughout this section, assume that A is a Lie C∗-algebra with norm ‖ · ‖A, and that B
is a Lie C∗-algebra with norm ‖ · ‖B.

Definition 3.1 [6, 7, 13]. A bijectiveC-linear mapping H : A→ B is called a Lie C∗-algebra
isomorphism if H : A→ B satisfies

H
(

[x, y]
)= [H(x),H(y)

]

(3.1)

for all x, y ∈A.

Definition 3.2 [6, 7, 13]. A C-linear mapping D : A→ A is called a Lie derivation if D :
A→ A satisfies

D
(

[x, y]
)= [Dx, y] + [x,Dy] (3.2)

for all x, y ∈A.

In this section, we investigate Lie C∗-algebra isomorphisms between Lie C∗-algebras
and Lie derivations on Lie C∗-algebras associated with the Cauchy-Jensen functional
equation.

Theorem 3.3. Let r > 1 and θ be nonnegative real numbers, and let f : A→ B be a bijective
mapping satisfying (2.2) such that

∥
∥ f
(

[x, y]
)− [ f (x), f (y)

]∥
∥
B ≤ θ

(‖x‖2r
A +‖y‖2r

A

)

(3.3)

for all x, y ∈A. Then the mapping f : A→ B is a Lie C∗-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f : A→ B is
C-linear.

It follows from (3.3) that

∥
∥ f
(

[x, y]
)− [ f (x), f (y)

]∥
∥
B = lim

n→∞4n
∥
∥
∥
∥ f
(

[x, y]
2n · 2n

)

−
[

f
(
x

2n

)

, f
(
y

2n

)]∥
∥
∥
∥
B

≤ lim
n→∞

4nθ
4nr
(‖x‖2r

A +‖y‖2r
A

)= 0

(3.4)

for all x, y ∈A. Thus

f
(

[x, y]
)= [ f (x), f (y)

]

(3.5)

for all x, y ∈ A. Hence the bijective mapping f : A→ B is a Lie C∗-algebra isomorphism,
as desired. �

Theorem 3.4. Let r < 1 and θ be nonnegative real numbers, and let f : A→ B be a bijec-
tive mapping satisfying (2.2) and (3.3). Then the mapping f : A→ B is a Lie C∗-algebra
isomorphism.

Proof. The proof is similar to the proofs of Theorems 2.2 and 3.3. �
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Theorem 3.5. Let r > 1 and θ be nonnegative real numbers, and let f : A→ A be a mapping
satisfying (2.2) such that

∥
∥ f
(

[x, y]
)− [ f (x), y

]− [x, f (y)
]∥
∥
A ≤ θ

(‖x‖2r
A +‖y‖2r

A

)

(3.6)

for all x, y ∈A. Then the mapping f : A→ A is a Lie derivation.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f : A→ A is
C-linear.

It follows from (3.6) that
∥
∥ f
(

[x, y]
)− [ f (x), y

]− [x, f (y)
]∥
∥
A

= lim
n→∞4n

∥
∥
∥
∥ f
(

[x, y]
4n

)

−
[

f
(
x

2n

)

,
y

2n

]

−
[
x

2n
, f
(
y

2n

)]∥
∥
∥
∥
A

≤ lim
n→∞

4nθ
4nr
(‖x‖2r

A +‖y‖2r
A

)= 0

(3.7)

for all x, y ∈A. So

f
(

[x, y]
)= [ f (x), y

]

+
[

x, f (y)
]

(3.8)

for all x, y ∈A. Thus the mapping f : A→ A is a Lie derivation. �

Theorem 3.6. Let r < 1 and θ be nonnegative real numbers, and let f : A→ A be a mapping
satisfying (2.2) and (3.6). Then the mapping f : A→ A is a Lie derivation.

Proof. The proof is similar to the proofs of Theorems 2.2 and 3.5. �

Theorem 3.7. Let r > 1 and θ be nonnegative real numbers, and let f : A→ B be a bijective
mapping satisfying (2.2) such that

∥
∥ f
(

[x, y]
)− [ f (x), f (y)

]∥
∥
B ≤ θ · ‖x‖rA · ‖y‖rA (3.9)

for all x, y ∈A. Then the mapping f : A→ B is a Lie C∗-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f : A→ B is
C-linear.

It follows from (3.9) that

∥
∥ f
(

[x, y]
)− [ f (x), f (y)

]∥
∥
B = lim

n→∞4n
∥
∥
∥
∥ f
(

[x, y]
2n · 2n

)

−
[

f
(
x

2n

)

, f
(
y

2n

)]∥
∥
∥
∥
B

≤ lim
n→∞

4nθ
4nr

· ‖x‖rA · ‖y‖rA = 0

(3.10)

for all x, y ∈A. Thus

f
(

[x, y]
)= [ f (x), f (y)

]

(3.11)

for all x, y ∈ A. Hence the bijective mapping f : A→ B is a Lie C∗-algebra isomorphism,
as desired. �
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Theorem 3.8. Let r < 1 and θ be nonnegative real numbers, and let f : A→ B be a bijec-
tive mapping satisfying (2.2) and (3.9). Then the mapping f : A→ B is a Lie C∗-algebra
isomorphism.

Proof. The proof is similar to the proofs of Theorems 2.2, 2.6, and 3.7. �

Theorem 3.9. Let r > 1 and θ be nonnegative real numbers, and let f : A→ A be a mapping
satisfying (2.2) such that

∥
∥ f
(

[x, y]
)− [ f (x), y

]− [x, f (y)
]∥
∥
A ≤ θ · ‖x‖rA · ‖y‖rA (3.12)

for all x, y ∈A. Then the mapping f : A→ A is a Lie derivation.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f : A→ A is
C-linear.

It follows from (3.12) that
∥
∥ f
(

[x, y]
)− [ f (x), y

]− [x, f (y)
]∥
∥
A

= lim
n→∞4n

∥
∥
∥
∥ f
(

[x, y]
4n

)

−
[

f
(
x

2n

)

,
y

2n

]

−
[
x

2n
, f
(
y

2n

)]∥
∥
∥
∥
A

≤ lim
n→∞

4nθ
4nr

· ‖x‖rA · ‖y‖rA = 0

(3.13)

for all x, y ∈A. So

f
(

[x, y]
)= [ f (x), y

]

+
[

x, f (y)
]

(3.14)

for all x, y ∈A. Thus the mapping f : A→ A is a Lie derivation. �

Theorem 3.10. Let r < 1 and θ be nonnegative real numbers, and let f : A→ A be a map-
ping satisfying (2.2)and (3.12). Then the mapping f : A→ A is a Lie derivation.

Proof. The proof is similar to the proofs of Theorems 2.2, 2.8, and 3.9. �

4. Isomorphisms and derivations in JC∗-algebras

Throughout this section, assume that A is a JC∗-algebra with norm ‖ · ‖A, and that B is
a JC∗-algebra with norm ‖ · ‖B.

Definition 4.1 [7, 13]. A bijective C-linear mapping H : A→ B is called a JC∗-algebra
isomorphism if H : A→ B satisfies

H(x ◦ y)=H(x)◦H(y) (4.1)

for all x, y ∈A.

Definition 4.2 [7, 13]. A C-linear mapping D : A→ A is called a Jordan derivation if D :
A→ A satisfies

D(x ◦ y)=Dx ◦ y + x ◦Dy (4.2)

for all x, y ∈A.
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In this section, we investigate JC∗-algebra isomorphisms between JC∗-algebras and
Jordan derivations on JC∗-algebras associated with the Cauchy-Jensen functional equa-
tion.

Theorem 4.3. Let r > 1 and θ be nonnegative real numbers, and let f : A→ B be a bijective
mapping satisfying (2.2) such that

∥
∥ f (x ◦ y)− f (x)◦ f (y)

∥
∥
B ≤ θ

(‖x‖2r
A +‖y‖2r

A

)

(4.3)

for all x, y ∈A. Then the mapping f : A→ B is a JC∗-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f : A→ B is
C-linear.

It follows from (4.3) that

∥
∥ f (x ◦ y)− f (x)◦ f (y)

∥
∥
B = lim

n→∞4n
∥
∥
∥
∥ f
(

x ◦ y
2n · 2n

)

− f
(
x

2n

)

◦ f
(
y

2n

)∥
∥
∥
∥
B

≤ lim
n→∞

4nθ
4nr
(‖x‖2r

A +‖y‖2r
A

)= 0

(4.4)

for all x, y ∈A. Thus

f (x ◦ y)= f (x)◦ f (y) (4.5)

for all x, y ∈ A. Hence the bijective mapping f : A→ B is a JC∗-algebra isomorphism, as
desired. �

Theorem 4.4. Let r < 1 and θ be nonnegative real numbers, and let f : A→ B be a bi-
jective mapping satisfying (2.2) and (4.3). Then the mapping f : A→ B is a JC∗-algebra
isomorphism.

Proof. The proof is similar to the proofs of Theorems 2.2 and 4.3. �

Theorem 4.5. Let r > 1 and θ be nonnegative real numbers, and let f : A→ A be a mapping
satisfying (2.2) such that

∥
∥ f (x ◦ y)− f (x)◦ y− x ◦ f (y)

∥
∥
A ≤ θ

(‖x‖2r
A +‖y‖2r

A

)

(4.6)

for all x, y ∈A. Then the mapping f : A→ A is a Jordan derivation.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f : A→ A is
C-linear.

It follows from (4.6) that

∥
∥ f (x ◦ y)− f (x)◦ y− x ◦ f (y)

∥
∥
A = lim

n→∞4n
∥
∥
∥
∥ f
(
x ◦ y

4n

)

− f
(
x

2n

)

◦ y

2n
− x

2n
◦ f
(
y

2n

)∥
∥
∥
∥
A

≤ lim
n→∞

4nθ
4nr
(‖x‖2r

A +‖y‖2r
A

)= 0

(4.7)
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for all x, y ∈A. So

f (x ◦ y)= f (x)◦ y + x ◦ f (y) (4.8)

for all x, y ∈A. Thus the mapping f : A→ A is a Jordan derivation. �

Theorem 4.6. Let r < 1 and θ be positive real numbers, and let f : A→ A be a mapping
satisfying (2.2) and (4.6). Then the mapping f : A→ A is a Jordan derivation.

Proof. The proof is similar to the proofs of Theorems 2.2 and 4.5. �

Theorem 4.7. Let r > 1 and θ be nonnegative real numbers, and let f : A→ B be a bijective
mapping satisfying (2.2) such that

∥
∥ f (x ◦ y)− f (x)◦ f (y)

∥
∥
B ≤ θ · ‖x‖rA · ‖y‖rA (4.9)

for all x, y ∈A. Then the mapping f : A→ B is a JC∗-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f : A→ B is
C-linear.

It follows from (4.9) that

∥
∥ f (x ◦ y)− f (x)◦ f (y)

∥
∥
B = lim

n→∞4n
∥
∥
∥
∥ f
(

x ◦ y
2n · 2n

)

− f
(
x

2n

)

◦ f
(
y

2n

)∥
∥
∥
∥
B

≤ lim
n→∞

4nθ
4nr

· ‖x‖rA · ‖y‖rA = 0

(4.10)

for all x, y ∈A. Thus

f (x ◦ y)= f (x)◦ f (y) (4.11)

for all x, y ∈ A. Hence the bijective mapping f : A→ B is a JC∗-algebra isomorphism, as
desired. �

Theorem 4.8. Let r < 1 and θ be nonnegative real numbers, and let f : A→ B be a bi-
jective mapping satisfying (2.2) and (4.9). Then the mapping f : A→ B is a JC∗-algebra
isomorphism.

Proof. The proof is similar to the proofs of Theorems 2.2, 2.6, and 4.7. �

Theorem 4.9. Let r > 1 and θ be nonnegative real numbers, and let f : A→ A be a mapping
satisfying (2.2) such that

∥
∥ f (x ◦ y)− f (x)◦ y− x ◦ f (y)

∥
∥
A ≤ θ · ‖x‖rA · ‖y‖rA (4.12)

for all x, y ∈A.Then the mapping f : A→ A is a Jordan derivation.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f : A→ A is
C-linear.
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It follows from (4.6) that

∥
∥ f (x ◦ y)− f (x)◦ y− x ◦ f (y)

∥
∥
A = lim

n→∞4n
∥
∥
∥
∥ f
(
x ◦ y

4n

)

− f
(
x

2n

)

◦ y

2n
− x

2n
◦ f
(
y

2n

)∥
∥
∥
∥
A

≤ lim
n→∞

4nθ
4nr

· ‖x‖rA · ‖y‖2
A = 0

(4.13)

for all x, y ∈A. So

f (x ◦ y)= f (x)◦ y + x ◦ f (y) (4.14)

for all x, y ∈A. Thus the mapping f : A→ A is a Jordan derivation. �

Theorem 4.10. Let r < 1 and θ be positive real numbers, and let f : A→ A be a mapping
satisfying (2.2) and (4.12). Then the mapping f : A→ A is a Jordan derivation.

Proof. The proof is similar to the proofs of Theorems 2.2, 2.8, and 4.9. �
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