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under suitable conditions. A non-trivial comparative illustration is provided to support the assumptions
of our main theorem. A few important results in ε-chainable metric space and cyclic contractions are
deduced as some consequences of the concepts obtained herein. As a result of our findings, new
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concerning discretized population balance model whose solution may be investigated using any of the
ideas proposed in this note is highlighted as a future assignment.
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1. Introduction and preliminaries

Fixed point theory is one of the main tools in modern functional analysis. Its primary role is in
the existence criteria for solutions of different types of equations arising in science and engineering.
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One of the first most celebrated results in this context is the Banach contraction principle (BCP). The
prototypical idea of the BCP has been fine-tuned by many examiners in different domains.

Definition 1.1. A metric space (MS) (
∧̃
, ρ) is called ε-chainable, for some ε > 0, if for any u, v ∈

∧̃
,

we can find α ∈ N and a sequence { i}αi=0 in
∧̃

such that 0 = u, α = v and ρ( i−1, i) < ε for i = 1, α.

Definition 1.2. Let (
∧̃
, ρ) be an MS, ε > 0, 0 ≤ l < 1 and u, v ∈

∧̃
. A mapping g :

∧̃
−→

∧̃
is called

(ε, l)-uniformly locally contractive, if 0 < ρ(u, v) < ε implies ρ(gu, gv) < ld(u, v).

As one of the improvements of the BCP, Edelstein [6] proved that every (ε, l)-uniformly locally
contractive mapping on a complete ε-chainable MS has a unique fixed point

Let (
∧̃
, ρ) be an MS. Consistent with Nadler [18] and Hu [7], denote by CB̂(

∧̃
),K(

∧̃
) and 2

∧̃
, the

collection of all non-empty closed and bounded, compact and non-empty subsets of
∧̃

, respectively.
Let Â, B̂ ∈ CB̂(

∧̃
). The Pompeiu-Hausdorff distance ℵ on CB̂(

∧̃
) induced by the metric ρ is given as:

ℵ(Â, B̂) = inf{η > 0 : Â ⊆ Nη(η, B̂), B̂ ⊆ Nη(η, Â)},

where

Nη(η,Θ) = {  ∈
∧̃

: ρ( , r) < η, for some r ∈ Θ}.

In 1969, Nadler [18] brought up a multivalued version of the BCP by availing the Hausdorff distance
function. Along this line, Reich [26] presented a fixed point theorem for multivalued mappings (MVM)
on compact subsets of an MS and noted the puzzle: “canK(

∧̃
) be replaced with CB̂(

∧̃
) ?”. Mizoguchi

and Takahashi [16, Theorem 5] gave an affirmative response to this puzzle. In similar development,
the multivalued fixed point theorem given by Nadler was extended to an ε-chainable MS by Hu [7].
Azam and Arshad [3] improved [18, Theorem 6] by investigating fixed point results of a sequence of
locally contractive MVMs in an ε-chainable MS. Muhammad et al. [17] refined the ideas in [3, 18] to
the setting of an MS with a directed graph. On similar line, Phikul and Suthep [24] improved the ideas
of Berinde [5], Jachysmki [8] and Nadler [18] by examining common fixed point results of a pair of
two MVMs on an MS endowed with a graph. On the other side, Jachysmki [8] studied the fixed point
notions putforward by Nieto and Rodriguez-Lopez [23] and Ran and Reuring [25] by launching the
concept of a graphic contraction (also named a Gr-contraction) on an MS.

Following the above trend of investigations (in particular, the ideas in [3, 5, 8, 16, 24] and the
references therein), we noticed that fixed point results of set-valued maps connecting the notions of
M-function, graphic contractions and Berinde-type weak contractions have not been sufficiently
examined. Hence, this paper introduces a more general notion of a graphic contraction, viz. a
non-linear multivalued Grg-contraction. Sufficient conditions for the existence of coincidence points
(CoPs) of the sequence of MVMs and a single-valued map given on an MS endowed with a graph are
examined. Comparative examples which dwell on the preeminence of our obtained results are
constructed. A significant number of results in an ε-chainable MS and cyclic contractions are derived
as some special cases of our results. From an application point, one of our findings is employed to
investigate new criteria for solution to a more general form of Fredholm integral equation. As a future
assignment of the ideas presented here, we note down an open problem regarding a discretized
population balance model whose solution may be analyzed using any of the concepts proposed in this
work.
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We now present some concepts and results that will be needed hereafter. Let (
∧̃
, ρ) be an MS and ∇

denote the diagonal of the Cartesian product
∧̃
×

∧̃
. Given a directed graph Gr, let

∧̃
= Vet(Gr), where

Vet(Gr) depicts the set of vertices of the graph Gr and Eed(Gr) be the set of all edges of Gr. Assume
that Gr has no parallel edges so that Gr = (Vet(Gr), Eed(Gr)).

If Gr is a directed graph, then Gr
−1 depicts the graph derived from Gr by inverting the direction

of edges. And, if we overlook the direction of the edges in Gr, then, we obtain an undirected graph
denoted by G̃r. The pair (Vet

′, Eed
′) is a subgraph of Gr, if Vet

′ ⊆ Vet(Gr) and Eed
′ ⊆ Eed(Gr), and for

each (p, q) ∈ Eed
′ for all p, q ∈ Vet

′. Moreover, we record the needed concepts of connectivity of graph
from [9] as follows.

Definition 1.3. A path in a graph Gr from the vertex q to p of length α ∈ N ∪ {0}, is a sequence {ςi}
α
i=0

of α + 1 vertices such that ς0 = q, ςα = p and (ςi−1, ςi) ∈ Eed(Gr) for i = i, α.

Definition 1.4. A graph Gr is said to be connected if we can find a path between any two of its vertices.
Gr is weakly connected if G̃r is connected.

Definition 1.5. For , `, z ∈ Vet(Gr), [ ]Gr depicts the equivalence class of the relation ∼ given on
Vet(Gr) by the rule ` ∼ z if we can find a path in Gr from ` to z.

For η ∈ Vet(Gr) and α ∈ N ∪ {0}, define the set [η]αGr
, as follows:

[η]αGr
= {ω ∈ Vet(Gr) : there is a path of length α from η to ω}.

Jachymski [8] brought up the idea of a Gr-contraction in the following manner.

Definition 1.6. Let (
∧̃
, ρ) be an MS equipped with a graph Gr. The mapping Υ :

∧̃
−→

∧̃
is called a

Gr-contraction if it preserves the edges of Gr; that is:

∀ ,`∈
∧̃( , `) ∈ Eed(Gr)⇒ (Υ ,Υ`) ∈ Eed(Gr),

and we can find β ∈ [0, 1) such that

∀ ,`∈
∧̃( , `) ∈ Eed(Gr)⇒ ρ(Υ ,Υ`) ≤ βρ( , `).

Mizoguchi and Takahashi [16] introduced an auxiliary function, named an MT -function, as follows.

Definition 1.7. [16] A function ψ : R+ = [0,∞) −→ [0, 1) is known as an MT -function if it satisfies
the Mizoguchi and Takahashi condition, that is, if limr−→t+ supψ(t) < 1 for all t ∈ R+.

Now, we present specific results from the theory of MVMs.

Lemma 1.8. [2] Let {Ân} be a sequence in CB̂(
∧̃

) and we can find Â ∈ CB̂(
∧̃

) such that
limn−→∞ ℵ(Ân, Â) = 0. If n ∈ Ân(n ∈ N) and we can find  ∈

∧̃
such that limn−→∞ ρ( n, ) = 0, then

 ∈ Â.

Lemma 1.9. [7] Let (
∧̃
, ρ) be an MS and Â, ̂̂B ∈ CB̂(

∧̃
) with ℵ(Â, ̂̂B) < ε for every ε > 0. Then for

each  ∈ Â, we can find ` ∈ ̂̂B such that ρ( , `) < ε.
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20167

2. Main results

We begin this section by introducing a new type of sequence of MVM in an MS with a directed
graph.

Definition 2.1. Let (
∧̃
, ρ) be an MS, Gr = (Vet(Gr), Eed(Gr)) be a directed graph such that Vet(Gr) =

∧̃
and g :

∧̃
−→

∧̃
be a surjection. A sequence of MVM {Υp}p∈N from

∧̃
into CB(

∧̃
) is called a non-

linear multivalued Grg-contraction, if we can find an MT -function ψ : R+ −→ [0, 1) and some constant
K ≥ 0 such that for (gu, gv) ∈ Eed(Gr),

(a)

ℵ(Υp(u),Υr(v)) ≤ ψ(ρ(gu, gv))ρ(gu, gv)
+Kd(gv,Υp(u));

(b) if  ∈ Υp(u), ` ∈ Υr(v) and ρ(g , g`) ≤ ρ(gu, gv), then (g , g`) ∈ Eed(Gr).

If Υp :
∧̃
−→ CB(

∧̃
), then the graph of Υp is given by

Gr(Υp) = {( , `) :  ∈
∧̃

, ` ∈ Υp( ), p ∈ N}.

We now study conditions for the existence of CoPs of a single-valued mapping and a sequence of
MVM.

Theorem 2.2. Let (
∧̃
, ρ) be a complete MS, {Υp : p ∈ N} be a sequence of multivalued Grg-contraction

from
∧̃

into CB(
∧̃

) and g :
∧̃
−→

∧̃
be a surjection. If we can find α ∈ N and v0 ∈

∧̃
such that

(i) Υ1(v0) ∩ [g(v0)]αGr
, ∅;

(ii) for any sequence {vn} in
∧̃

, if vn −→ v and vn ∈ Υn(vn−1)∩ [vn−1]αGr
for all n ∈ N, then we can find

a subsequence {vnγ} of {vn} such that (vnγ , v) ∈ Eed(Gr) for all γ ∈ N.

Then we can find u∗ ∈
∧̃

such that gu∗ ∈
⋂

p∈NΥp(u∗).

Proof. Choose v1 ∈
∧̃

such that gv1 ∈ Υ1(v0) ∩ [gv0]αGr
, then, we can find a path from gv0 to gv1, that

is,
gv0 = gu(1)

0 , · · · , gu(1)
α = gv1 ∈ Υ1(v0),

and (gu(1)
i , gu(1)

i+1) ∈ Eed(Gr) for all i = 0, α − 1. Without loss of generality, assume that gu(1)
γ , gu(1)

j

for each γ, j ∈ {0, 1, 2, · · · , α} with γ , j. Rename gv1 as gu(2)
0 . Since (gu(1)

0 , gu(1)
1 ) ∈ Eed(Gr), and as

gu(2)
0 ∈ Υ1(u(1)

0 ), then by Lemma 1.9, we can find some gu(2)
1 ∈ Υ2(u(1)

1 ) such that

ρ(gu(2)
0 , gu(2)

1 ) < ℵ(Υ1(u(1)
0 ),Υ2(u(1)

1 ))
≤ ψ(ρ(gu(1)

0 , gu(1)
1 ))ρ(gu(1)

0 , gu(1)
1 )

+Kd(gu(1)
1 ,Υ1(u(1)

0 ))
= ψ(ρ(gu(1)

0 , gu(1)
1 ))ρ(gu(1)

0 , gu(1)
1 )

<

√
ψ(ρ(gu(1)

0 , gu(1)
1 ))ρ(gu(1)

0 , gu(1)
1 )
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< ρ(gu(1)
0 , gu(1)

1 ).

Again, since (gu(1)
1 , gu(1)

2 ) ∈ Eed(Gr) and gu(1)
1 , · · · , gu(1)

α ∈ Υ2(u(1)
1 ), α = 1, 2, by Lemma 1.9, we can

find some gu(2)
2 ∈ Υ2(u(1)

1 ) such that

ρ(gu(2)
1 , gu(2)

2 ) < ℵ(Υ2(u1
1),Υ2(u(1)

2 ))
≤ ψ(ρ(gu(1)

1 , gu(1)
2 ))ρ(gu(1)

1 , gu(1)
2 )

+Kd(gu(1)
2 ,Υ2(u(1)

1 ))
= ψ(ρ(gu(1)

1 , gu(1)
2 ))ρ(gu(1)

1 , gu(1)
2 )

<

√
ψ(ρ(gu(1)

1 , gu(1)
2 ))ρ(gu(1)

1 , gu(1)
2 )

< ρ(gu(1)
1 , gu(1)

2 ).

Thus, we obtain {gu(2)
0 , gu(2)

1 , · · · , gu(2)
α } of α + 1 vertices of

∧̃
such that gu(2)

0 ∈ Υ1(u(1)
0 ) and gu(2)

ρ ∈

Υ2(u(1)
ρ ) for ρ = 1, α with

ρ(gu(2)
ρ , gu(2)

ρ+1) < ρ(gu(1)
ρ , gu(1)

ρ+1),

for ρ = 0, α − 1. Because (gu(1)
ρ , gu(1)

ρ+1) ∈ Eed(Gr) for all ρ = 0, α − 1, (gu(2)
ρ , gu(2)

ρ+1) ∈ Eed(Gr) for all
ρ = 0, α − 1. Let gu(2)

α = gv2. Thus, the set of points gv1 = gu(2)
0 , gu(2)

1 , · · · , gu(2)
α = gv2 ∈ Υ2(v1) is a

path from gv1 to gv2. Relabel gv2 as gu(3)
0 . Then, by similar steps as above, we obtain a path

gv2 = gu(3)
0 , gu(3)

1 , · · · , gu(3)
α = gv3 ∈ Υ3(v2) from gv2 to gv3. Inductively, it follows that

gvh = gu(h+1)
0 , gu(h+1)

1 , · · · , gu(h+1)
α = gvh+1 ∈ Υh+1(vh) with

ρ(gu(h+1)
t , gu(h+1)

t+1 ) < ρ(gu(h)
t , gu(h)

t+1); (2.1)

thus, (gu(h+1)
t , gu(h+1)

t+1 ) ∈ Eed(Gr) for t = 0, α − 1. Consequently, we construct a sequence {gvh}
∞
h=1 of

points of
∧̃

with

gv1 = gu(1)
α = gu(2)

0 ∈ Υ1(v0)
gv2 = gu(2)

α = gu(3)
0 ∈ Υ2(v1)

gv3 = gu(3)
α = gu(4)

0 ∈ Υ3(v2)
... = · · ·

gvh+1 = gu(h+1)
α = gu(h+2)

0 ∈ Υh+1(vh),∀h ∈ N.

For each t ∈ {0, 1, 2, ..., α − 1}, and from (2.1), we see that {ρ(gu(h)
t , gu(h)

t+1)}∞h=1 is a bounded and
decreasing sequence of non-negative real numbers, and so it converges. That is, we can find τt ≥ 0
such that

lim
h−→τt+

ρ(gu(h)
t , gu(h)

t+1) = τt.

Since ψ is an MT -function, we can find %t ∈ N such that ψ(ρ(gu(h)
t , gu(h)

t+1)) < ω(τt) for all h ≥ %t, where
limt−→τt+ supψ(t) < ω(τt) < 1. Now, set

Ωτt = max
{

max
r=1,%t

√
ψ(ρ(gu(r)

t , gu(r)
t+1)),

√
ω(τt)

}
.
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Then, for every h > %t, consider

ρ(gu(h+1)
t , gu(h+1)

t+1 ) <

√
ρ(gu(h)

t , gu(h)
t+1)ρ(gu(h)

t , gu(h)
t+1)

<
√
ω(τt)ρ(gu(h)

t , gu(h)
t+1)

≤ Ωτtρ(gu(h)
t , gu(h)

t+1)
≤ (Ωτt)2ρ(gu(h−1)

t , gu(h−1)
t+1 )

≤ · · ·

≤ (Ωτt)nρ(gu(1)
t , gu(1)

t+1).

Taking p = max{%t, t = 0, 1, 2, · · · , α − 1}, produces

ρ(gvh, gvh+1) = ρ(gu(h+1)
0 , gu(h+1)

α )

≤

α−1∑
t=0

ρ(gu(h+1)
t , gu(h+1)

t+1 )

<

α−1∑
t=0

(Ωτt)hρ(gu(1)
t , gu(1)

t+1).

Now, for all q > h > p, notice that

ρ(gvh, gvq) ≤ ρ(gvh, gvh+1) + ρ(gvh+1, gvh+2) + · · · + ρ(gvq−1, gvq)

<

α−1∑
t=0

(Ωτt)hρ(gu(1)
t , gu(1)

t+1) + · · · +

α−1∑
t=0

(Ωτt)q−1ρ(gu(1)
t , gu(1)

t+1).

Since Ωτt < 1 for all t ∈ {0, 1, 2, · · · , α − 1}, it follows that {gvh = gu(h)
α } is a Cauchy sequence. By

completeness of
∧̃

, we can find v∗ ∈
∧̃

such that gvh −→ gv∗. Now, availing the fact that gvn ∈

Υ(vn−1) ∩ [gvn−1]αGr
for all n ∈ N, we can find a subsequence {gvnγ} such that (gvnγ , gv∗) ∈ Eed(Gr) for

all γ ∈ N. Now, for any p ∈ N,

ρ(gv∗,Υp(v∗)) ≤ ρ(gv∗, gvh+1) + ρ(gvh+1,Υp(v∗))
≤ ρ(gv∗, gvh+1) + ℵ(Υh+1(vh),Υp(v∗))
≤ ρ(gv∗, gvh+1) + ψ(ρ(gvh, gv∗))ρ(gvh, gv∗)

+ Kd(gvh,Υp(v∗)).

(2.2)

Letting h −→ ∞ in (2.2), yields

ρ(gv∗,Υp(v∗)) ≤ Kd(gv∗,Υp(v∗)). (2.3)

From (2.3), if K = 0, then Lemma 1.8 can be applied to conclude that gv∗ ∈ Υp(v∗) for all p ∈ N. On
the other hand, if K > 0, assume that gv∗ < Υp(v∗) for some p ∈ N. So, taking K =

ρ(gv∗,Υp(v∗))
1+ρ(gv∗,Υp(v∗)) in (2.3)

gives

ρ(gv∗,Υp(v∗)) ≤
ρ(gv∗,Υp(v∗))ρ(gv∗,Υp(v∗))

1 + ρ(gv∗,Υp(v∗))

AIMS Mathematics Volume 7, Issue 11, 20164–20177.



20170

<
ρ(gv∗,Υp(v∗))ρ(gv∗,Υp(v∗))

ρ(gv∗,Υp(v∗))
= ρ(gv∗,Υp(v∗)),

a contradiction. Consequently, gv∗ ∈
⋂

p∈NΥp(v∗). �

Example 2.3. For p ∈ N, let
∧̃

=
{

1
3p

}
∪ {0} ∪

[
1
4p , 5

]
and ρ(u, v) = |u − v| for all u, v ∈

∧̃
. Then,

(
∧̃
, ρ) is a complete MS. Let Gr = (Vet(Gr), Eed(Gr)) be a directed graph such that Vet(Gr) =

∧̃
and

Eed(Gr) =
{
(0, 0),

(
1
4p , 1

)
: p ∈ N

}
. Let g :

∧̃
−→

∧̃
be given as g(u) = 5u, and Υp :

∧̃
−→

∧̃
be given

by

Υp(u) =


{0}, if u = 0
[0, 4u], if u ∈

[
1
4p , 5

]
{3}, if u = 1

3p , p ∈ N.

We shall show that Υp is a non-linear multivalued Grg-contraction with ψ(t) = t
5 , t ≥ 0, and K = 5.

Now, notice that if u = v = 0 and gu = gv = 0, then for all p, r ∈ N, Υp(u) = Υr(v) = {0}, thus
ℵ(Υp(u),Υr(v)) = 0. For (gu, gv) ∈ Eed(Gr) with u , v, (u, v) =

(
1
4p , 1

)
for each p ∈ N. Thus,

ℵ(Υp(u),Υr(v)) = ℵ

(
Υp

(
1
4p

)
,Υr(1)

)
= ℵ

(
Υr(1),Υp

(
1
4p

))
= ℵ([0, 4u], [0, 4v])

= |4u − 4v| ≤
4
5
|5u − 5v|

≤
4
5
ρ(5u, 5v) + 5ρ(5v,Υp(u))

≤ ψ(ρ(gu, gv))ρ(gu, gv) + Kd(gv,Υp(u)).

Moreover, let (gu, gv) ∈ Eed(Gr) with u , v. Then, (u, v) =
(

1
4p , 1

)
for all p ∈ N. Thus, Υp(u) =

Υp

(
1
4p

)
= [0, 4] and Υr(v) = Υr(1) = [0, 4v]. We observe that if  ∈ Υp(u), ` ∈ Υr(v) and ρ(g , g`) ≤

ρ(gu, gv), then ( , `) are
(
0, 1

4p+2

)
and

(
0, 1

4p+3

)
. Thus, (g , g`) ∈ Eed(Gr). Consequently, {Υp}p∈N is a non-

linear multivalued Grg-contraction. We notice that other conditions of Theorem 2.2 hold obviously. It
follows that all conditions of Theorem 1 are obeyed. Thus, g and Υp have a CoP u∗ = 0 ∈

∧̃
such that

g0 ∈
⋂

p∈NΥp(0).
In what follows, we show that our result (Theorem 2.2) cannot be followed from some similar ones
in the literature. Now, consider [24, Theorem 3.3], if we take ψ(ρ(u, v)) = 1

3 with u = 1
4 , v = 1 and

p = 1, r = 2, then (u, v) =
(

1
4 , 1

)
∈ Eed(Gr), and

ℵ(Υ1(u),Υ2(v)) = ℵ([0, 1], [0, 4]) = 3

> ψ

(
ρ

(
1
4
, 1

))
ρ

(
1
4
, 1

)
+ Kd(1, [0, 1])

=
1
4
, (2.4)

for all K ≥ 0. This shows that the mapping Υp is not a Berinde graph contractive in the sense of Phikul
and Suthep [24, Definition 3.1]. From (2.4), we also observe that Υp is not a graph contractive mapping
as given by Beg and Butt [4]. Thus, the main results in [4, 24] are not applicable to this illustration.
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Theorem 2.4. Let (
∧̃
, ρ) be a complete MS, Υ :

∧̃
−→ CB(

∧̃
) be an MVM and g :

∧̃
−→

∧̃
a

surjection. Assume further that the following conditions are obeyed:

(i) we can find K ≥ 0 such that for all u, v ∈ (u , v), (gu, gv) ∈ Eed(Gr) yields

ℵ(Υ(u),Υ(v)) ≤ ψ(ρ(gu, gv))ρ(gu, gv) + Kd(v,Υu),

where ψ : R+ −→ [0, 1) is an MT-function;
(ii) we can find α ∈ N and v0 ∈

∧̃
such that Υ(v0) ∩ [gv0]αGr

, ∅;
(iii) for any sequence {vn} in

∧̃
, if vn −→ v and vn ∈ Υ(vn−1) ∩ [vn−1]αGr

for all n ∈ N, we can find a
subsequence {vnγ} such that (vnγ , v) ∈ Eed(Gr) for all γ ∈ N.

Then g and Υ have a CoP in
∧̃

; that is, we can find u∗ ∈
∧̃

such that gu∗ ∈ Υ(u∗).

Proof. Set Υp = Υ for all q ∈ N in Theorem 2.2. �

The following are further consequences of Theorems 2.2 and 2.4.

Corollary 1. Let (
∧̃
, ρ) be a complete MS and {Υp : p ∈ N} be a sequence of MVMs from

∧̃
into

CB(
∧̃

). Assume further that:

(i) if for some K ≥ 0 and any u, v ∈
∧̃

(u , v) such that (u, v) ∈ Eed(Gr), we have that

ℵ(Υp(u),Υr(v)) ≤ ψ(ρ(u, v))ρ(u, v) + Kd(v,Υp(u))

for all p, r ∈ N, where ψ : R+ is an MT-function;
(ii) we can find α ∈ N and v0 ∈

∧̃
such that Υ1(v0) ∩ [gv0]αGr

, ∅;
(iii) for any sequence {vn} in

∧̃
, if vn −→ v and vn ∈ Υn(vn−1)∩ [vn−1]αGr

for all n ∈ N, then we can find
a subsequence {vnγ} of {vn} such that (vnγ , v) ∈ Eed(Gr) for all γ ∈ N.

Then Υp has at least one fixed point in
∧̃

.

Proof. Take g = I∧̃, that is, the identity mapping on
∧̃

, in Theorem 2.2. �

The following is a consequence of Theorem 2.2 in the case of single-valued mappings.

Corollary 2. Let (
∧̃
, ρ) be a complete MS, Λ :

∧̃
−→

∧̃
and g :

∧̃
−→

∧̃
be a surjection. If

u, v ∈
∧̃

(u , v) such that (gu, gv) ∈ Eed(Gr) implies

ρ(Λ(u),Λ(v)) ≤ ψ(ρ(gu, gv))ρ(gu, gv) + Kd(v,Λ(u)),

for some K ≥, where ψ : R+ −→ [0, 1) is an MT-function. If we can find α ∈ N and v0 ∈
∧̃

such that

(i) Υ(v0) ∩ [gv0]αGr
, ∅;

(ii) for any sequence {vn} in
∧̃

, if vn −→ v, and vn = Υ(vn−1) ∩ [vn−1]αGr
for all n ∈ N, then we can find

a subsequence {vn+γ} such that (vnγ , v) ∈ Eed(Gr) for all γ ∈ N.

Then Λ and g have a coincidence in
∧̃

, that is, we can find u∗ ∈
∧̃

such that gu∗ = Λ(u∗).

Proof. Define Υ :
∧̃
−→ CB(

∧̃
) by Υu = {Λu} for all u ∈

∧̃
, where Λ is a single-valued mapping.

Then all conditions of Theorem 2.4 and Corollary 2 coincide. In this case,
ℵ(Υ(u),Υ(v)) = ℵ({Λu}, {Λv}) = ρ(Λu,Λv). Consequently, we can find u∗ ∈

∧̃
such that

gu∗ ∈ Υu∗ = {Λu∗}, which further produces gu∗ = Λu∗. �
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3. Applications in an ε-chainable MS and cyclic contractions

Theorem 3.1. Let (
∧̃
, ρ) be an ε-chainable complete MS, {Υp : p ∈ N} be a sequence of MVMs from∧̃

into CB(
∧̃

) and g :
∧̃
−→

∧̃
be a surjection. If we can find an MT-function ψ : R+ −→ [0, 1) and

a constant K ≥ 0 such that 0 < ρ(gu, gv) < ε implies

ℵ(Υp(u),Υr(v)) ≤ ψ(ρ(gu, gv))ρ(gu, gv) + Kρ(gv,Υp(u)),

and we can find 1 ∈ Υp(u0), 2 ∈ Υr(v0) such that 0 < ρ(gu0, gv0) < ε.
Then, we can find u∗ ∈

∧̃
such that gu∗ ∈

⋂
p∈NΥp(u∗).

Proof. Let the graph Gr be given by Vet(Gr) =
∧̃

and Eed(Gr) = ∇∪{(gu, gv) ∈
∧̃
×
∧̃

: 0 < ρ(gu, gv) <
ε}. Then connectivity of Gr follows from the ε-chainable of (

∧̃
, ρ). If (gu, gv) ∈ Eed(Gr), then

ℵ(Υp(u),Υr(v)) ≤ ψ(ρ(gu, gv))ρ(gu, gv) + Kd(gv,Υp(u)).

Now, take  ∈ Υp(u), ` ∈ Υr(v) and ρ(g , g`) ≤ ρ(gu, gv). Since (gu, gv) ∈ Eed(Gr), then 0 < ρ(gu, gv) <
ε. Observe that if g  , g`, for each , ` ∈

∧̃
, then 0 < ρ(g , g`) ≤ ρ(gu, gv) < ε, so that (g , g`) ∈

Eed(Gr). Thus, for each p ∈ N, {Υp} is a sequence of non-linear multivalued Grg-contraction. Notice
also that if vn −→ v and ρ(vn, vn+1) < ε for all n ∈ N with vn ∈ Υn(vn−1) ∩ [vn−1]αGr

, then we can find a
natural number η(ε) such that ρ(vn, v) < ε for all n ≥ η(ε). It follows that we can find a subsequence
{vnγ} of {vn} such that (vnγ , v) ∈ Eed(Gr) for all γ ∈ N. Moreover, since 1 ∈ Υp(u0) and 2 ∈ Υr(v0) such
that 0 < ρ(gu0, gv0) < ε, then (gu0, gv0) ∈ Eed(Gr). Consequently, Theorem 2.2 can be applied to find
u∗ ∈

∧̃
such that gu∗ ∈

⋂
p∈NΥp. �

The idea of cyclic contractions was introduced by Kirk et. al. [15]. Later on, Rus [27] brought up
the concepts of cyclic representations consistent with [15]. Let

∧̃
be a non-empty set, α be a natural

number and {Âi}
α
i=1 be a non-empty closed subset of

∧̃
with ξ :

⋃α
i=1 Âi −→

⋃α
i=1 Âi as an operator.

Then
∧̃

=
⋃α

i=1 Âi is called a cyclic representation of
∧̃

with respect to ξ, if

ξ(Â1) ⊂ Â2, · · · , ξ(Âα−1) ⊂ Âα, ξ(Âα) ⊂ Â1,

and the operator ξ is called a cyclic operator (see [19]).
In what follows, we initiate the idea of cyclic representations for sequence of MVMs by following

[24]. Let
∧̃

be a non-empty set, {Âi}
α
i=1 be a non-empty closed subset of

∧̃
for each α ∈ N and {Υp :

p ∈ N} be a sequence of MVMs from
∧̃

into 2
∧̃

. Then
∧̃

=
⋃α

i=1 Âi is called a cyclic representation of∧̃
with respect to Υp, p ∈ N, if

Υp : Âi −→ CB(Âi+1), i = 1, α, Âα+1 = Â1,

and Υp is called a sequence of multivalued operators.

Theorem 3.2. Let (
∧̃
, ρ) be a complete MS, α be a positive integer, {Âi}

α
i=1 be a non-empty closed

subset of
∧̃

, Φ =
⋃α

i=1 Âi, {Υp : p ∈ N} be a sequence of MVMs from
∧̃

into 2Φ and g :
∧̃
−→

∧̃
be a

surjection. Suppose that
⋃α

i=1 Âi is a cyclic representation of Φ with respect to {Υp}
∞
p=1. If we can find

an MT-function ψ : R+ −→ [0, 1) and a constant K ≥ 0 such that for g(u) , g(v),

ℵ(Υp(u),Υr(v)) ≤ ψ(ρ(g(u), g(v)))ρ(g(u), g(v)) + Kd(g(v),Υp(u))
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for g(u) ∈ Âi, g(v) ∈ Âi+1, Âα+1 = Â1.
Then we can find u∗ ∈

∧̃
such that g(u∗) ∈

⋂
p∈NΥp(u∗).

Proof. Given that Âi, i = 1, α are closed in
∧̃

, it follows that (Φ, ρ) is a complete MS. Given a graph
Gr consisting of Vet(Gr) = Φ and Eed(Gr) = ∇ ∪ {(g(u), g(v)) ∈ ∇ × ∇ : u ∈ Âi+1, i = 1, α, Âα+1 = Â1},
let g(u), g(v) ∈ Φ be such that (g(u), g(v)) ∈ Eed(Gr) ⇔ (u, v) ∈ Eed(Gr) with g(u) , g(v). Then,
g(u) ∈ Âi, g(v) ∈ Âi+1, for each i = 1, α. It follows that

ℵ(Υp(u),Υr(v)) ≤ ψ(ρ(g(u), g(v)))ρ(g(u), g(v)) + Kd(g(v),Υp(u)).

Let  ∈ Υp(u), ` ∈ Υr(v) and ρ(g , g`) ≤ ρ(gu, gv). Then  ∈ Υp(u) ⊆ Âi+1, ` ∈ Υr(v) ⊆ Âi+2; thus,
(g , g`) ∈ Eed(Gr). Thus, {Υp}

∞
p=1 is a non-linear multivalued Grg-contraction. Suppose further that {vn}

is a sequence in Φ with ρ(vn, v) −→ 0 as n −→ ∞, where vn ∈ Υn(vn−1) ∩ [vn−1]αGr
for all n ∈ N, and

(gvn−1, gvn) ∈ Eed(Gr) for all n ∈ N. Clearly, infinitely many terms of {vn} are contained in Âi, thus,
we can produce a subsequence {vnγ}such that ρ(vnγ , v) −→ 0 for all γ ∈ N. Since Âi is closed for each
i = 1, α, then v ∈

⋂α
i=1 Âi. It follows from the definition of Eed(Gr) that (vnγ , v) ∈ Eed(Gr) for all γ ∈ N.

Consequently,Theorem 2.2 can be applied to find u∗ ∈
∧̃

such that g(u∗) ∈
⋂

p∈NΥp(u∗). �

4. Applications to integral equations

Integral equations are found to be of great usefulness in studying dynamical systems and stochastic
processes. Some examples are in the areas of oscillation problems, sweeping processes, granular
systems, control problems and so on. In a like manner, integral equations arise in several problems
in mathematical physics, bio-mathematics, control theory, critical point theory for non-smooth energy
functionals, differential variational inequalities, fuzzy set arithmetic, traffic problems, to mention but
a few. Usually, the first most concerning problem in the study of differential or integral equations is
the conditions for the existence of its solutions. Along this lane, many authors have proposed different
fixed point approaches to obtain existence results for differential or integral equations in abstract spaces
(see, e.g. [1, 20–22]).

In this section, we examine new conditions for the existence of a unique solution to a more general
version of the integral equation analyzed in [28], given as

u(t) = h(t) +

∫ b

a
Γ(t, s) f (s, g(u(s)))ds, t ∈ [a, b] = $, (4.1)

where f : $ × R −→ R,Γ : $2 −→ R+, h : $ −→ R and g : $ −→ R are given continuous functions.
Note that if, in (4.1), h(t) = 0 and g = I∧̃, which is the identity mapping on

∧̃
, then Problem (4.1)

represents an integral reformulation of physical phenomena such as the motion of a spring that is under
the influence of a frictional force or a damping force. For some articles modeling real-life problems,
via integral/differential equations, see [10–14] and the references therein.

Let
∧̃

= C($,R) be the set of all real-valued continuous functions defined on $, and let ρ(u, v) =

maxt∈$ |u(t) − v(t)|. Then (
∧̃
, ρ) is a complete MS. Define the mapping Υ :

∧̃
−→

∧̃
by

Υu(t) = h(t) +

∫ b

a
Γ(t, s) f (s, g(u(s)))ds, t ∈ $, (4.2)
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and η :
∧̃
−→

∧̃
by ηu = gu, with (ηu)(t) = (gu)(t), for all t ∈ $. Then, finding a solution of (4.1) is

equivalent to showing that Υ and g have a CoP.
Now, we investigate the existence of solution of (4.1) given the following hypotheses.

Theorem 4.1. Given the surjective function g ∈ C($,R) and f : $ × R −→ R obeying:

(i) for all t ∈ $,
| f (s, g(u(s))) − f (s, g(v(s)))| ≤ |g(u(s)) − g(v(s))|,

(ii) we can find a function λ∗ : R+ −→ [0, 1) such that

max
t∈$

∫ b

a
Γ(t, s)ds ≤ λ∗, ∀t ∈ R+.

Then Problem (4.1) has a unique solution in
∧̃

.

Proof. Let u, v ∈
∧̃

. Then, we have

|Υu(t) − Υv(t)| =

∣∣∣∣∣∣
∫ b

a
Γ(t, s)( f (s, g(u(s))) − f (s, g(v(s))))ds

∣∣∣∣∣∣
≤

∫ b

a
Γ(t, s) | f (s, g(u(s))) − f (s, g(v(s)))| ds

≤

∫ b

a
Γ(t, s)|g(u(s)) − g(v(s))|ds

≤

∫ b

a
Γ(t, s)|(ηu)(s) − (ηv)(s)|ds

≤

∫ b

a
Γ(t, s)ρ(ηu, ηv)ds

≤ ρ(ηu, ηv) max
t∈$

∫ b

a
Γ(t, s)ds

≤ λ∗(ρ(ηu, ηv))ρ(ηu, ηv)
≤ λ∗(ρ(ηu, ηv))ρ(ηu, ηv) + Kd(ηv,Υu),

for all K ≥ 0. This implies that for each u, v ∈
∧̃

, we get ρ(Υu,Υv) ≤ λ∗(ρ(ηu, ηv))ρ(ηu, ηv). Thus, by
applying Corollary 2 with the graph Gr = Gr0, where Eed(Gr0) =

∧̃
×

∧̃
, we can find u∗ ∈

∧̃
such that

Υu∗ = ηu∗, where (ηu∗)(t) = (gu∗)(t) for each t ∈ $. Thus, u∗ is the CoP of Υ and g, which corresponds
to the solution of Problem (4.1). �

An open problem

As a future assignment, we suggest the following: a discretized population balance for continuous
systems at steady state can be modeled via the following integral equation:

g(t) =
σ

2(1 + 2σ)

∫ b

a
g(t − x)g(x)dx + e−t. (4.3)

It is not known whether the existence criteria for the solution of (4.3) can be examined using any of
the results obtained in this work. The advantage of analyzing this type of problem is that it will allow
us to examine the existence criteria of several non-linear physical phenomena.
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5. Conclusions

In this note, a new type of sequence of multivalued contractions under the name non-linear
multivalued Grg-contractions on an MS with a graph is introduced (see Definition 2.1 ). CoP theorems
(see Theorem 2.2 and Theorem 2.4) of a single-valued mapping and the new sequence of multivalued
mappings were examined via appropriate hypotheses. A comparative illustration (Example 2.3) was
constructed to authenticate our assumptions and establish some links between the obtained results
herein and their analogues in the literature. Some significant results in an ε-chainable MS and cyclic
contractions were derived (see Corollaries 1, 2 and Theorems 3.1, 3.2) as some consequences of our
findings. From an application view-point, one of the special cases of our theorems was used to
investigate novel criteria for solving a more general Fredholm-type integral equation. As a future
exercise, an open problem regarding a discretized population balance model whose solution may be
discussed using any of the ideas put forward here was unveiled.
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