ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 55-14 (2022) 4045

Centralized Multi-Sensor Poisson
Multi-Bernoulli Mixture Tracker for

Autonomous Driving
Hyerim Lee* Jaeho Choi** Sejong Heo *** Kunsoo Huh **
* Department of Automotive Engineering (Automotive-Computer
Convergence), Hanyang University, Seoul, Korea,
(e-mail: rim7951@hanyang.ac.kr).
** Department of Automotive Engineering, Hanyang University, Seoul,
Korea, (e-mail: jaeho0608, khuh2@hanyang.ac.kr).
*** Hyundai Motor Company, Seoul, Korea,
(e-mail: sejong.heo@hyundai.com).

Abstract: With recent advances in Advanced Driver Assistance Systems (ADAS), autonomous
driving has increased the need for reliable perception techniques. To achieve reliability,
automotive sensors are being applied to autonomous driving vehicles, such as cameras, LiDAR,
and radars. Various methods for fusing sensors have been studied to increase performance. In this
study, we propose a centralized multi-sensor tracker, which is a first attempt to take advantage
of fusing heterogeneous onboard sensors while accounting for data uncertainties. The proposed
approach uses a Random Finite Set based Poisson Multi-Bernoulli Mixture filter. Experimental
results from an actual vehicle dataset show that the proposed method tracks accurately even
when objects are occluded or overlapped. It demonstrates the capability of tracking objects for

autonomous driving in an urban environment.
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1. INTRODUCTION

In autonomous driving, it is necessary to adequately per-
ceive the complex surrounding environment. Multi-object
tracking is a particularly crucial part. If tracking results
are poor, it may have an impact on subsequent path
prediction and vehicle control parts. The purpose of multi-
object tracking is to jointly predict the state and the num-
ber of objects. However, performing multi-object tracking
well is quite tough due to the following difficulties: ran-
dom ordering and cardinality of objects and observations;
detection uncertainty; and data associations.

There are three common filter-based approaches to dealing
with the problem of multi-object tracking that have the
greatest impact on performance. The Joint Probabilistic
Data Association (JPDA), introduced in Bar-Shalom et al.
(2009), is a method of creating every possible association
matrix between observations and previously detected ob-
jects. The observation is associated with a high probability
when the position of the observation is close to the track.
As a result, the association with the highest probability
is chosen as an estimation. Multiple Hypothesis Tracking
(MHT) in Reid (1979) holds multiple data association hy-
potheses, unlike the JPDA, which returns the one with the
highest probability as the estimation result. Because all
possible tracks are preserved and updated, it’s especially
useful when the motion model uncertainty exists. The
MHT is used in many applications along with hypothesis
reduction as it may have exponential growth in the number

of hypotheses. Due to practical and fundamental necessity,
Mabhler (2007) introduces the Random Finite Set (RFS).
It allows for a Bayesian approach to multi-object tracking
as the RFS can naturally model uncertainties accurately.

Among the RFS-based algorithms, the Poisson Multi-
Bernoulli Mixture (PMBM) filter of Garcia-Fernandez
et al. (2018) has demonstrated superior performance with
a low computational cost. The PMBM filter has three dis-
tinguishing features. The PMBM density has a conjugacy
property, which means that both the posterior and prior
distributions have the same functional form. It is clearly
explained in Garcia-Fernandez et al. (2018). Another is
that it divides tracking objects into undetected and de-
tected objects when estimating them. Because the PMBM
is under a detection-based tracking framework, it cannot
explicitly track undetected objects, but it does represent
their possibility. The other is that it can estimate the state
of objects elegantly even when objects are occluded by
keeping track of all feasible data association hypotheses
throughout time. However, because this is computation-
ally intensive, the PMBM filter is accompanied by several
reduction strategies.

Aside from the approaches explained above, as interest in
deep learning has increased recently, deep-learning based
tracking method research has grown. Deep Learning is
being used to extract features from raw sensor data using
a complicated network rather than directly using object-
level sensor data as Scheidegger et al. (2018) or to track in
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an end-to-end way as Frossard and Urtasun (2018). It has
good potential, but its tracking performance is comparable
to or slightly inferior to filter-based tracking methods,
and it necessitates training. Therefore, computational cost
must be a burden for autonomous vehicle applications.
Furthermore, it lacks flexibility in parameter tuning, and
thus it is not robust to changes in the environment and
sensor setup.

In autonomous vehicle applications, various types of on-
board automobile sensors, such as cameras, LiDAR, and
radar sensors, are used to observe surrounding environ-
ments. As each sensor has its own set of benefits and draw-
backs, we need to fuse them to increase the accuracy of the
object state estimations. This paper chooses a centralized
sensor fusion architecture introduced in Hall and Llinas
(1997) that fuses measurements from each sensor and uses
a single state estimator. It allows a central filter to take
entire responsibility for fusing the data.

Several previous multi-object tracking approaches based
on the PMBM filter have been proposed. Pang et al.
(2021) and Pang and Radha (2021) propose single-sensor
PMBM trackers that use neural networks to make LiDAR
raw data into 3D detection measurements. Frohle et al.
(2018) employs heterogeneous multi-sensors, but they use
GNSS and V2F, not the sensors mainly used in general
autonomous driving. Thanh et al. (2021) uses multiple
automotive sensors in a decentralized PMBM tracker,
which updates as each sensor data arrives. It conducts an
evaluation using an automated driving simulation toolbox.

This paper develops a centralized filter-based multi-sensor
tracking algorithm for the autonomous vehicle. To the best
of our knowledge, this is the first attempt at fusing multi-
ple heterogeneous onboard sensors for multi-object track-
ing. The contributions of the paper can be summarized as
follows: (1) propose a tracking algorithm using a Poisson
Multi-Bernoulli Mixture (PMBM) filter with multi-sensor
fusion concerning data uncertainties. (2) implement using
linear and gaussian models. (3) assess performance using
actual vehicle driving data.

The remainder of the paper is organized as follows. In
Chapter 2, we introduce the background information for
this paper and we propose a centralized tracking algorithm
in Chapter 3. We suggest how multiple sensors’ data are
fused in detail. In Chapter 4, we evaluate the proposed
algorithm based on an actual vehicle dataset and discuss
experimental results.

2. BACKGROUND

In this section, background information for the paper is
given. Mathematical symbols can be found in Table 1.
Other symbols that aren’t in the table are additionally
explained.

2.1 Random Finite Set

A Random Finite Set (RFS), also known as a Point
Process, is a set with random cardinality and ordering
states. RFS can model states and observation uncertainty
naturally by treating them as random variables.

Table 1. Nomenclature

Mathematical Symbols Meaning
T Object state
X Object RFS
x* Undetected object RFS
x4 Detected object RF'S
| Disjoint Union
z Measurement state
z Measurements RF'S
Ps Survival probability
Pd Detection probability
r Existence probability
Ap Poisson rate
Ac Clutter rate
N() Gaussian function
w Hypothesis weight
p(+) Probability density function
76 Poisson RFS density
FMBM () MBM RFS density

Poisson RFS intensity is defined as pu(x) = App(z) where
Poisson distributed with rate A\, and independent and
identically distributed (i.i.d.) p(x). Poisson RFS density
7 (x) is

fPx) = e @ T App(a). (1)

rTEX

A Bernoulli RFS density is expressed as

1—r, x=0
FPx) = {rp(a), x={z} (2)
0, |x| > 2.

where r denotes an existence probability and p(z) is a
probability density function if an object exists.

A Multi-Bernoulli (MB) RFS density is the disjoint union
of the independent Bernoulli RFSs.

M= Y [Ieix) (3)

)., xi=xi€T
1€T

where Z denotes a set of objects. It is used as the set of
potential objects {(r;, p;(z)) }sez that include the existence
probabilities of an object r; and the distribution of its
states p;(x).

A Multi-Bernoulli Mixture (MBM) RFS density is the
weighted sum of MB RFS densities. MBM RFS density
is used in handling a situation where we have multiple
data association hypotheses.

MM (x) = Z w; Z H pji(xi).  (4)

JjeET Lﬂieﬂ, x;=x 1€LI

where J stands for hypotheses sets. MBM RFS parame-
ters are {w;{i, {T?7i,p?7i(x)}iez}j€j, where w;{i denotes the
weight of the i th detected object of the j th hypotheis,
existence probability rf;, and state distribution p¢,(z).
Each weight determines the likelihood that the hypothesis
will occur.

2.2 Poisson Multi-Bernoulli Mizture filter
Poisson Multi-Bernoulli Mixture (PMBM) RFS density is

represented by a convolution of Poisson RFS density and
Multi-Bernoulli Mixture RFS density given by
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Fig. 1. The architecture of the proposed method. The tracker consists of four components: Data Association (DA),
Measurement Fusion (MF), Measurement Management (MM), and Filtering with the PMBM filter.

fPMBM (X) — Z fP (Xu)fMBM (Xd).
XU L—!—J xd=x

The object set x; at time t is the union of two disjoint
sets, the undetected and detected object sets.

()

(6)
x¥ and x¢ denotes the set of undetected objects at time
t modeled by the Poisson RFS and the set of detected
objects modeled by the MBM RFS, respectively. Poisson
RFS density and MBM RFS density are independently
predicted and updated during the PMBM recursion.

x; = X% 4 x¢

To cope with data association, the PMBM wuses local
hypotheses and global hypotheses. Local hypotheses are a
set of data associations for a particular object from the be-
ginning of tracks to the present. A possible combination of
local hypotheses is referred to as global hypotheses. Global
hypotheses contain the data associations of all objects.
As a result, keeping a reasonable number of hypotheses
is crucial to obtaining a favorable computational cost.

3. PROPOSED METHOD
3.1 Architecture

The architecture of the proposed method is shown in
Fig. 1. After outliers of each sensor are removed, data
associations for each sensor with regard to tracks are im-
plemented. There will be no more than one measurement
for an object per sensor. Following that, the associated
measurements are fused at the MF step. By taking into ac-
count the data uncertainty, the proposed method combines
several sensors with appropriate weights. It allows the
tracker to complement the limits of each sensor, resulting
in more accurate tracking results in dynamic conditions.
We will go through weight calculations in detail in the next
section. To compensate for measurement loss due to the
data association with previously detected tracks, LiDAR
data is included in the measurements set to initiate the
newborn track at MM. Finally, these measurement sets are
utilized at the update step of the PMBM filter. Filtering

output is used at track-to-sensor data association as tracks
and this process is done recursively.

3.2 Uncertainty-aware Measurement Fusion

To get appropriate weight to fuse, we adopt the weight
calculations of Liu et al. (2020) and modify them to
be used for multi-sensor multiple data fusion. Weights «
concerning the uncertainty of sensor data are derived as
follows:

An objective function is defined as

n
fla) =) aio}

i=1
' n (7)

subject to Zai =1
i=1

where n denotes the number of sensors or data types.
Using the Lagrangian multiplier method, the Lagrangian
function is expressed as

L(a) —f<a>+v(i§i;ai—1)

where v denotes the Lagrange multiplier. The partial
derivative «; of the Lagrangian function (8) is as follows:

(8)

oL df
80&1‘ B daT; (9)
= 20,07 + v.

Setting % = 0 to obtain the minimum value, «; and v
are

v 2
a; = —5, v = Py
207 S (10)
2
iz1 7
The fusion weight of each sensor data i is «; as
1

| —

ZZ
o;
' g

i=1

=
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This weight calculation is used not only for each sensor
but also for each sensor data type. Under the same
given observations, equally-weighted measurement fusion
cannot predict a track center. However, if the uncertainty
of each sensor is taken into account while fusing them
using weights computed by (7)-(11), more accurate fused
outputs are obtained and the tracker can achieve better
performance than the equally-weighted output.

3.8 Filtering with PMBM filter

The prediction, update, estimation, and reduction parts
of the PMBM filter are all discussed in depth. We note
that all the explanations below and the implementation
of the proposed method use linear and Gaussian models.
The PMBM predicts and updates Poisson RFS and MBM
RFS independently.

Prediction A target has a ps chance of surviving and
moving with a transition density ¢(-), or 1 — ps chance of
dying. Various motion models can be used to represent the
transition density as g(x|y) = N (x;Fy, Q). Target birth
is modelled by Poisson RFS with intensity A(-)

Ny
b(x) = Zw}fz/\/
i=1

where N, denotes the number of births.
intensity is predicted as

N,
X) + Ds Z wu,z’
=1

(x5 Xy 45 2y ) (12)

Poisson RFS

fepe—1(x) = A (x;Fxi  FEU . F' +Q).

U, 79

(13)
The components of the MBM RFS are hypothesis weight,
probability of existence, and probability density function.
The hypothesis weight wt‘ ;_, does not change since no
measurement is taken at this point. The probability of

existence 77 is predicted to be rf 7i1| +_1Ps- Prediction of

t|t 1
the probability density function ptl 11 (x) is

Pl (%) = N (x; F={

where ¢ denotes the Bernoulli component and j a global
hypothesis index.

F! F' +Q) (14)

jl’

Update Each measurement at time ¢ might be a first de-
tection, a detection of a previously detected target, or clut-
ter. Targets are detected with probability p; and created
with density I(:|x), or they are missed with probability
1—pg. Measurement likelihoods are f(z|x) = N (z; Hx, R).
The PMBM update has three step: the Poisson RFS up-
date, MBM RFS update, and global hypotheses update.

In the Poisson RFS update, the states and variances of
Poisson distribution will not change and intensity will be
reduced as

.Utlt(x) =(1- pd)#t|t—1(x)- (15)

In the case of the MBM RFS update, new potential
tracks that are detected for the first time are made from
survived components after gating Poisson components on
measurements

Tﬁt(z) = pu(Z) (16)
wy, (2) oc wij, 1N (2 HXy, ;, Sui) (17)
pi () = PR 9
N N
=Y wi(z)N(x;%y,i(2),X4;) (19)
i=1
where ¢(z) denotes the clutter intensity and
p"(2) = e(z) + ¢(z)
— b [ Flaxntx)ix
Ny
= pd Z Wy, iN (2; HR oy, iy S i) (20)

Xu,i(z) =Xy, + 25 HTSH(z — HXY i)
EA3u,i = (I - Eg,iHTSu,%H)EZ,i
S.i =HZY H' +R.

Detected tracks without associated measurements are up-
dated as

wii(0) = wii (L=l 4l (L=pa)  (2D)

rii(0) = ‘7‘“{\’271(1‘—‘ Pa) (22)
L—=ry 731 (1= pa)

Pl (0) = pliy_ (x). (23)

When the track has associated measurements, the exis-
tence probability is set to 1, as it is considered to exist.
The states and variances are updated by Bayesian update
using associated measurements.

i@ =1 24
wift(z) = wt|t 1 t\t 1PaN (z; ijwS i) (25)
pi\’i (x,2) = N(X7 xj’i( z), Ejﬂ) (26)
where A o . Wy
%,i(z) = X5+ Kj,iSj’i (z — me-)
K;;=x¢HT
S i CigT (27)
Ej,i = Ej,i - Kj’isj,i Kj,i

S =HZ] H" +R.

After updating Poisson and MBM components, global
hypotheses are updated by creating a cost matrix.

C=—In [Cold C7L€w]m><(j+m)
RS A T
=—ln| o0 . (28)
m,1 . m,j ... .mm
cl cy 0 cn mx (j4m)
j m

where ¢, and ¢, are the cost of old and newly detected
targets. j and m denote the number of detected targets at
the previous timestep and the number of measurements.
The cost of the previously detected targets c, is

Cj,i _ wj7ipj,i(z) . wIipds ZpdN(Z HX] i Sjﬂ') (29)

) pj,i(o) - ww(l — rdi 4l 1(1 *pd)).
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Fig. 2. The results of three different scenarios. The proposed method and the Kalman filter are indicated in red and
yellow, respectively. (a) on the highway at night. (b) vehicles that are occluded in a parking lot. (c) overlapping
pedestrians in a parking lot. Each includes a part of the webcam image on the left, a qualitative tracking result on
the right, and a calculated RMSE graph with a time axis below.

according to (27). The newly detected targets’ cost, ¢, is
p"(z) calculated by (20). The PMBM discovers the best
K hypotheses by employing Murty’s algorithm Lu and
Rosenbaum (2004) using the created cost matrix.

Estimation  Selecting an optimum estimator gives a
better estimation output in multi-object tracking. In this
paper, we choose a global hypothesis with the highest
weight as an estimation output.
n
j* = argmaXH Wy, (30)
I

Reduction ~ Managing computing complexity and pre-
serving real-time performance necessitates reducing the
number of hypotheses. Pruning, capping, gating, recycling,
and merging methods are used in the implementation of
this paper. Additional details of each method can be found
in the Garcia-Ferndndez et al. (2018).

4. EXPERIMENTS

The proposed method has been evaluated by an actual
vehicle with heterogeneous and asynchronous sensors: a
camera in the front of the vehicle, scanning LiDAR, and
electronically scanning radar in the front and rear. With its
specific data frequency, each sensor provides its clustering
output. They are synchronized and corrected using short-
term prediction to be used in the centralized architecture.
Aside from the sensors used in the fusion, there are three
high-end 3D scanning LiDARs on the top.

For evaluation, we used the clustering outputs of LiDAR-
based verification sensors that were not employed in multi-
sensor fusion as ground truth since there was no accurate
ground truth in the actual vehicle dataset. The Root Mean
Square Error and the number of ID switches are utilized
as evaluation metrics, and a Kalman filter tracker (KF)
with score-based track management is employed for the
comparison.

Although various situations have been verified, Fig. 2
contains three scenarios around 30 seconds long; one
common highway situation and two challenging situations
for vehicles and pedestrians.

When compared to the verification sensor qualitatively,
both trackers show similar performances in (a) of Fig. 2.
However, unlike the KF, which uses an empirical track
birth and death management, the track birth method of
the proposed method based on the Poisson RFS allows
faster track generation of the proposed method. The
quantitative evaluation shows an unstable shape because
of the poor clustering of the verification sensor, but the
RMSE of the proposed method is lower than that of the
comparative group in most cases, as shown in Fig. 2 and
Table 2. In a situation when a car passes behind a car in
the parking lot and completely covers it for a while, our
method shows significantly less error than the KF.

For urban autonomous driving, not only vehicle tracking
but also pedestrian tracking is essential, and a detailed
explanation of the challenging urban scenario (c) will be
given below. For scenario (c) of Fig. 2, two pedestrians
in the parking lot overlap at the view of the automotive
vehicle. Their top-view trajectories are illustrated in (c)
of Fig. 3. As shown in (d) of Fig. 3, the KF is unable to
maintain track continuity after overlapping. In (a) of Fig.
3, the track ID of a pedestrian on the right turns from
18 to 23. However, due to the probabilistic hypotheses
of the proposed method against the KF, the proposed
method preserves track continuity in challenging scenarios.
It can be considered a significant advantage in multi-object
tracking.

Table 2. Average RMSE comparison of Fig. 2

Average RMSE  Proposed method  Kalman filter

Scenario (a) 0.2180 0.7345
Scenario (b) 0.5677 0.8440
Scenario (c) 0.6592 0.7617
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(a) Top-view (before overlapping)

(b) Top-view (after overlapping)
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Fig. 3. The results of scenarios (c) of Fig. 2. The proposed
method and the Kalman filter are indicated in red
and yellow, respectively. Tracking results before and
after overlapping are shown in (a) and (b). (c) illus-
trates the whole top-view trajectory of pedestrians
throughout the scenario, with arrows indicating their
beginning places. The tracking ID switch comparison
for both methods is shown in (d).

5. CONCLUSION

The Random Finite Set tracker, unlike the frequently
used Kalman filter tracker, can directly model the num-
ber of objects. Among the Random Finite Set based ap-
proaches, the Poisson Multi-Bernoulli Mixture filter per-
forms well. Based on this, we propose a centralized multi-
sensor tracker for autonomous driving applications using
the Poisson Multi-Bernoulli Mixture filter. The tracker
fuses heterogeneous automotive sensors while accounting
for data uncertainties. We present a real-world vehicle
evaluation in comparison to a Kalman filter tracker. The
proposed method outperforms the Kalman filter tracker
in challenging scenarios, according to the experimental
results. There are several possible themes to investigate for
future work, including the evaluation of publicly available
datasets and the development of multiple motion models
and a decentralized architecture.
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