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Background
Liquid chromatography and tandem mass spectrometry (LC–MS/MS) in shotgun prot-
eomics are methods that can be used to analyze protein and peptides [1]. Spectra gener-
ated by LC–MS/MS are identified as peptides using various methods, such as a database 
search [2–4], de novo sequencing [5–7], or with a spectral library [8–11]. However, a 
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large set of peptide-spectrum matches (PSMs) identified by various search tools causes a 
quality assessment problem when making multiple comparisons [12, 13]. For this reason, 
it is very important to estimate the false discovery rate (FDR) properly in proteomics.

The target-decoy strategy (henceforth TDS) is a simple approach that is frequently 
used to estimate the FDR in proteomics [14, 15]. This strategy effectively estimates the 
FDR with the generated target and decoy PSMs by searching for the spectra in a target-
decoy database. To support an accurate FDR estimation, various methods have been 
proposed, such as decoy database creation methods that normally construct a decoy 
database by reversing or shuffling the target protein database [16–19], FDR estimation 
methods that rely on the creation method [20, 21], and a post-processing method that 
re-ranks the PSM list obtained by a database search algorithm and then sets a threshold 
automatically in the re-ranked list using a specific method [22].

One of the assumptions associated with TDS is that “target and decoy false positives 
are equally likely.” This assumption has been demonstrated to hold under certain condi-
tions in the following ways [15]: (1) the ratio of the top-ranked target and decoy PSMs 
matched after shifting the precursor mass of the input MS/MS spectra (these spectra are 
always incorrect PSMs), (2) the ratio of low-ranked target and decoy PSMs on the PSM 
list (using rank 2–5 PSMs), and (3) the ratio of unique peptides in target and decoy data-
bases. TDS is a means of estimating the FDR using target and decoy PSMs. Additionally, 
when using stochastic decoy databases such as shuffle and random decoy databases or 
when the sizes of the target and decoy databases are not the same, the probability that 
an incorrect PSM matches a target or decoy peptide may not be the same. To solve this 
problem, the FDR is estimated with a correction factor [14, 15, 18].

TDS estimates the FDR upon the assumption that when all spectra are identified 
incorrectly, the probabilities of the spectra matching the target or decoy peptides are 
identical. However, when the spectrum is identified incorrectly, the probabilities of the 
spectra matching the target or decoy peptides are not the same. If the probabilities of 
the spectra matching the target or decoy peptides are not equal, the estimate of the FDR 
can be inaccurate. The probability of a single spectrum being identified incorrectly as a 
target or decoy peptide can be calculated using the number of target and decoy candi-
date peptides (Eq. 5 in the Methods section). Therefore, we propose cTDS (target-decoy 
strategy with candidate peptides), which is a new method to estimate the FDR using the 
probabilities of a single spectrum identified incorrectly as a target or decoy peptide. We 
calculate this ratio using the number of target and decoy candidate peptides correspond-
ing to a specific spectrum and conduct an entrapment experiment [23, 24] to demon-
strate the accuracy of cTDS. Finally, we compared FDR results estimated with both the 
TDS and cTDS methods.

Results
For convenience, we denote the concatenated database (target + decoy databases) with 
R meaning reverse, PR meaning pseudo-reverse, S meaning shuffle, PS meaning pseudo-
shuffle, and DE referring to the de Bruijn decoy database. (S and PS are different every 
time we generate decoy databases when using the shuffle method. Therefore, S and PS 
S1-4 and PS1-4 show variations of S and PS; the replicates of each dataset are denoted as 
R1, R2, and R3.)
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Ratio of target and decoy candidate peptides corresponding to a specific spectrum

First, we examined the ratio of the number of target and decoy candidate peptides for 
each spectrum to discern whether the probabilities of the spectra matching the target or 
decoy peptides are not the same when the spectra are identified incorrectly (Fig. 1 and 
Additional file 1: Fig. S1). Figure 1 shows the distribution of P(ti) for each spectrum in 
the HEK293 dataset. P(ti) represents the ratio of the target candidate peptides among 
the target and decoy candidate peptides corresponding to a specific spectrum (See Eq. 5 
in the Methods section). In Fig. 1a, R, PR, and DE are distributed close to 0.5, while S 
and PS are distributed at different positions because for R, PR, and DE, the sizes of the 
target and decoy database are nearly identical, whereas for S and PS, this is not the case. 
Figure 1b shows when a correction factor is applied to correct the distributions of S and 
PS. As shown in Fig. 1b, most of the spectrum has a P(ti) value close to 0.5, while only 
about 1.14–4.85% of the total spectrum has a P(ti) value of exactly 0.5 (R, PR, S, PS, and 
DE). In conclusion, when the spectra in the HEK293 dataset are identified incorrectly, 
the probabilities of the spectra matching the target or decoy peptides are mostly not 
equal. This also applies to other cell line datasets (Additional file 1: Fig. S2).

Accuracy comparisons using an entrapment sequence

We used an entrapment experiment to demonstrate the accuracy of cTDS. The entrap-
ment sequence method uses an entrapment database that is added to a reference data-
base to create the target database. After estimating the FDR, a PSM matched to the 
reference database is classified as a true positive and a PSM matched to the entrapment 
database is classified as a false positive. Then, the false match ratio (FMR) is calculated 
using Eq. 4 in the Methods section.

To compare TDS and cTDS, we generated a target database as a human synthetic 
peptide database (reference database) combined with the P. furiosus database (entrap-
ment database). Subsequently, a reverse decoy database was concatenated into the cre-
ated target database. Synthetic peptide datasets, which are actual ground truth datasets 
for which measurements are more accurate, were then searched by applying the same 
parameters described in the Methods section. Figure 2a compares the FMR outcomes 
for TDS and cTDS at fixed FDR thresholds. As shown in Fig. 2a, for fixed FDR thresholds 

Fig. 1  Comparison of the distributions of P(ti) in various databases and in the HEK293 dataset. The x-axis 
represents the ratio of PSMs with each P(ti) . The y-axis represents different databases: a without a correction 
factor, and b with a correction factor
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(1–10%), the FMR in cTDS is closer than FMR in TDS. This result indicates that TDS is 
more conservative than cTDS. Figure 2b shows the number of PSMs obtained with TDS 
and cTDS at fixed FDR thresholds. The blue bar and the red bar represent the number of 
PSMs obtained by TDS and cTDS, respectively, and the black line represents the differ-
ence in the number of PSMs between TDS and cTDS. As shown in Fig. 2b, the number 
of PSMs obtained with cTDS exceeds those by TDS (by approximately 0.799–1.621%) at 
all FDR thresholds.

Performance capabilities of TDS and cTDS

We compared the newly proposed cTDS to TDS. Figure  3 shows the number of 
PSMs obtained with TDS and cTDS at a 1% FDR threshold using the HEK293 dataset 
and various databases. The blue bar and the red bar represent the number of PSMs 
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Fig. 2  Comparison of the FMR and number of PSMs at fixed FDR thresholds. a The dashed line represents the 
FMR in cTDS. The dotted line represents the FMR in TDS. The x-axis and y-axis represent the false discovery 
ratio thresholds and the false match ratio, respectively. b The x-axis represents the FDR thresholds. The y-axis 
represents the number of PSMs

Fig. 3  Comparison of the number of PSMs of various databases. The blue bar shows the number of PSMs 
obtained with TDS at the 1% FDR threshold. The red bar shows the number of PSMs obtained with cTDS at 
the 1% FDR threshold: a HEK293 first replicate, b HEK293 second replicate, and c HEK293 third replicate



Page 5 of 10Lee et al. BMC Bioinformatics          (2022) 23:454 	

obtained with TDS and cTDS, respectively. With TDS, the stochastic methods S 
and PS utilized a correction factor, which is the ratio of the rank 5 target and decoy 
PSMs. As shown in Fig. 3 (Additional file 1: Fig. S3), in the first and third replications, 
the number of PSMs obtained with cTDS for R, PR, S, and DE exceed those by TDS 
(about 0.001–0.132%), with the PS containing fewer PSMs compared to TDS (about 
0.05–0.126%). In the second replication, the number of PSMs obtained with cTDS 
for all databases exceeds those obtained with TDS (about 0.013–0.274%). (Additional 
file 1: Figs. S4 and S5 show the variations of S and PS for the other ten datasets used 
here.)

When comparing TDS and cTDS, the identified spectra increase or decrease 
because the distribution of P(ti) for each spectrum differs. Figure  4 shows the ratio 
of the distribution of P(ti) of the identified spectra obtained for R, PR, S, PS, and DE 
and the HEK293 dataset at the 1% FDR threshold. The blue bar represents the case 
of P(ti) < 0.5 and the red bar denotes P(ti) > 0.5. In other words, the blue bar indi-
cates that decoy candidate peptides outnumber the target candidate peptides among 
all candidate peptides for each spectrum, and the red bar indicates the opposite. Fig-
ure  4a presents the distribution of P(ti) of the spectra identified as target peptides, 
and Fig. 4b is the distribution of P(ti) of the spectra identified as decoy peptides.

In Fig. 4a, b, when the blue bar is higher than the red bar, it indicates that the iden-
tified spectrum has more decoy candidate peptides than target candidate peptides, 
meaning that the incorrectly identified spectrum is highly likely to be identified as a 
decoy peptide. Consequently, the number of identified spectra with cTDS at the 1% 
FDR threshold increases, as shown in Fig. 3 (R, PR, and DE in the first replicate; R, 
PR, PS, and DE in the second replicate; and R, PR, and DE in the third replicate). 
Conversely, in Fig.  4a, b, when the red bar is higher than the blue bar, the identi-
fied spectrum has more target candidate peptides than decoy candidate peptides. This 
indicates that an incorrectly identified spectrum is highly likely to be identified as a 

Fig. 4  Comparison of the ratio of P(ti) distributions of target and decoy hits in various databases and in the 
HEK293 dataset. The blue bar shows the ratio of spectra for which P(ti) < 0.5 among all spectra at the 1% 
FDR threshold. The red bar shows the ratio of spectra for which P(ti) > 0.5 among all spectra at the 1% FDR 
threshold: a HEK293 target hits, and b HEK293 decoy hits
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target peptide. Consequently, the number of identified spectra with cTDS at the 1% 
FDR threshold decreases, as shown in Fig. 3 (PS at the first and third replicates).

However, for S shown in Fig. 4a, b, neither the blue bar nor the red bar is high for the 
three replicates. For example, in the first replicate, the red bar is taller than the blue bar 
in Fig. 4a, and the blue bar is taller than the red bar in Fig. 4b. In this case, we do not 
know whether TDS estimated the FDR correctly. The proposed cTDS estimates the FDR 
by thoroughly considering all of these cases. When the FDR was estimated with cTDS, 
with regard to S, the number of identified spectra increased for all three replications. (In 
addition, see Additional file 1: Figs. S6 and S7 for variations of S and PS with the other 
ten datasets.)

Discussion
Various search methods and FDR estimation methods have been proposed for prot-
eomics. Here, we propose cTDS, which uses the probabilities of spectra being identified 
incorrectly as target or decoy peptides, to estimate a more accurate FDR. Compared to 
TDS, cTDS estimates the FDR more accurately. With TDS, when the sizes of the tar-
get and decoy databases are different, such as in protein-level shuffle or pseudo-shuffle 
decoy databases, the FDR should be estimated using a correction factor. However, cTDS 
can estimate the FDR without a correction factor regardless of which decoy database is 
used. When generating a peptide-level decoy database, cTDS is identical to the existing 
TDS. However, when generating a protein-level decoy database, cTDS can estimate the 
FDR more accurately than TDS.

For cTDS, the FDR can be estimated when the number of target and decoy candidate 
peptides is known. The FDR can easily be estimated according to the output of the num-
ber of target and decoy candidate peptides using existing database search tools. How-
ever, most existing database search tools do not present the numbers of target and decoy 
candidate peptides as the output. Therefore, in order to estimate the FDR more accu-
rately, we hope the method used is supported by the output of the numbers of target and 
decoy candidate peptides when developing database search tools. We modified Comet to 
print the number of candidate peptides. The modified code is available at https://​github.​
com/​other​tics/​Comet​Candi​dateC​ount.

Conclusion
The most commonly used method to estimate the FDR is the TDS method. TDS esti-
mates the FDR under the assumption that when all spectra are identified incorrectly, the 
probabilities of the spectra matching the target or decoy peptides are identical. However, 
when spectra are actually identified incorrectly, most of the probabilities of the spec-
tra matching the target or decoy peptides are not the same. This problem complicates 
accurate FDR estimation. Therefore, we proposed cTDS, which estimates the FDR more 
accurately using the probabilities of spectra identified incorrectly as target or decoy 
peptides. It is demonstrated that cTDS shows no substantial differences in terms of the 
number of identified spectra compared to TDS, but it can be said to be a more accurate 
FDR estimation method.

https://github.com/othertics/CometCandidateCount
https://github.com/othertics/CometCandidateCount
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Methods
Datasets and parameters

An MS/MS dataset compiled from eleven cell lines (A549, GAMG, HEK293, HeLa, 
HepG2, Jurkat, K562, LnCap, MCF7, RKO, and U2OS) and the synthetic peptides were 
obtained with an LTQ-Orbitrap Velos mass spectrometer and an Orbitrap Fusion Lumos 
mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) [25, 26] (See Addi-
tional file 1: Tables S1 and S2 for detailed information). We used the synthetic peptide 
datasets to demonstrate the accuracy of cTDS because it is a set of spectra generated 
from actual synthetic peptides. Therefore, if a spectrum matches a peptide that does not 
exist in the synthetic peptide database, it is considered to be incorrect. Hence, we used 
a synthetic peptide dataset, an actual ground truth dataset to distinguish true and false 
positives. We also searched with Comet (2019.01 rev. 1 version) with the following high-
resolution parameters: precursor tolerance = 20  ppm, fragment tolerance = 0.02  Da, 
number of tryptic termini = 2, maximum missed cleavages = 2, fixed modification = car-
bamidomethyl on cysteine, and variable modification = oxidation on methionine.

Databases

We used the human SwissProt database (42,351 target proteins, 2,618,539 target pep-
tides), a synthetic peptide database (12,622 target peptides), and the Pyrococcus furiosus 
(P. furiosus) UniProt database (992 target proteins, 77,661 target peptides) to compare 
the results estimated with TDS and cTDS at a fixed FDR threshold. The synthetic pep-
tide database is a list of peptides used for synthesis in the ProteomeTools project.

Decoy database generation

Reverse method

This method generates a decoy database by reversing the proteins of a given target data-
base. For example, for the target protein “GCNKYQWR,” the decoy protein “RWQYK-
NCG” is generated by reversing the target protein as it is.

Pseudo‑reverse method

This method generates in a manner identical to that of the reverse method, but it reverses 
only the peptides between K and R. For example, for the target protein “GCNKYQWR,” 
the decoy protein “NCGKWQYR” is generated by reversing the peptides between K and 
R of the target protein.

Shuffle method

This method generates a decoy database by shuffling the protein of a given tar-
get database. For example, for the target protein “GCNKYQWR,” the decoy protein 
“NKYQCWGR” is generated by shuffling the target protein as it is.

Pseudo‑shuffle method

The generation process by this method is identical to that of the shuffle method, but 
it shuffles only the peptides between K and R. For example, for the target protein 
“GCNKYQWR,” the decoy protein “CNGKYWQR” is generated by shuffling the pep-
tides between K and R of the target protein.
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De Bruijn method

This method generates a decoy database with a de Bruijn graph for a given target 
database. For example, for the target protein “GCNKYQWR,” the target protein is 
transformed into a k-mer form and a graph is implemented. The decoy protein “NGCK-
WYQR” is then generated by altering the edges representing the amino acid according to 
the amino acid probabilities of the target database.

Target‑decoy strategy

TDS FDR estimates are done using the method expressed by Eq. 1, as shown below.

Here, T  is the number of target PSMs and D is the number of decoy PSMs. Addition-
ally, when the sizes of the target and decoy databases are different, such as in protein-
level shuffle or pseudo shuffle decoy databases, the FDR can be estimated using the 
method expressed by Eq. 2 below.

In this equation, factor is a value used to correct the FDR estimation when the sizes of 
the target and decoy databases differ. In this paper, factor is the ratio of the rank 5 target 
and decoy PSMs. It is calculated using the equation below.

Here, #Target is the number of target PSMs of rank 5, and #Decoy is the number of 
decoy PSMs of rank 5.

False match rate

FMR is a method for approximatively estimating false positives at a specific FDR thresh-
old. FMR is calculated by Eq. 4 below.

In this equation, #Targetentrap is the number of target PSMs that matched the entrap-
ment database, and #Targetrefer is the number of target PSMs that matched the reference 
database.

False discovery rate estimation using candidate peptides for each spectrum

When a spectrum is identified incorrectly, we estimate the FDR using the probability 
that it will be identified as a target peptide and the probability that it will be identified 
as a decoy peptide. When S(S = {S0, S1, . . . , Sn}) is a set of n spectra, P(ti) denotes the 
probability of spectrum Si being identified as a target peptide, and P(di) represents the 
probability of Si being identified as a decoy peptide. The method used to calculate P(ti) 
and P(di) is as follows.

(1)FDRTDS =
D + 1

T

(2)FDRTDS =
D + 1

T
× factor

(3)factor =
#Target

#Decoy

(4)FMR =
#Targetentrap

#Targetrefer
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In these equations, targeti is the number of target candidate peptides of Si and decoyi 
is the number of decoy candidate peptides of Si . When a single spectrum is identi-
fied incorrectly, X is a geometric random variable representing the number of experi-
ments conducted before the matching of a target peptide; when a single spectrum is 
identified incorrectly, only two types of target or decoy peptides are matched, and 
the probability of the spectrum being matched as a target peptide is always identical 
to ti and is independent every time. When a single spectrum is identified incorrectly, 
Y, like X , is a geometric random variable that indicates the number of experiments 
conducted before the matching of a decoy peptide. We estimate the FDR using the 
expected values of E(Xi) and E(Yi) of the geometric random variable with the equa-
tion below.

Here, Si ∈ T  indicates that Si is identified as a target peptide and Si ∈ D signifies 
that Si is identified as a decoy peptide. Xi and Yi are geometric random variables of Si.

Abbreviations
LC–MS/MS	� Liquid chromatography and tandem mass spectrometry
FDR	� False discovery rate
TDS	� Target-decoy strategy
PSMs	� Peptide-spectrum matches
FMR	� False match rate
R	� Target-reverse decoy database
PR	� Target-pseudo reverse decoy database
S	� Target-shuffle decoy database
PS	� Target-pseudo shuffle decoy database
DE	� Target-de Bruijn decoy database
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