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Abstract 

Background:  Early diagnosis of mild cognitive impairment (MCI) is essential for timely treatment planning. With 
recent advances in the wearable technology, interest has increasingly shifted toward computer-aided self-diagnosis of 
MCI using wearable electroencephalography (EEG) devices in daily life. However, no study so far has investigated the 
optimal electrode configurations for the efficient diagnosis of MCI while considering the design factors of wearable 
EEG devices. In this study, we aimed to determine the optimal channel configurations of wearable EEG devices for the 
computer-aided diagnosis of MCI.

Method:  We employed an EEG dataset collected from 21 patients with MCI and 21 healthy control subjects. After 
evaluating the classification accuracies for all possible electrode configurations for the two-, four-, six-, and eight-
electrode conditions using a support vector machine, the optimal electrode configurations that provide the highest 
diagnostic accuracy were suggested for each electrode condition.

Results:  The highest classification accuracies of 74.04% ± 4.82, 82.43% ± 6.14, 86.28% ± 2.81, and 86.85% ± 4.97 
were achieved for the optimal two-, four-, six-, and eight-electrode configurations, respectively, which demonstrated 
the possibility of precise machine-learning-based diagnosis of MCI with a limited number of EEG electrodes. Addi‑
tionally, further simulations with the EEG dataset revealed that the optimal electrode configurations had significantly 
higher classification accuracies than commercial EEG devices with the same number of electrodes, which suggested 
the importance of electrode configuration optimization for wearable EEG devices based on clinical EEG datasets.

Conclusions:  This study highlighted that the optimization of the electrode configuration, assuming the wearable 
EEG devices can potentially be utilized for daily life monitoring of MCI, is necessary to enhance the performance and 
portability.

Keywords:  Mild cognitive impairment, Electroencephalography, Wearable EEG device, Machine learning, Optimal 
channel configuration
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Introduction
Mild cognitive impairment (MCI) is a psychiatric syn-
drome characterized by a cognitive decline greater than 
that expected based on an individual’s age and educa-
tion level [1]. MCI is believed to be associated with sev-
eral underlying causes, especially for Alzheimer’s disease 
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(AD) [2]. As approximately 40–60% of patients with MCI 
have an underlying AD pathology [3, 4], early detection 
of MCI is important for postponing cognitive decline and 
preventing its conversion to AD [5]. In general, however, 
a patient’s visit to the hospital for the diagnosis of MCI 
is considerably delayed because MCI does not usually 
interfere with daily activities, and individual symptoms 
are heterogeneous depending on the etiology and cogni-
tive reserve [6, 7]. Moreover, conventional methods for 
diagnosing MCI such as history recording, clinical ques-
tionnaires, and simple cognitive tests are susceptible to 
misdiagnosis particularly in the early stages of MCI [8]. 
The exploration of all cognitive domains and quantifica-
tion of overall cognitive performance are essential for 
avoiding potential diagnostic errors. However, such a 
time-consuming and tedious diagnostic procedure might 
act as a barrier preventing the early detection of MCI by 
discouraging potential patients from visiting a medical 
clinic [7].

Various biomarkers have been suggested for a more 
quantitative and objective diagnosis of MCI such as those 
extracted from cerebrospinal fluid (CSF), magnetic reso-
nance imaging (MRI), and electroencephalography (EEG) 
[7, 9–11]. Recently, biomarkers from EEG have drawn 
increased attention owing to their advantages of rela-
tively shorter diagnostic time and higher cost-effective-
ness [12–15]. The key characteristics of the EEG data of 
elderly patients with MCI compared with those of normal 
elderly people (without MCI) are reduced complexity, 
decrease in inter-regional synchronizations, and shifts in 
the power spectrum from high-frequency components 
(alpha, beta, and gamma bands) toward low-frequency 
components (delta and theta bands) [16, 17]. These EEG 
biomarkers have been widely employed for the com-
puter-aided diagnosis of MCI based on machine learn-
ing (ML) algorithms, thus demonstrating the possibility 
of a reliably high-performance EEG-based diagnosis of 
MCI [17–21]. For example, Morabito et al. [20] achieved 
an accuracy of 85% in classifying MCI and healthy con-
trol subjects (HCs) using a convolutional neural network 
(CNN) model. Fiscon et al. [21] achieved a classification 
accuracy of 92% for the detection of MCI using a deci-
sion tree classifier with wavelet coefficients from the EEG 
data.

However, previous studies on machine learning-based 
MCI diagnoses with EEG have generally employed 
research-grade EEG devices that require the aid of a 
trained experimenter so that the wider utilization of 
EEG-based MCI diagnosis in places other than labo-
ratory or clinical environments is prevented [22–24]. 
Recent developments in wearable EEG technology have 
made EEG devices portable and inexpensive, thereby 
expanding their application fields [24–26]. For example, 

wearable EEG devices have the potential to be used for 
the early detection of neurological diseases [27, 28]. With 
the recent developments of hydrogel electrode technolo-
gies, it is expected that wearable EEG devices would be 
widely employed for continuous, long-term EEG moni-
toring and daily-life diagnosis of neurological diseases 
[29]. In this regard, these devices could be effective tools 
in the primary screening of MCI, for which early diag-
nosis is generally difficult due to the delayed visit to the 
hospital.

To increase the effectiveness of wearable EEG devices, 
it is necessary to increase the accessibility of the patients 
by making the devices portable and affordable [30]. 
Although attempts have been made to reduce the num-
ber of EEG channels while preserving the performance 
of the devices [31] and to investigate the optimal channel 
configurations that maximize the performance in brain-
computer interfaces and biometric systems [32, 33], 
to the best of our knowledge, no study was performed 
to investigate the optimal electrode configurations for 
wearable EEG devices to maximize the accuracy of the 
machine learning-based diagnosis of MCI.

In this paper, we present a procedure to determine 
the optimal electrode configurations for wearable EEG 
devices to diagnose MCI, considering both the practical-
ity and classification accuracy of wearable EEG devices. 
We suggest optimal channel configurations for two-, 
four-, six-, and eight-electrode conditions using a clini-
cal EEG dataset collected from patients with MCI and 
healthy individuals. Furthermore, we demonstrate that 
the proposed optimal electrode configurations exhibit 
statistically higher performance in the diagnosis of MCI 
than commercial wearable EEG devices.

Methods and materials
Determination of optimal electrode configuration
To determine the optimal electrode configurations for 
different numbers of electrodes, we only considered 
configurations consisting of electrode pairs positioned 
symmetrically with respect to the midline (e.g., F7–F8 
and FC5–FC6) and electrodes located on the midline 
(e.g., Fz and Pz), because it was thought that wearable 
EEG devices with bilateral symmetry are much easier 
to implement than configurations with randomly dis-
tributed electrodes [27]. In other words, the optimal 
electrode configurations were determined by compar-
ing the classification accuracies of all possible electrode 
configurations that can be formed with the combinations 
of midline electrodes (Fz, Cz, Pz, and Oz) and symmet-
ric electrode pairs (Fp1–Fp2, AF3–AF4, F7–F8, F3–F4, 
FC5–FC6, FC1–FC2, T7–T8, C3–C4, CP5–CP6, CP1–
CP2, P7–P8, P3–P4, PO3–PO4, and O1–O2) when the 
number of electrodes was set to two, four, six, and eight. 
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The number of all possible electrode combinations for 
the two-, four-, six-, and eight-electrode configurations 
were 20, 176, 924, and 3276, respectively.

The optimal electrode configuration was determined 
by selecting the electrode configuration that exhibited 
the highest accuracy among all possible channel combi-
nations. After determining the optimal electrode con-
figurations with two, four, six, and eight electrodes, the 
classification accuracies of the optimal electrode configu-
rations were compared with those of commercial wear-
able EEG devices including FocusbandTM (T2 Green Pty 
Ltd.; Carrara, QLD, Australia), InsightTM (Emotiv Inc.; 
San Francisco, CA, USA), DSI-7TM (Wearable Sensing 
LLC; San Diego, CA, USA), ImecTM (Imec Inc.; Leuven, 
FB, Belgium), and EPOCTM (Emotiv Inc.; San Francisco, 
CA, USA). The electrode configurations of commercial 
devices are shown in Fig. 1.

Participants
EEG data were acquired from 42 participants (21 patients 
with MCI and 21 healthy controls [HCs]) at the Inje 

University Ilsan Paik Hospital. The diagnosis of MCI was 
based on a clinical evaluation by trained psychiatrists 
who used the Structured Clinical Interview for DSM-IV 
(or V) Axis I Disorders (SCID-I) or the Mini Interna-
tional Neuropsychiatric Interview (MINI). None of the 
patients who participated in the study were pregnant or 
had any of other neurological or comorbid disorders, 
organic brain damage, or impairments in sensory or 
motor functions.

A total of 21 healthy participants were recruited from 
the local community. They did not satisfy the DSM-IV 
or V-based lifetime diagnostic criteria for any major psy-
chiatric disorder as screened by the SCID-I Non-Patient 
Edition (SCID-NP) or MINI-based diagnostic criteria.

Demographic information, including sex, age, and edu-
cation, was compared between the patients with MCI 
and HCs. A measurement of educational level is based on 
the duration of formal education. There were no statis-
tically significant differences between the two groups in 
terms of demographic characteristics, including sex, age, 
and education. The detailed demographic information 

Fig. 1  Electrode configurations of commercial wearable EEG devices: a FocusbandTM (2ch), b InsightTM (4ch), c DSI-7TM (7ch), d ImecTM (8ch), and e 
EPOCTM (14ch)
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is presented in Table 1. All participants signed a written 
informed consent form approved by the Inje University 
Ilsan Paik Hospital Institutional Review Board (IRB no. 
2018-12-012-013).

Signal acquisition and preprocessing
The EEG signal was acquired at a rate of 1000 Hz using 
a SynAmps amplifier (Neuroscan, Compumedics USA, 
Charlotte, NC, USA) from 32 scalp electrodes (Fp1, Fp2, 
AF3, AF4, Fz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Cz, C3, 
C4, T7, T8, CP1, CP2, CP5, CP6, Pz, P3, P4, P7, P8, PO3, 
PO4, Oz, O1, and O2) according to the modified inter-
national 10–20 system. The impedance of each electrode 
was maintained below 5 kΩ throughout the experimental 
period. Ground and reference electrodes were placed on 
the forehead and mastoids.

The resting EEG was recorded for 4 min with eyes 
closed. The acquired EEG data were manually inspected 
to eliminate blocks contaminated by environmental or 
physiological noise. Then the EEG data were baseline-
corrected by subtracting the average value for each chan-
nel and band-pass filtered at cut-off frequencies of 0.5 Hz 
and 50 Hz using a 6th-order zero-phase Butterworth infi-
nite impulse response filter. Thereafter, the preprocessed 
resting EEG data were segmented into 5-s epochs with-
out an overlap. We rejected epochs in which the maximal 
absolute potential value exceeded the threshold of 75 μV; 
therefore, the numbers of remaining epochs were differ-
ent among subjects, with twenty being the minimal num-
ber of epochs. To equalize the number of epochs for each 
subject, twenty epochs were randomly selected for each 
subject.

Feature extraction
The absolute power spectrum density (APSD), relative 
power spectrum density (RPSD), differential asymmetry 

(DASM), rational asymmetry (RASM), phase-amplitude 
coupling (PAC), Shannon entropy (SE), Hjorth parame-
ters (HP), Lyapunov exponent (LE), Hurst exponent (HE), 
and Kolmogorov complexity (KC) were extracted as can-
didate features for MCI diagnosis. These candidate fea-
tures have been used as biomarkers in previous studies 
on EEG-based diagnosis of MCI or Alzheimer’s disease 
(AD) [17, 34–37]. The equations used to compute these 
features are summarized in Table 2, and their derivation 
process and detailed description are provided in the Sup-
plementary Material.

Spectral features were calculated for each of the follow-
ing nine sub-frequency bands: delta (δ, 1–4 Hz), theta (θ, 
4–8 Hz), low alpha (αL, 8–10 Hz), high alpha (αH, 10–12 
Hz), total alpha (α, 8–12 Hz), low beta (βL, 12–18 Hz), 
high beta (βH, 18–30 Hz), total beta (β, 12–30 Hz), and 
gamma (β, 30–50 Hz).

For the PAC, which evaluates the coherence between 
the low-frequency phase and high-frequency amplitude, 
the low-frequency signal was set as either δ or θ, while 
the high-frequency signal was set as one of the other 
seven sub-frequency bands (except δ or θ). The total 
number of candidate features extracted from the 32 
channels was 1500 consisting of {9 (APSD) + 9 (RPSD) + 
14 (PAC) + 3 (HP) + 1 (SE) + 1 (LE) + 1 (HE) + 1(KC)} 
× 32(channels) + {9 (DASM) + 9 (RASM)} × 14 (pairs). 
Each candidate feature was averaged over all twenty 
epochs per channel, resulting in 1500 averaged candidate 
features per participant.

Feature selection and classification
A support vector machine (SVM) classifier was employed 
using the statistics and machine learning toolbox in 
MATLAB 2018b (MathWorks, Natick, MA, USA). Leave-
pair-out (LPO) cross-validation (CV) was conducted to 
evaluate the classification accuracy of the model [44]. In 
detail, the data of two participants (one patient with MCI 
and one from the HC group) were used as the test set, 
and the data of the remaining 40 participants (20 patients 
with MCI and 20 HCs) were used as the training set. 
Accuracy, sensitivity, and specificity were calculated and 
averaged over all possible combinations of the two par-
ticipants (one MCI and one HC; 21 × 21 = 441).

In each iteration of LPO-CV, z-score normalization 
was applied to each feature of the training set [45]:

where X  and σ denote mean and standard deviation, 
respectively. The features of the test set were normalized 
using (1) with the X  and σ calculated from the training 
set. The optimal feature subset was then selected from 
the training set based on the rank order according to 

(1)z =
X − X

σ

,

Table 1  Demographic information of the MCI and HC groups

MCI HC

N 21 21

  Male / Female 7/14 6/15

  p 0.7385

Age
  Mean 74.71 73.71

  (SD) (6.50) (4.63)

  p 0.5686

Education
  Mean 7.86 9.33

  (SD) (4.42) (5.47)

  p 0.3476
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Fisher’s score, which is one of the most widely used filter 
methods for supervised feature selection [46]. The fea-
ture selection was performed with the candidate features 
extracted from the target electrode configuration. The 
maximum number of selected features was set to 15 to 
avoid potential overfitting. The “N-feature accuracy” was 
evaluated by averaging the results of all LPO-CV itera-
tions for N features, where N represents the number of 
features used for the classification, which ranged from 1 
to 15. The classification accuracy for each electrode con-
figuration was determined as the highest accuracy among 
the “N-feature accuracies.” Note that the highest accuracy 
was achieved when the number of features was less than 
10 in most cases.

Statistical analysis
Statistical analysis was conducted to investigate the dif-
ferences in demographic information between the MCI 
and HC groups and differences in the classification accu-
racies between the proposed optimal electrode configu-
rations and those of commercial wearable EEG devices. 
The chi-square test [47] was conducted to test the dif-
ference in sex composition between the MCI and HC 
groups. A two-tailed Student’s t-test [48] was conducted 
to identify the differences in age and education between 
the MCI and HC groups as the normality of the data was 

confirmed by the one-sample Kolmogorov–Smirnov test 
[49]. In addition, the Bonferroni-corrected Wilcoxon 
signed-rank test [50, 51] was conducted to identify the 
difference between the classification accuracies for the 
proposed electrode configurations and those of the com-
mercial wearable EEG devices as the normality of the 
data was not confirmed by the one-sample Kolmogorov–
Smirnov test.

Results
The optimal electrode configurations that resulted in the 
highest classification accuracy among all possible chan-
nel combinations are presented in Table  3 and Fig.  2a. 
The optimal two-channel (hereafter denoted by Opt-
2ch), four-channel (Opt-4ch), six-channel (Opt-6ch), 
and eight-channel (Opt-8ch) electrode configurations 
were “F3–F4,” “AF3–AF4–FC5–FC6,” “FC5–FC6–C3–
C4–P7–P8,” and “F3–F4–FC5–FC6–C3–C4–P7–P8,” 
respectively. All optimal electrode configurations were 
composed of combinations of the following five electrode 
pairs: AF3–AF4, F3–F4, FC5–FC6, C3–C4, and P7–P8, 
which were in the frontal and parietal areas. Notably, 
Opt-8ch was a combination of Opt-2ch and Opt-6ch, and 
no midline electrode was included in the optimal elec-
trode configuration.

Table 2  List of EEG features evaluated in this study

x represents the EEG time-series data and aN indicates the length of the data. b The coherence here is the coherence at frequency fph between the time-varying 
energy of the high-frequency signal ( 

∼

Aph ) and the unfiltered raw signal believed to contain the modulating frequency (Xph), cμi represents the mean of x, x′ represents 
the derivative of x, and σ(x) represents the standard deviation of x. d ∆t is the sampling period of the EEG time series, K is the embedding dimension, dj(0) is the initial 
distance from the jth point to its nearest neighbor, and dj(i) is the distance between the jth pair of nearest neighbors after i discrete time steps. eN is the length of 
the data sample, R is the difference between the maximum deviation from the mean and the minimum deviation from the mean, and S is the standard deviation. 
fn is the length of the time-series data, c(n) reflects the relative complexity of the data, and b(n) is the ratio between n and log(n). The details are described in the 
Supplementary Material

Feature Mathematical expression

Absolute power spectrum density (APSD)a
1
N

N

n=1

x(n)e−i2π fn/N

  

Relative power spectrum density (RPSD) Absolute PSD of specific band/absolute PSD of total band

Differential asymmetry (DASM) [32] Difference between absolute PSDs of inter-hemispheric electrode pairs

Rational asymmetry (RASM) [32] Ratio between absolute PSDs of inter-hemispheric electrode pairs

Phase-amplitude coupling (PAC)b [38]
coherencefph

(

Xph ,
∼

Aph

)

Shannon entropy (SE) [39]
−

N∑

i=1

p(xi) ln p(xi), where
N∑

i=1

p(xi) = 1
  

Hjorth parameters (HP)c [40]
Activity(x) = 1

N

N∑

i=1

(xi − µi)
2

  
Mobility(x) =

√
σ(x′)
σ(x)

Complexity(x) =
Mobility(x′)
Mobility(x)

Lyapunov exponent (LE)d [41]
�(i) = 1

i�t
1
K

K∑

j=1

ln
dj (i)

dj (0)
  

Hurst exponent (HE)e [42] log(R/S)/ log(N)

Kolmogorov complexityf(KC) [43] c(n)/b(n)
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The accuracy, sensitivity, and specificity of the machine 
learning-based MCI diagnosis using optimal electrode 
configurations are summarized in Table 3. The numbers 
of features that resulted in the highest accuracies were 
2, 2, 6, and 7 for Opt-2ch, Opt-4ch, Opt-6ch, and Opt-
8ch, respectively. Accuracies of 74.04% ± 4.82, 82.43% ± 
6.14, 86.28% ± 2.81, and 86.85% ± 4.97 were achieved for 
Opt-2ch, Opt-4ch, Opt-6ch, and Opt-8ch, respectively, 
which demonstrated the possibility of precise machine 
learning-based diagnosis of MCI with a limited number 
of EEG electrodes. It can be seen from the table that the 
classification accuracy gradually increases as the num-
ber of electrodes increases; however, the increment in 
the accuracy is nearly saturated when the number of 
electrodes becomes six. Furthermore, while the sensitiv-
ity was approximately 20% lower than the specificity for 
Opt-2ch and Opt-4ch, the difference between the sensi-
tivity and specificity was reduced to less than 1% for Opt-
6ch and Opt-8ch.

The accuracy, sensitivity, and specificity of the machine 
learning-based MCI diagnosis using the electrode con-
figurations of the five commercial wearable EEG devices 
are provided in Table  3. A statistical comparison of the 
classification accuracies between the four optimal elec-
trode configurations and the five wearable EEG devices 
is shown in Fig.  2b. Opt-2ch statistically outperformed 
the electrode configurations of three commercial devices 
(FocusbandTM, InsightTM, and DSI-7TM, Bonferroni-cor-
rected p < 0.001) that were composed of two, five, and 

seven electrodes, respectively. Opt-2ch did not show 
significant improvement compared to ImecTM (Bon-
ferroni-corrected p = 0.94) and EPOCTM (Bonferroni-
corrected p = 0.88), which are composed of eight and 
14 electrodes, respectively. The other optimal electrode 
configurations (Opt-4ch, Opt-6ch, and Opt-8ch) statis-
tically outperformed the electrode configurations of all 
the commercial wearable EEG devices considered in this 
study (Bonferroni-corrected p < 0.001 in all cases).

Figure  3 shows the 3D-rendered concept design of 
wearable EEG devices with the proposed optimal elec-
trode configuration. 3D images were rendered using 
Maya 2022 (Autodesk Inc., San Rafael, CA, USA). The 
overall design concept was inspired by EPOCTM (Emotiv 
Inc.; San Francisco, CA, USA). In addition, the devices 
were assumed to have fingered EEG electrodes, which 
reflected the latest trend in electrode design for wearable 
EEG devices [24].

Discussion
In this study, we attempted to determine the optimal 
electrode configurations that could lead to the highest 
accuracy in the machine-learning-based diagnosis of 
MCI. The electrode configurations investigated in this 
study were composed of a small number of electrodes 
(two, four, six, and eight electrodes), assuming weara-
ble EEG devices can potentially be utilized for daily life 
monitoring of MCI. The proposed optimal electrode 
configurations showed statistically higher accuracies 

Table 3  Channel combination and diagnostic performances of the optimal electrode configurations and those of five commercial 
wearable EEG devices

LPO-CV can be regarded as the 21 × 21-fold cross-validation. Therefore, the results of 441 iterations of LPO-CV were first divided into 21 blocks, and then the standard 
deviation (SD) was calculated across the 21 blocks

Accuracy
(Mean±SD)

Sensitivity
(Mean±SD)

Specificity
(Mean±SD)

Channel combination

Opt-2ch 74.04%
±4.82

63.95%
±9.23

84.13%
±7.87

F3–F4

Opt-4ch 82.43%
±6.14

70.75%
±11.98

94.10%
±4.23

AF3–AF4–FC5–FC6

Opt-6ch 86.28%
±2.81

86.17%
±6.55

86.39%
±5.28

FC5–FC6–C3–C4–P7–P8

Opt-8ch 86.85%
±4.97

86.85%
±6.88

86.85%
±7.81

F3–F4–FC5–FC6–C3–C4–P7–P8

FocusbandTM(2ch) 55.90%
±7.01

50.11%
±12.01

61.68%
±8.71

Fp1–Fp2

InsightTM(5ch) 61.22%
±7.97

55.10%
±13.58

67.35%
±9.07

Pz–AF3–AF4–T7–T8

DSI-7TM(7ch) 64.74%
±7.17

65.76%
±11.72

63.72%
±8.84

Pz–F3–F4–C3–C4–P3–P4

ImecTM(8ch) 74.15%
±6.87

70.29%
±10.85

78.00%
±9.58

Fz–Cz–F7–F8–F3–F4–C3–C4

EpocTM(14ch) 73.81%
±7.57

60.77%
±12.41

86.85%
±7.21

AF3–AF4–F7–F8–F3–F4–FC5–
FC6–T7–T8–P7–P8–O1–O2
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than the electrode configurations of commercial wear-
able EEG devices, albeit with a smaller number of 
electrodes. For example, Opt-4ch showed a higher 
diagnostic accuracy than the electrode configurations 
of all five commercial wearable EEG devices tested in 
this study, which highlighted the importance of opti-
mizing the electrode configurations in the design of 
wearable EEG devices considering the specific purpose 
of the wearable EEG devices.

We investigated the most frequently selected features in 
the LPO-CV iterations to identify the EEG features that 
contributed the most to distinguishing between patients 
with MCI and HCs. Table 4 shows the four most frequently 
selected features and their mean values for the MCI and 
HC groups. The four features were δ DASM between FC5 
and FC6, the HE in F3, the HE in C4, and PAC (θ-βH) in P8, 
which were selected at least 397 times out of 441 LPO-CV 
iterations (approximately 90% of all LPO-CV iterations) for 
Opt-8ch (see Supplementary Fig.  1). These EEG features 
have been found to be closely associated with the patho-
physiology of MCI in previous studies.

First, the value of δDASM between FC5 and FC6 in 
patients with MCI was statistically higher than that in 
the HCs. This result is in line with a previous study that 
reported that patients with MCI exhibited a signifi-
cantly higher delta-band power in the left central area 
than HCs; however, this was not the case for the right 
central area [52]. Additionally, the HE in F3 and C4 
was significantly higher in the MCI group than in the 
HC group in our study. These results are also in good 
agreement with those of previous studies. According to 
John et al. [53], the HE of patients with MCI or AD was 
higher than that of the HCs in whole-brain areas when 
the HE values were calculated from eyes-closed resting 
EEG data, as in our study. Lastly, the PAC (θ-βH) at P8 
was lower in patients with MCI than in the HCs in our 
study. This result is also consistent with that of Poza 
et  al. [54] reported that patients with mild AD exhib-
ited lower PAC values in the posterior area than HCs.

Although the proposed optimal electrode configura-
tions exhibited statistically higher performance than 
the electrode configurations of commercial wearable 
EEG devices, their sensitivities were reported to be 

Fig. 2  a Proposed optimal electrode configurations consisting of two, four, six, and eight channels (from top to bottom). b Performance 
comparison between the proposed optimal electrode configurations and the electrode configurations of commercial wearable EEG devices. 
The x-axis of the bar graphs represents the electrode configurations. The error bars indicate standard error. * Bonferroni-corrected p < 0.05, ** 
Bonferroni-corrected p < 0.001, *** Bonferroni-corrected p < 0.0001
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approximately 20% lower than the specificities in cases 
of Opt-2ch and Opt-4ch. In general, well-balanced sen-
sitivity and specificity values are important in designing 
diagnostic systems. However, as wearable EEG devices 
are expected to be employed as tools for the primary 
screening of MCI, an EEG device with higher diagnos-
tic sensitivity is required. Therefore, these optimal elec-
trode configurations could be alternatively determined 
by selecting the electrode combinations with the high-
est sensitivity with the overall accuracy maintained at 
an appropriate level. For example, an electrode pair 
“C3–C4” showed a classification accuracy of 69.16% 
± 7.55, which is approximately 5%p lower than that of 
Opt-2ch; however, it showed a relatively higher sensi-
tivity of 74.60% ± 11.30 and a moderate level of speci-
ficity (63.72% ± 9.58) (see Supplementary Table  1). In 
the case of the 4-channel configuration, “F3–F4–FC5–
FC6” showed an approximately 8% higher sensitivity 
than Opt-4ch when the difference in accuracy between 
the two configurations was only 2.5%p (see Supplemen-
tary Table 2). If sensitivity is regarded as a more impor-
tant factor than specificity in designing wearable EEG 
devices for the primary screening of MCI, the “C3–C4” 
and “F3–F4–FC5–FC6” configurations might be con-
sidered possible alternatives to Opt-2ch and Opt-4ch, 
respectively. The top 20 electrode configurations for 
six- and eight-electrode cases can also be found in Sup-
plementary Tables 3 and 4.

The optimal electrode configurations for the diag-
nosis of MCI may vary depending on several factors, 
such as the participants and recording devices. Because 
most EEG features have large inter-subject and/or 

inter-device variability [55], an additional EEG dataset 
acquired from a larger number of participants using 
various EEG devices might be necessary in future stud-
ies to further generalize the proposed electrode con-
figurations. It is expected that the optimal electrode 
configurations will be fine-tuned based on an additional 
EEG dataset. Additionally, we are planning to manufac-
ture a wearable EEG device with the proposed optimal 
electrode configuration and investigate in a future study 
whether the device is effective enough to be used for the 
early screening of MCI.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13195-​022-​01115-3.

Additional file 1: Supplementary Table 1. Performances of the top 10 
electrode configurations composed of two electrodes. The table lists the 
calculated accuracies, sensitivities, and specificities for the top 10 elec‑
trode configurations with the highest accuracies. These values were used 
as performance measures. Supplementary Table 2. Performances of the 
top 10 electrode configurations composed of four electrodes. The table 
lists the calculated accuracies, sensitivities, and specificities for the top 10 
electrode configurations with the highest accuracies. These values were 
used as performance measures. Supplementary Table 3. Performances 
of the top 20 electrode configurations composed of six electrodes. The 
table lists the calculated accuracies, sensitivities, and specificities for 
the top 20 electrode configurations with the highest accuracies. These 
values were used as performance measures. Supplementary Table 4. 
Performances of the top 20 electrode configurations composed of eight 
electrodes. The table lists the calculated accuracies, sensitivities, and 
specificities for the top 20 electrode configurations with the highest accu‑
racies. These values were used as performance measures. Supplementary 
Figure 1. List of the most frequently selected features. The features were 
most frequently selected in all CV iterations for the number of features 
that yielded the highest accuracy in each optimal electrode configuration. 
From top to bottom, the feature list of the Opt-2ch, Opt-4ch, Opt6ch, and 
Opt-8ch configurations are described. The x-axis is “oftenness,” which is 
calculated by dividing the feature selection times by all CV iteration times 
(441).
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Table 4  Comparisons of the most frequently selected feature 
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