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1 Introduction

Flat band systems have been widely studied to realize a strongly interacting system in
relatively simple systems: the effective coupling, which is the ratio of the potential to
kinetic energy, diverges in the flat band limit. It is known to exist in artificial lattices
with compact localized states [1–6], and has been formed in optical lattices [7–15]. In the
real material, however, it was realized only recently in the magic angle twisted bilayered
graphene(MATBG) [16, 17].

While mono-layer graphene has a simple band with Dirac cones in K points [18, 19],
multilayered graphene has rich band structures depending on the stacking order [20–24] or
twisting angles [25–27]. The electronic structure of multilayered graphene (MLG) is well
described by a tight binding model [28–32]: the so-called ABC stacked multilayer graphene
(ABC-MLG) is a MLG that has the stacking in figure 1 and such structure is observed often
in nature, e.g., graphite [33, 34]. Its band structure has a flat band over a finite region
of the Brillouin zone [32], which is characteristically different from those appearing in the
MATBG, where the flat band exists over the entire momentum region. This flat band over
a finite region was also confirmed in the ARPES data [35–37].

Since the flat band study was motivated by the strong correlation, it would be interesting
to study it using the gauge gravity duality [38, 39] and ask what would be the effect of
strong interaction there. Laia and Tong [40] discovered a holographic model that realizes a
flat band by introducing the boundary term.∫

bdy
ψ̄Γxyψ,

for the Dirac spinor. Recently, we pointed out that their model has not only a flat band
but also a Dirac band, which is relevant to the stabilized Lieb lattice [41].
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In this paper, we study another holographic model with a particular bulk interaction
term ∫

bulk
Bxyψ̄Γxyψ,

instead of the particular boundary term. According to [42], such Yukawa coupling introduces
special features to the fermion spectrum depending on the broken symmetry. In our case,
the spectral function has a flat band over a disk due to the broken symmetry, which is the
isotropic scaling in x, y directions. Since Γxy happens to be the generator of the rotational
symmetry of the x-y plane, there is rotational symmetry in the spectrum. We will see that
the flat band in our holographic bulk is overwhelmingly similar to that of the ABC stacked
graphene system, and there is a simple relationship between the holographic parameter and
the tight-binding model parameter.

The most pressing question is what the holography predicts for the outcome of the
strong correlation. We examined how the flat band is deformed under the chemical potential
to see such an effect. In non-interacting cases, the role of the chemical potential on the
fermion spectrum is just shifting the energy level. In holographic theory, we find that, apart
from the level shift, the disk-like flat band is bent like a bowl, which is characteristically
different from the non-interacting theory. In the case of two flavors with different signs of
Bxy, its spectral weight is similar to the effect of the level repulsion in the presence of the
spin polarization. This suggests that the flavor index can be treated as a component index
of the spin.

2 Tight-Binding Model of ABC-stacked multilayer graphene

The ABC-stacked multilayer graphene (ABC-MLG) has the structure given in the figure 1.
Surface states are localized at the outermost layers of its band structure [21, 29, 32, 43, 44].
We can let full hamiltonian for the ABC-MLG system [32] at the K point in figure 2.

H =


H1 V

V † H2 V

V † H3 V
. . .

 , where Hj =
(
Uj vp−
vp+ Uj

)
, V =

(
0 0
t⊥ 0

)
(2.1)

where Uj is the electronic potential at jth layer, p± = px ± ipy with p = −i∇ and v is the
band velocity of monolayer given by v =

√
3at‖/2~.

When Uj = 0, the hamiltonian gives eigenvalues as [32]

εn = ±
√

(vp)2 + t2⊥ + 2t⊥vp cosϕn, (2.2)

where ϕn (n = 1, 2, · · · , N) is a solution of the equation

vp sin(N + 1)ϕn + t⊥ sin(Nϕn) = 0. (2.3)

By imposing the standing wave condition of the bulk wave function in the z-direction, that
is, vanishing at the sites B0 and AN+1, we can get the corresponding wavefunction:

|ψ〉 = ψ(A1) |A1〉+ ψ(B1) |B1〉+ · · · , (2.4)
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Figure 1. The atomic structure of ABC-MLG. The white dots are for the A sublattice, and the
black dots are for the B sublattice. Lines denote bondings. Thick black lines are for nearest neighbor
couplings t‖ within the intralayer, and thin gray lines are for couplings t⊥ of interlayer vertical bonds
that couples Bj and Aj+1 for j = 1, 2, · · · , N − 1. we call this kind of stacking order ABC-stacking
or rhombohedral stacking.

ky

kx

K

K ′

MΓ

Figure 2. Graphene honeycomb lattice in k space. The Dirac cones are located at the K and K ′
points, and we call them Dirac points.

with (
ψ(Aj)
ψ(Bj)

)
= C

(
eiθ(j−1) sin(N + 1− j)ϕn

±eiθj sin jϕn

)
, (2.5)

where θ = arctan(py/px) and C is normalization factor. In the bulk limit, ϕn would become
the wavenumber in z-direction along the layer stacking [32]. See figure 3.
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(a) N = 3 (b) N = 10 (c) N = 20 (d) 3d overview

Figure 3. Self-consistent band structure of ABC-MLG with N layer stacking. In (d), the orange
disk at the center is the flat band of size Rtb. We used t⊥ = 1 and Uj = 0.

Suppose we draw the band structure of ABC-MLG from the full hamiltonian. In that
case, we can see the zero energy band is the same as that of the effective hamiltonian given
in eq. (A.5), and the size of the flat band saturates to a fixed value t⊥ in the large N limit.

For large enough N , the presence of the flat band between the two Dirac cones and the
rotational symmetry around the ω axis implies that this flat band is disk-shaped. The size
of the flat band is the radius of the flat disk Rtb.

Defining flat band as the region where the band gap between the upper band and lower
band is smaller than 0.01, we can calculate R with stacking number N . Numerically we find

Rtb = t⊥e
−1/gN , (2.6)

with g ∼ 1/4. It is interesting to notice the formal similarity of this relation with ∆ ∼
e
− 1

g2N(0) , of BCS superconductivity where ∆ is the gap, g is the electron-phonon coupling,
and N(0) is the density of state at the fermi surface. In the large N limit, we see that the
size of the flat band in the tight binding model is given by the interlayer coupling:

Rtb = t⊥. (2.7)

From the three-dimensional point of view, the flat band of the ABC-MLG can be figured as
the surface states localized at outer layers, although it is a consequence of the superposition
of a large number of the Graphene layers. The size of the flat band created here is related
to the number of stacking and scaled by interlayer coupling t⊥ [29].

3 Holographic model of ABC-stacked multilayer graphenes

3.1 Flow equation formula and Holographic model

The action is given by the sum S = Sψ + Sbdy + Sg,A,Φ + SAint + SBint, where

Sψ = i

∫
d4x

2∑
j=1

√
−gψ̄(j)

(
Γµ
(
∂µ + 1

4ωνλ,µΓνλ
)
−m(j)

)
ψ(j) (3.1)

Sbdy = i

2

∫
bdy

d3x
√
−h(ψ̄(1)ψ(1) + ψ̄(2)ψ(2)), (3.2)
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Sg,A,Φ =
∫
d4x
√
−g

(
R+ 6

L2 −
1
4F

2
µν + |DµΦ|2 −m2

Φ|Φ|2
)
, (3.3)

SAint =
∫
d4x

2∑
i,j=1

√
−gψ̄(i)(q(ij)ΓµAµ)ψ(j) (3.4)

SBint =
∫
d4x

(
ψ̄(1)BxyΓxy ψ(2) + h.c

)
, (3.5)

ωνλ,µ is the spin connection, Aµ = µδµt(1− z
zH

) and q(ij) charge matrix for Aµ field in flavor
space. The gamma matrices are defined by

Γt = σ1 ⊗ iσ2, Γx = σ1 ⊗ σ1, Γy = σ1 ⊗ σ3, Γz = σ3 ⊗ σ0, Γxy = 1⊗ (−iσ2), (3.6)

and geometry is defined by

ds2 = −f(z)
z2 dt2 + dx2 + dy2

z2 + dz2

z2f(z) , h = ggzz (3.7)

f(z) = 1− z3

z3
H

+ z4µ2

z2
H

− µz3

zH
, zH = 1

2πT +
√

4π2T 2 + 3µ2 , (3.8)

Source identification. From the action (3.1)–(3.5) above, we can get derivation of total
action:

δS = i

2

∫
∂M

d3x
2∑
j=1

√
−h

(
ψ(j)†Γt(1 + Γz)δψ(j) + δψ(j)†Γt(1− Γz)ψ(j)

)
. (3.9)

Introducing ζ(j) by

ψ(j) = (−ggzz)−1/4ζ(j)e−iωt+ikxx+ikyy, for j = 1, 2, (3.10)

and gamma metric Γ± = 1
2(1± Γz) we can rewrite (3.9) as

δS = i

∫
∂M

d3x(ζ̄(1)Γ+δζ
(1) + δζ̄(1)Γ−ζ(1) + ζ̄(2)Γ+δζ

(2) + δζ̄(2)Γ−ζ(2)). (3.11)

From this, we can see that we need to choose (ζ(1)
1 , ζ

(1)
2 , ζ

(2)
1 , ζ

(2)
2 ) := ξ(S) as the source that

make the variation of total action zero.
Once the source is identified, we can determine the condensation as the momentum

conjugation of the source variable from the total action. Due to the equation of motion,
the total boundary action is given by the boundary terms only:

Stot = i

2

∫
bdy

d3x
√
−h(ψ̄(1)ψ(1) + ψ̄(2)ψ(2)) (3.12)

= 1
2

∫
bdy

d3x(ζ(1)†Γtiζ(1) + ζ(2)†Γtiζ(2))

= 1
2

∫
bdy

d3x
2∑
j=1

(
iζ

(j)∗
1 ζ

(j)
4 − iζ

(j)∗
2 ζ

(j)
3 + iζ

(j)∗
3 ζ

(j)
2 − iζ

(j)∗
4 ζ

(j)
1

)
, (3.13)

from which we can identify (ζ(1)
3 , ζ

(1)
4 , ζ

(2)
3 , ζ

(2)
4 ) := ξ(C).
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Dirac equations are given by(
ΓM∂M + 1

4ωνλ,MΓνλ −m(1) + q(11)AtΓt
)
ψ(1) + (BxyΓxy + q(12)AtΓt)ψ(2) = 0,(

ΓM∂M + 1
4ωνλ,MΓνλ −m(2) + q(22)AtΓt

)
ψ(2) + (BxyΓxy + q(21)AtΓt)ψ(1) = 0.

(3.14)

In terms of ζ’s, the equations are given by(
Γz∂z −

i

f(z)(ω + q(11))AtΓt −
i√
f(z)

(
kxΓx + kyΓy + m(1)

z

))
ζ(1)

+
(
BxyΓxy −

i

f(z)q(12)AtΓt
)
ζ(2) = 0,(

Γz∂z −
i

f(z)(ω + q(22))AtΓt −
i√
f(z)

(
kxΓx + kyΓy + m(2)

z

))
ζ(2)

+
(
BxyΓxy −

i

f(z)q(21)AtΓt
)
ζ(1) = 0.

Now, we can re-write the equation of motion in terms of ξ(S), ξ(C):

M11ξ
(S) + M12ξ

(C) + ∂zξ
(S) = 0, (3.15)

M21ξ
(C) + M22ξ

(S) + ∂zξ
(C) = 0, (3.16)

where

M11 =−M21 =− i

z
√
f(z)

(
m(1)σ0 Q

Q m(2)σ0

)
, M12 =−M22 =

(
N(q(11)) P(q(12))
P(q(21)) −N(q(22))

)
,

N(q) = i√
f(z)

 ky − (ω+qAt)√
f(z)

+kx
(ω+qAt)√

f(z)
+kx −ky

 , P(q) =
(

0 −i qAt

f(z)
i qAt

f(z) 0

)
, Q =

(
0 iBxy

−iBxy 0

)
,

where σ0 is identity matrix. Because ξ(S) and ξ(C) are of 4 components, there are 4-
independent solutions. If we denote 4 solutions for ξ(S) by ξ(S,i), i = 1, · · · , 4, then arbitrary
ξ(S) can be expressed as

ξ(S) =
4∑
i=1

ciξ
(S,i) = S(z)c, (3.17)

where S(z) is the 4 by 4 matrix whose i-th column is given by ξ(S,i), and c is a column
vector whose i-th component is ci. Similar expression is available for ξ(C). Furthermore,
from (3.15) and (3.16), ξ(C) can be expressed in terms of ξ(S), therefore we should use the
same ci for ξ(C) also. Namely,

ξ(S) = S(z)c, ξ(C) = C(z)c. (3.18)

Substituting these to (3.15) and (3.16), we find:

∂zS(z) + M11S(z) + M12C(z) = 0, (3.19)
∂zC(z) + M21C(z) + M22S(z) = 0, (3.20)

– 6 –
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because c is an arbitrary vector in the solution space. Now, we consider the near boundary
behavior of ξ(S) and ξ(C), which are given by

ζ(j) =


A

(j)
1 zm +B

(j)
1 z1−m

A
(j)
2 zm +B

(j)
2 z1−m

C
(j)
1 z1+m +D

(j)
1 z−m

C
(j)
2 z1+m +D

(j)
2 z−m

 for j = 1, 2, (3.21)

where A, B, C, and D are two-component spinors. If |m| < 1/2, A,D terms are leading
ones. Therefore

ζ(j) ' (A(j)
1 zm, A

(j)
2 zm, D

(j)
1 z−m, D

(j)
2 z−m) for j = 1, 2. (3.22)

From (3.22),

ξ(S) ' (A(1)
1 zm, A

(1)
2 zm, A

(2)
1 zm, A

(2)
2 zm), (3.23)

ξ(C) ' (D(1)
1 z−m, D

(1)
2 z−m, D

(2)
1 z−m, D

(2)
2 z−m). (3.24)

Therefore, if we define

U(z) = diag(zm, zm, z−m, z−m), (3.25)

then the near boundary behavior of ξ(S) and ξ(C) can be written as

ξ(S) = S(z)c ' U(z)S0c, (3.26)

ξ(C) = C(z)c ' U(z)−1C0c, (3.27)

where S0 is a matrix whose i-th column is given by the coefficients of the leading terms in
ξ(S,i). A similar description works for C0. Defining

J = S0c, C = C0c, (3.28)

we get

ξ(S) ' U(z)J , ξ(C) ' U(z)−1C. (3.29)

It is easy to see that

J = (A(1)
1 , A

(1)
2 , A

(2)
1 , A

(2)
2 ), (3.30)

C = (D(1)
1 , D

(1)
2 , D

(2)
1 , D

(2)
2 ). (3.31)

Green’s function. Using notation of ξS , ξC we can rearrange total boundary action (3.13),

S |bdy = 1
2

∫
bdy

d3x[ξ(S)†(−σ0 ⊗ σ2)ξ(C) + h.c]

= 1
2

∫
bdy

d3x
(
ξ(S)†Γ̃ξ(C) + h.c

)
. (3.32)
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with Γ̃ = −σ0 ⊗ σ2. Using (3.29), we get

S |bdy = 1
2

∫
bdy

d3xJ †Γ̃M. (3.33)

For (3.28), we can rewrite:

M = C0S
−1
0 J , (3.34)

so that (3.33) becomes

1
2

∫
bdy

d3xJ †Γ̃M = 1
2

∫
bdy

d3xJ †Γ̃C0c

= 1
2

∫
bdy

d3xJ †Γ̃C0S
−1
0 J

= 1
2

∫
bdy

d3xJ †G0J . (3.35)

Finally, we can define G0 = Γ̃C0S
−1
0 and this is the Green function of the system.

Spectral function by flow equation. Combining the above equations (3.19), (3.20) and using
the definition of green’s function, the flow equations become

Γ̃M21Γ̃G(z) + Γ̃M22 − G(z)M11 − G(z)M12Γ̃G(z) + ∂zG(z) = 0. (3.36)

We want to express the boundary Green function G0 in terms of the bulk quantity G(z)
near the AdS boundary. From the boundary behaviors of ζ(1), ζ(2) given in (3.22), we can
express those of ξ(S) and ξ(C): If we substitute the expression (3.27) to the definition of the
Green function,

G(z) = Γ̃C(z)S(z)−1

' Γ̃U(z)C0S
−1
0 U(z)−1

= U(z)G0U(z)−1. (3.37)

In the third line, we use the Γ̃2 = 14×4 and Γ̃U(z)Γ̃ = U(z). Therefore the boundary Green
function G0 is given as follows:

G0 = lim
z→0

U(z)−1G(z)U(z). (3.38)

Solving this flow equation, with boundary condition, we can get spectral function:

A(k,w) = Im[Tr[G0]]. (3.39)

Horizon value of the Green Function. Here we motivate the use of the flow equation by
showing the regularity of the G(z) at the horizon. In this section, we derived the near
horizon behavior of the fermion, which can be recast as

ζ(j) =

(1− z/zH)−
iωzH

3 (A(j)
1 , A

(j)
2 ,−A(j)

2 , A
(j)
1 )T , for the infalling,

(1− z/zH)
iωzH

3 (A(j)
1 , A

(j)
2 , A

(j)
2 ,−A(j)

1 )T , for the outgoing,
(3.40)

– 8 –



J
H
E
P
1
1
(
2
0
2
2
)
0
1
7

for j = 1, 2. We choose an infalling condition for each flavor. Then we can construct the
horizon behavior of ξ(S) and ξ(C):

ξ(S) = Z(A(1)
1 , A

(1)
2 , A

(2)
1 , A

(2)
2 )T , (3.41)

ξ(C) = Z(−A(1)
2 , A

(1)
1 ,−A(2)

2 , A
(2)
1 )T , (3.42)

where, Z = (1− z/zH)−
iwzH

3 . Using the matrix representation, for appropriate A(j)
i ,B(j)

i

with j = 1, 2

S(z) ' Z


1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 , C(z) ' Z


−1 1 −1 −1
1 −1 1 1
−1 −1 −1 1
1 1 −1 1

 . (3.43)

The horizon value of the matrix Green function is given by

G(z) = Γ̃C(z)S−1(z) = i14×4, (3.44)

which is rather surprising: G(z) is constant near the horizon while S(z) and C(z) are singular
at z = zH . This is very important in the numerical calculation, which is why we want to
use flow equations.

3.2 Holographic flat band over a disk in momentum space

For d = 3, p = 2,∆ = 2[ψ] = 2, in AdS4 can set m2
Φ = 0 and asymptotic form of Bxy is

given by
Bxy = B(−1)

xy z−1 +B(0)
xy . (3.45)

In figure 4 (b) and (c), we draw the spectral function with B(−1)
xy = 2, B(0)

xy = 0. We can
see the presence of the disk-shaped flat band. In this case, the size of the flat band can be
identified as the disk’s radius, which depends only on the strength of Bxy. The following
relationship holds.

Rholo = B(−1)
xy . (3.46)

3.3 Flat band parameter

So far, we have considered two models, the Holographic and tight binding models, realizing
the flat bands and analyzing the parameter dependence of the size of the flat band in each
model. We find that the holographic model describes the limit of large stacking numbers.
By identifying Rtb and Rholo, we can determine the relationships between the parameters
in the two models. From (2.7) and (3.46), we get

B(−1)
xy = t⊥. (3.47)

In figure 4 (b) and (c), we compared the spectrum of the two models, which shows striking
similarity. We learned that the interaction term describes the ABC-stacking method for the
tight-binding model, which is matrix Γxy in the holographic model. In the tight-binding

– 9 –
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(a) Band structure for t⊥ = 1 (b) Spectrum for B
(−1)
xy = 1

(c) ω = 0 slice of spectrum

Figure 4. (a) Band structure of ABC-MLG by tight-binding Model, (b) holographic Spectral
function of 2 flavor fermion with Bxy interaction with B(−1)

xy = 1, ky = 0 (c) ω slice of holographic
spectral function.

model, the flat band structure is created by the inter-layer interaction of the ABC stacked
graphene system. On the other hand, in the holographic model, the spectrum is determined
by Γxy ∼ 1

2 [Γx,Γy] which is the generator of the rotation in the x-y plane for the spinors.
Indeed, the spectral function of both models is rotationally symmetric.1

4 Bending in flat band system

In real systems, it is known that the flat band has instability. Therefore there is inevitably
a slight deformation in the flat band system. Band bending is the easiest deformation.
In fact, we can easily see this in a real experiment. See in figure 5 (a), which shows the

1It turns out that if we perform the calculation in AdS5, the flat band is localized in kz = 0 plane in
k-space so that the translational symmetry is broken even though we did not introduce the boundary of the
boundary. On the other hand, in the tight-binding model, which describes non-interacting material with
a natural boundary, the translational symmetry in the z-direction is broken by the very existence of the
boundary, and the flat band is nothing but the surface mode, as it was shown explicitly in section 2. One
surprising consequence is that the dispersion relation defines the dimensions of the geometry as equal in both
AdS4 and AdS5. In this way, the AdS5 theory also describes the multi-stacking of two-dimensional layers.
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(a) ARPES data [35] (b) Holographic model

Figure 5. Comparision experimental data and holographic model: (a) Angle-resolved photoemission
spectroscopy(ARPES) data of ABC-MLG film for 14-layers, dashed line denote band structure
especially green one means surface state [35], (b) the spectral function of holographic ABC-MLG
model with B(−1)

xy = 0.05, µ = 0.075, and some scaling for ω, red dashed line denote overall bend
structure coming from the tight-binding model.

bending of the flat band. This bending effect in the ABC-MLG can have two interpretations
for its origin. The first is due to the chemical potential, and the second is due to the spin
polarization [35, 45]. While it is difficult to reproduce the bending in the tight-binding
model, in holography, we can reproduce the bending of the flat band by considering the
chemical potential of a U(1) field. Notice that in the tight-binding model, the chemical
potential just shifts the overall spectrum. The effect of the chemical potential in holography
is described by the coupling of the U(1) field

At = µ

(
1− z

zH

)
, (4.1)

to the fermion. The first term shifts the entire spectrum, whereas the second term gives a
density effect, including mutual repulsion, which can cause bending in the flat band system.
See figure 5.

However, we remark that the description of the bending by the U(1) gauge field does
not eliminate the spin effect as the origin of the bending. Because when we include the
electric field, the magnetic field enters as the B = ~v× ~r dVdr so that Hint = −~µ · ~B ∼ S ·LdVdr .
Such magnetic field act as an effective spin chemical potential which has different signs for
the different spin states (up or down). Notice that in the Dirac equation, the spin-orbit
coupling is always included.

Also, the pseudo spin structure is naturally contained when there is a sublattice
interaction. That is, if we consider spin polarization, interlayer coupling t⊥c

†
Bj↑

cAj+1↓

appears. This model does not distinguish the layers’ positions in the z direction. So, Bj↑
and Aj+1↓, which belong in the different layers, are considered to be in the same position.
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(a) q(ij) = 0 for i, j ∈ 1, 2 (b) q(11) = q(22) = 1 charge

(c) q(12) = q(21) = 1 charge

Figure 6. Bending effect of Holographic ABC-MLG by chemical potential µ in different charge
matrix with B(−1)

xy = 1, µ = 0.5.

See figure 1. So, the hopping term t⊥c
†
Bj↑

cAj+1↓ can be considered as the on-site energy
that gives opposite energy to A and B sublattices.

We can see the polarization effect as an analog of the chemical potential µ in the U(1)
field. In the ABC-MLG system, the flat band is from two band origins from the top and
bottom layers. These surface states are ferrimagnetic and anti-ferromagnetically coupled to
each other. And they have opposite spin for each sublattice A, B [46, 47]. In our model,
we have two flavors, and their index is interpreted as sublattice index in the ABC-MLG
system: when At field comes with interaction term ψ̄(i)(q(ij)ΓµAµ)ψ(j) for off-diagonal

charge with q =
(

0 1
1 0

)
, after diagonalization, we can give spin polarization effect with

charge q =
(

1 0
0 −1

)
. And this makes bending in a different direction for each sublattice. In

this sense, we can say diagonalization in flavor space makes pseudo-spin. Figure 6 shows
two kinds of bending effects in holographic ABC-MLG. We can make design the interaction
term that can reproduce the result of ARPES data by choosing the charge matrix q.
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Tight binding model ⇐⇒ Holography
Spacetime Semi - 2+1 dim ⇐⇒ AdS4
Sublattice A, B ⇐⇒ ψ(1), ψ(2)

Symmetry Rotation symmetry ⇐⇒ Rotation symmetry
Scale t⊥ ⇐⇒ Bxy

Table 1. Correspondence of two models.

5 Conclusion

In this paper, we considered the continuum limit of the tight-binding model of ABC-MLG.
The model preserves the rotation symmetry and the scale t⊥ coming from the coupling of
two sublattices, A and B. As the number of layers goes infinite, the spectrum near the K
point has a flat band. Such features can be met by a holographic model where we introduce
two flavors ψ(1) and ψ(2) that represent sublattices A,B. The interaction term

∫
bulk

ψ̄(1)BxyΓxyψ(2),

was introduced to match the spectral shape and the symmetry of the tight binding model.
It turns out that the scale of the holographic order parameter Bxy and the scale of the tight
binding model t⊥ play precisely the same role, and we identify them. In this sense, we can
say that we created a low-energy effective model of large N ABC-MLG in holography.

Unlike the tight-binding model, in holography, when a chemical potential is applied by
U(1) field, not only the energy shift but also the density effect are realized through the flat
band’s bending. Table 1 summarizes the correspondence of the two models we studied.

A Reduced hamiltonian

To see the parameter dependence of the flat band system, we consider the low-energy
effective Hamiltonian is reduced to the subspace with the basis |A1〉 , |BN 〉 [48–50].

We can reorder the wave function (A1, B1, A2, B2, · · · , AN−1, BN−1, AN , BN ) to
(A1, BN , A2, B3, · · · , AN−1, B2, AN , B1). N = 3 with Uj = 0 case, we can rewrite (2.1) as

H(k) =



0 0 0 0 0 vp−
0 0 0 0 vp+ 0
0 0 0 vp− 0 t⊥
0 0 vp+ 0 t⊥ 0
0 vp− 0 t⊥ 0 0
vp+ 0 t⊥ 0 0 0


≡
(
H11 H12
H21 H22

)
, (A.1)
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...

Top layerA1 B1

A2 BN−1 Bulk

Effective coupling

AN BN Bottom layer

Figure 7. Semi-effrctive atomic structure of ABC-MLG. The red box is the effective coupling
between the top and bottom layers.

with block matrices

H11 =
(

0 0
0 0

)
, H12 =

(
0 0 0 vp−
0 0 vp+ 0

)
,

H21 =


0 0
0 0
0 vp−
vp+ 0

 , H22 =


0 vp− 0 t⊥
vp+ 0 t⊥ 0

0 t⊥ 0 0
t⊥ 0 0 0

 .

In terms of these block matrices, we have the identity

det(H− E) = det(H11 −H12(H22 − E)−1H21 − E) det(H22 − E). (A.2)

See figure 7. In E � t⊥ limit, we can replace H22 − E by H22. Then we can reduce
hamiltonian as

Heff
N=3 ≡ H11 −H12H

−1
22 H21 = − 1

t2⊥

(
0 (vp−)3

(vp+)3 0

)
. (A.3)

For the general N and with the presence of Uj , it can be generalized as [32].

Heff =
(

U1 t⊥(vp−/t⊥)N

t⊥(vp+/t⊥)N UN

)
. (A.4)

For convenience, we set U1 + UN = 0. Then the eigenvalues of effective hamiltonian are
given by

εeff = ±
√
t2⊥(vp/t⊥)2N + (∆U/2)2, (A.5)

where ∆U = U1 − UN . This shows the lowest energy band of ABC-MLG, and the size
of the flat band depends on the stacking number N with scale t⊥. Here ∆U plays a role
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(a) N = 20 (b) N = 20

Figure 8. (a) Spectral function of non-interacting fermion for several Lishitz geometries (b)
Band structure of ABC-MLG with several layer stacking order N ’s with t⊥ = 1 and Uj = 0 by
reduced hamiltonian.

in chemical potential, and it sifts the lowest energy modes. If we replace (3.8) as Lishitz
geometry:

ds2 = −f(z)
z2N dt2 + dx2 + dy2

z2 + dz2

z2f(z) . (A.6)

We can get dispersion relation:

ω ∼ kN . (A.7)

For N = 20 non-interacting Lifshitz fermion, we can draw spectral functions like the figure 8:
This spectral function is the same as that obtained using reduced hamiltonian (A.5), which
is a low-energy effective model of ABC-MLG. We can say that the tight-binding model’s
low-energy effective hamiltonian can be described by holography Lifshitz theory.
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