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ABSTRACT In a channel state information (CSI) based indoor positioning system, the positioning
performance becomes susceptible to multipath fading effects especially in non-line-of-sight environments.
We propose a transformer-based indoor positioning system (TIPS) to address this challenge. The proposed
TIPS utilizes a self-attention mechanism to process the continuous WiFi CSI observed from predetermined
routes as fingerprints in a given indoor environment. Each route is then considered a sentence, whereas
the position along the route is treated as a word in terms of natural language processing. Consequently,
the problem of predicting the position with the fingerprints can then be considered the task of predicting the
current word with previous words, which can be efficiently solved using the proposed TIPS. In order to
fully exploit the relations among positions, we propose embedding the information of the direction of arrival
(DoA) on top of the collected CSI as inputs to the TIPS. Thus, the transformer of the proposed TIPS can better
capture the dependencies of the positions in the route and significantly boost positioning accuracy. To exhibit
the superiority of the proposed TIPS in a radio frequency (RF) environment, we demonstrate a hardware
implementation of an RF testbed consisting of an emulator ofWiFi access point and user equipment. Through
extensive computer simulations and experimental tests, it is demonstrated that the proposed TIPS can reduce
the positioning error down to 20 cm, which is a significant improvement compared to the current state-of-
the-art models.

INDEX TERMS CSI, DoA, indoor positioning system, transformer.

I. INTRODUCTION
The accurate positioning of mobile user equipment (UE) is
of great help in providing location-related services such as
navigation, virtual reality, and motion tracking [1], [2], [3].
It is also beneficial to smart buildings [4], the Internet of
Things [5], and machine type communication [6]. A global
positioning system (GPS) enables accurate localization in
the outdoor environment, whereas the GPS signals degrade
significantly in an indoor environment [7], resulting in
poor indoor positioning accuracy. Therefore, the GPS is not
applicable in the robot or drone navigation cases, which
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require a high degree of centimeter-level positioning preci-
sion. The prevalent indoor positioning technologies include
ultra-wideband, Bluetooth, ZigBee, WiFi, geomagnetic
[8], [9], [10]. Among these technologies, WiFi has been
extensively researched over the last few decades owing to
its widespread deployment and low cost. As a state-of-the-
art technology, WiFi fingerprinting indoor localization sys-
tems (IPS) have been largely studied for both localization
[11], [12], [13], [14], tracking [15], and activity recognition
[16], [17] applications. The radio frequency (RF) charac-
teristics of WiFi signals at each location are unique due
to their different propagation paths, and the RF character-
istics can be considered unique fingerprints. With all the
fingerprints of locations collected and stored in the database
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beforehand, accurate localization can be achieved by com-
paring the received WiFi signal with the data in the database.
The construction of a WiFi-based IPS comprises two phases.
One is the offline phase, during which the fingerprints
(RF characteristics) of the WiFi signal at the reference
points (RP) are collected to construct the database for the
IPS. The other is the online phase, during which the fin-
gerprints available in the database are compared with the
new fingerprints of the WiFi signal received at the test
positions.

The fingerprinting-based IPS requires a site survey pro-
cess where a radio map is created by measuring the signal
characteristics of the predetermined positions in the indoor
environment. By comparing the signal received at a RP and
the one stored in the radio map, the position with the finger-
print that has the highest correlation with the fingerprint of
the test position is determined as the predicted position of
the UE. A WiFi-based IPS can employ either the received
system strength indicator (RSSI) or channel state information
(CSI) as fingerprints for reference positions. The RSSI is
a single value representing the received power level, which
can fluctuate significantly in both line-of-sight (LOS) and
non-line-of-sight (NLOS) environments [18]. By contrast,
CSI provides fine-grained signal information provided by
multiple subcarriers (SCs) in orthogonal frequency-division
multiplexing (OFDM) symbols available in WiFi signals.
In the presence of themultipath effect, CSI is more stable than
RSSI [19], [20], [21]. Consequently, CSI-based IPSs have
gained momentum in recent years.

Recently, deep learning (DL) based algorithms are gain-
ing a keen interest in the application of IPS. Some related
works [22], [23], [24], [25], [26] have shown that theDL algo-
rithms such as dense neural network (DNN), convolutional
neural network (CNN), long short-term memory (LSTM),
etc. can help the IPS better capture the correlation between the
fingerprint and corresponding position, which consequently
enhances the accuracy compared to the conventional meth-
ods [27], [28]. Although the DL algorithms commonly used
in IPS can reduce the positioning error down to 1-2 meter,
it is still challenging for the IPS to reach centimeter level
accuracy considering many adverse indoor signal environ-
ments involving the signal instabilities caused by multipath
fading effects. In this paper, we claim that the centimeter level
accuracy can be achieved by adopting direction of arrival
(DoA) as well as CSI as the fingerprints of the radio map
because the DoA of the WiFi signal has been proven to be
stable in [26]. In order to integrate the two heterogeneous
fingerprints, DoA and CSI, we adopt the transformer neural
network [29], which converts the indoor positioning task into
the problem of language processing.

The main contributions of this paper are as follows.
• We propose a transformer-based IPS with an extremely
high positioning accuracy. To the best of our knowledge,
this paper is the first to apply the self-attention mecha-
nism provided by a transformer to the indoor positioning
problem utilizing the WiFi signals.

TABLE 1. Acronyms and corresponding explanations.

• Wepropose utilizing both the CSI extracted and the DoA
estimated from the received WiFi signal by embedding
them together during the preprocessing stage. Then,
the embedded data are fed to the proposed transformer
based indoor positioning system (TIPS) to learn the rela-
tionship between the positions and their corresponding
CSI & DoA.

• We demonstrate the superiority of the proposed TIPS
through extensive computer simulations, utilizing the
ray-tracing technique to simulate an indoor environment
with rich multipath propagation. Then, we evaluate and
analyze the performance of the TIPS trained on differ-
ent types of datasets, i.e., CSI-only dataset, DoA-only
dataset, and CSI & DoA dataset, as well as the impact of
the input batch size.

• We implemented an RF testbed using multiple universal
software radio peripherals (USRPs) and a central pro-
cessing unit (CPU) to emulate a single access point (AP)
and UE. The RF experiments were conducted to verify
the high accuracy of the proposed TIPS by comparing it
with state-of-the-art solutions.

The remainder of this paper is organized as follows.
Section II describes the related works on the fingerprinting-
based IPS. Section III briefly explains the CSI and DoA
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that are utilized as fingerprints. Section IV introduces the
proposed TIPS and details the fingerprinting technique.
Section V presents the transformer model adopted for TIPS
and describes the CSI and DoA preprocessing processes.
Section VI explains the detailed training process and demon-
strates the performance of TIPS under various scenarios
through computer simulations. Section VII shows the exper-
imental results with RF signals and verifies the superior
performance of TIPS by comparing it with other positioning
solutions. Finally, Section VIII concludes the paper.

II. RELATED WORKS
This sections describes the previous works on the
fingerprinting-based IPS using WiFi signal. The
fingerprinting-based IPS employs matching algorithms to
estimate the position of the target. Prior to applying the
algorithms, a site survey process is carried out. During the
site survey process, a radio map consisting of the signal
characteristics ofWiFi signal of each predetermined locations
is created.

In [28], the authors adopt an fingerprinting-based IPS uti-
lizing a probabilistic algorithm to model the RSSI received
from an AP as random variable over time and space. With a
radio map consisting the information of the RSSI at different
locations, the Horus system estimates the location of the UE
by calculating the probability distribution of the measured
RSSI. However, the performance is limited by the instability
of the RSSI due to multipath effects in indoor environment.
In [27], the authors calculate the time-reversal resonance
strength and Euclidean distance between the target location
and the RP using multidimensional scaling analysis. Then,
an optimized kNN algorithm is used to predict the loca-
tions. In [30], a passive radio map is utilized to address the
localization problem by matching the CSI anomalies to the
fingerprint database via a probabilistic algorithm. In [22],
Wang et al. propose DeepFi, a DL solution, to solve the local-
ization problem. A greedy learning algorithm is employed
to train the proposed DL network to reduce complexity.
Subsequently, a probabilistic method with a radial basis func-
tion is used to estimate the location. However, the greedy
learning algorithm does not guarantee optimized weights for
the networks. Gao et al. in [31] adopt a DL network to
estimate the location and activity of a person using radio
images transformed from CSI measurements from multiple
channels. In [32], a partially connected neural network is
proposed to make the best use of both the amplitude and
phase of the CSI given in a phasor format. However, the pro-
posed networks may suffer from slow training and instability
when dealing with complex nonlinear problems. In [33],
the authors propose an autoencoder-based indoor positioning
method, which utilizes data of reduced dimension by an
autoencoder from the data collected data by smartphones.
Chen et al. in [34] propose transforming the CSI amplitude
into a time-frequency matrix, which is treated as image data
and used to train a CNN-basedmodel for localization. In [24],
Wang et al. propose to estimate the DoA with the phase

difference ofWiFi signal. The DoA values of a given location
are more robust than that of the phase due to the stability of
the phase difference. Then, they adopt the two dimensional
convolutional neural network (2DCNN) to process the DoA
images to exploit the time-frequency features. In [23], the
authors propose utilizing the software-defined radio to cap-
ture WiFi beacon frames passively. A feed-forward neural
network and one dimensional convolutional neural network
(1DCNN) deep learning models are adopted to use full SCs
collected from the SDR. In [26], the authors propose a deep
residual sharing learning based IPS which uses the 2DCNN
to exploit both frequency and time features in bimodal CSI
data. In [25], Zhang et al. propose utilizing the trajectory CSI
to enhance the robustness of the instability of RF signals in the
indoor environment. They employ an 1DCNN to extract the
spatial information from the trajectory CSI. Then, an LSTM
is used to further extract temporal information from the spa-
tial information. Both the spacial and temporal information
are used to enhance the robustness and accuracy of the IPS.

TABLE 2. Accuracy comparison for representative IPS.

III. CSI AND DoA PRELIMINARY
This section describes the two components, CSI and DoA,
used in this paper to construct the fingerprinting-based IPS.
To explain how to combine these two different compo-
nents, a brief introduction to the multiple signal classification
(MUSIC) algorithm and the spatial smoothingmethod will be
provided for estimating the DoA.

A. CHANNEL STATE INFORMATION
The CSI of the WiFi signal can be extracted from the SCs
of IEEE 802.11 ac based OFDM symbols. The fine-grained
characteristics of the wireless channel are then available in
the extracted CSI. Various CSI observations can be reflected
at different positions in an indoor environment due to the RF
front-end impairment between the AP and UE. This property
makes CSI an ideal choice as fingerprints for fingerprinting-
based radio maps.

In an OFDM system, the received signal can be
expressed as

r = h · t+ n, (1)

where t and r denote the signal vectors from the transmit (Tx)
and receive (Rx) signals, respectively. n denotes the additive
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white Gaussian noise vector and h denotes the channel vector
that carries the CSI.

The ith SC channel hi is a complex-valued quantity that can
be written as

hi = |hi| ej
6 hi , i = 1, . . . ,Ns, (2)

where |hi| and 6 hi are the magnitude and phase of the chan-
nel, respectively, for the ith SC. Ns is the number of SCs
in an OFDM symbol. Note that we only use the magnitude
of channel hi because the phase information 6 hi is unstable
owing to the random jitters and noise caused by the imperfect
hardware of the RF transceiver [22].

B. DIRECTION OF ARRIVAL
We consider a typical far-field signal scenario, in which
signals are transmitted from several sources. The impinging
signal received by anM -element uniform linear array (ULA)
can be expressed as

y(ti) =
K∑
k=1

a(θk )sk (ti)+ n(ti), i = 1, . . . ,T , (3)

where K is the number of far-field sources, T is the number
of snapshots, and the source signal sk (ti) ∈ C is received at
snapshot ti from the angle θk . The array steering vector a(θk )
is given by

am(θk ) = e−jm(2πλ)d sin θk , (4)

where λ = c0/fc is the wavelength of the signal with the
SC frequency being fc, and c0 being the speed of light.
The distance between antenna elements of the ULA is d . The
objective of the DoA is to estimate the angle θk .
In this paper, we use the MUSIC algorithm to estimate the

DoA of the impinging signals. The MUSIC algorithm [35]
is a subspace-based algorithm that provides super-resolution
with lower computational complexity compared to other DoA
techniques [36]. The essential idea behind the MUSIC algo-
rithm is to conduct eigenvalue decomposition (EVD) or sin-
gular value decomposition (SVD) on the sample covariance
matrix (SCM) of the received signal to acquire the signal and
noise subspaces that are orthogonal to each other. The two
orthogonal subspaces are used to construct a pseudo spectrum
with the largest peaks corresponding to the DoA. SCM can be
written as

Rxx =
1
T

T∑
i=1

y(ti)y(ti)H , (5)

In an indoor environment, multipath signal propagation
makes the impinging signals coherent, of which the SCM is a
singular matrix. In such a case, the MUSIC algorithm fails;
therefore, it is necessary to apply smoothing technologies to
SCM to obtain a non-singular matrix. Spatial smoothing [37]
is performed by splitting the ULA into L subarrays, and the
SCM can be written as

Rs
xx =

1
L

L∑
l=1

R(l)
xx. (6)

The rank of Rs
xx is the sum of the ranks of signal the space

and noise subspace. We can construct the MUSIC pseudo-
spectrum by taking EVD or SVD on the SCM, as in (5).

P(θ ) =
1

aH (θ )VnVH
n aH (θ )

, (7)

where a is the steering vector, as in (4), and Vn is a matrix
spanning the noise subspace.

The K largest peaks in the result of (7) correspond to
the DoAs of the signals impinging on the ULA from K
sources. The DoAs estimated using the MUSIC algorithm
are the inputs to the proposed model, which are detailed in
Section IV.

IV. SYSTEM MODEL
This section describes the proposed TIPS architecture. The
fingerprinting technique, including the online and offline
phases of constructing an IPS, is explained.

A. SYSTEM OVERVIEW
Figure 1 shows the architectural overview of the proposed
TIPS. The TIPS comprises three main modules: WiFi AP,
preprocessor, and DL model. The WiFi AP equipped with
an M -element ULA receives WiFi uplink signals from a
single UE. The objective of the preprocessor is to extract the
CSI and estimate the DoA from the received WiFi signal.
The extracted CSI and estimated DoA corresponding to each
position are stored in the database. The data in the database
are then used as the input to the DL model for the training
process. The training process is performed using a graphics
processing unit (GPU) for a speed-up operation. The output
of the DLmodel is the prediction of the UE’s current position.

B. FINGERPRINTING TECHNIQUE
The proposed TIPS based on fingerprints has two phases:
offline phase and online phase.

During the offline phase, the WiFi signal from prede-
termined routes is measured. As shown in Figure 1, there
are four predetermined routes 1, 2, 3, and 4. We adopted
the data collection method proposed in [25] to collect the
WiFi signals continuously along each route. The collected
WiFi signal is preprocessed in the preprocessor to extract
the CSI and estimate the DoA using equations (2) and (7),
respectively, as briefly explained in Section II. Subsequently,
the CSI and DoA corresponding to all to-be-estimated posi-
tions along each route are stored in the database. The CSI
and DoA, along with the label (i.e., the correct position
corresponding to the CSI and DoA), are fed as input to the
transformer. More details regarding the training process are
provided in Section V-C. After the training is complete, the
trained model, including the neural network structure and its
optimized weights, is available during the online phase.

During the online phase, the test data are collected and
preprocessed in the preprocessor to extract the CSI and esti-
mate the DoA, similar to the collection and preprocessing
of training data during the offline phase. Subsequently, the
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FIGURE 1. The proposed TIPS system overview.

transformer model, which has been trained during the offline
phase, is employed to predict the exact position correspond-
ing to the current test data input. The model is evaluated in
terms of positioning accuracy obtained from the difference
between the predicted and actual positions.

V. TRANSFORMER FOR IPS
This section explains the transformer DL model for the IPS
in detail. First, the CSI and DoA data processing for the
input data to the transformer is introduced. Then, the adopted
transformer structure is presented. Finally, we demonstrate
the application of the transformer model to an IPS.

A. TRANSFORMER MODEL
The objective of the desired model is to predict the current
position by capturing the long-term dependencies from a
continuous WiFi signal collected from predetermined routes.
To achieve this goal, we adopt a transformer-based neural
network model, which was initially introduced for the task
of natural language processing (NLP) [29]. The original
transformer has an encoder and decoder structure; however,
in contrast to the original transformer model, we used the
generative pretrained transformer (GPT) model [38], which
has only the decoder part. GPT is an autoregressive model
that predicts words at the current time step based on the
words generated from the previous time steps. The follow-
ing words are then predicted based on the output of the
current time step in addition to the previously generated
words. In particular, GPT is advantageous in the applications
that predict sequential outputs based on previous predictions,
which we believe is suitable for achieving the objective of
predicting the next position based on previous positions.
A simplified blog diagram of the transformer model is shown
in Figure 2.

FIGURE 2. Adopted transformer model.

The self-attention mechanism used by the transformer
models discards sequential operations in favor of parallel
computation, which is entirely different from recurrent neural
networks (RNNs) [39]. Consequently, the transformer model
is unaware of the order of the input sequence. In other
words, the positional information denoted as #1, #2, . . .,
as shown in Figure 2, is lost. To compensate for the
loss of positional information, position-dependent signals
are generated based on the index of each sample of the
input sequence through positional encoding. The generated
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position-dependent signals are added to the correspond-
ing samples of the processed data sequence, Xp, which is
explained in detail in Section IV-B.

The transformer consists of several decoder layers. In each
decoder layer, a self-attention layer, normalization layer, and
feedforward network are included.

In the self-attention layer, a masked self-attention mech-
anism is employed to prevent the prediction of the current
position (e,g., #7), from attending to future positions. Instead
of attending to future positions, the model only attends to past
positions, for example, from #1 to #6. The decoder produces
the joint probability of the current position as the product of
the conditional probabilities of the previous positions.

p(yn) =
n−1∏
i=1

p(xip|x
1
p, . . . , x

i−1
p ). (8)

The normalization layer [40] normalizes the distribution of
the intermediate layers and stabilizes the gradients of loss;
therefore, faster training and better generalization can be
achieved. Finally, the feedforward network transforms the
attention vector, i.e., the output of the self-attention layer,
into a nonlinear representation that suits the input of the next
decoder layer.

B. DATA PREPROCESSING
The input to the original transformer is a sequence of a
sentence consisting of a fixed number of words. However,
we modified the model for the IPS application to make it
compatible with the inputs of CSI and DoA continuously
collected from predetermined routes.

FIGURE 3. Data processing of embedding the CSI and DoA.

The CSI can be considered as a multivariate time series
data, Xcsi ∈ RW×d

= [x1csi, x
2
csi, . . . , x

W
csi]

T . Each feature
vector corresponding to a single time step t is xtcsi ∈ Rd ,
where d is the number of variables in one vector. The raw
DoA can also be considered as time series data but with
only a single integer value for a single time step, Xdoa ∈

ZW×1 = [x1doa, x
2
doa, . . . , x

W
doa]

T falls within the range from
−90◦ to 90◦. However, we add 90◦ to the raw DoA so
that it falls within the range from 0◦ to 180◦ because the
embedding layer in the neural network takes only a positive

integer as input. The DoA is then linearly projected onto a
d-dimensional vector space via an embedding table, as shown
in Figure 3. The embedded vector can be expressed as:

utdoa =Wextdoa + be, t = 1, . . . ,W , (9)

where We ∈ Rd×1 and be ∈ Rd are trainable parameters
optimized during the training of the neural network. utdoa ∈
Rd , t = 0, . . . ,W is the embedded output, which corre-
sponds to a word vector in the case of an NLP transformer.
The embedded data Udoa ∈ RW×d

= [u1doa,u
2
doa, . . . ,u

W
doa]

T

are added to XCSI to form the processed data Xp ∈ RW×d
=

[x1p, x
2
p, . . . , x

W
p ]

VI. COMPUTER SIMULATIONS
This section introduces a modeled indoor propagation envi-
ronment for computer simulations performed using MAT-
LAB. First, we explain how the datasets are prepared to
train the transformer model shown in Section IV. A detailed
explanation of the transformer training process is provided.
Finally, the performance of the proposed TIPS in various
scenarios is evaluated and analyzed.

A. INDOOR PROPAGATION ENVIRONMENT
Figure 4 shows the 8 m × 5 m indoor propagation envi-
ronment for which the simulations are carried out. The blue
points and red points in the figure denote the RPs and APs,
respectively.

The indoor propagation environment employs four APs,
each of which is equipped with 8-antenna element ULA. The
channel bandwidth is set to 20MHz, corresponding to 56 SCs
for each OFDM symbol of IEEE 802.11ac. CSI is generated
using the ray-tracing technique [41] implemented in MAT-
LAB. The ray-tracing technique can help build multipath
channel models for indoor environments.

In our simulations, a UE with a single antenna transmits
WiFi OFDM signals from all the predetermined RPs. Each
AP extracts the CSI and estimates the DoA from the received
WiFi signals as fingerprints. Predetermined RPs are uni-
formly distributed with a spacing of 10 cm. The total number
of RPs is 79 × 49 = 3871 points, with 49 points along the
x-axis and 79 points along the y-axis. Note that the number
of the RPs used in the simulations is not the same as shown
in Figure 4.
We set the parameters of the ray propagation model to

consider only the LOS and first-order reflection. The number
of rays is of size NAP × NUE, where NRP is the number of
APs, and NUE is the number of RPs. Hence, the size of the
rays generated using the ray-tracing technique is 4× 3871 in
our simulation. A visualization of the rays at an arbitrary RP
is shown in Figure 5. From the figure, three APs have LOS
propagation to the RP, whereas the signal emitted from the
remaining AP only reaches the RP via reflection without LOS
propagation. The different colors denote different path losses
in decibels (dB).
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FIGURE 4. Indoor propagation environment.

FIGURE 5. Visualization of rays received at an arbitrary RP.

B. PREPARATION OF DATASETS
The four APs receive 802.11 ac packets transmitted from a
single UE at each of the RPs in the modeled indoor environ-
ment shown in Figure 4. The CSI extracted from the received
WiFi signal is a complex-valued variable including both the
magnitude and phase for 56 SCs as shown in (2), of which
we only use the magnitude. Consequently, the data size of
the CSI is Ns × Ntx-rx × NAP × NUE, where Ns is the number
of SCs, Ntx-rx is the number of Tx-Rx antenna pairs. There-
fore, in our simulation, the size of the dataset is 56 × 8 ×
4 × 3871. As explained in Section IV-B, the DoA estimated
from the received WiFi signal is a real-valued variable rang-
ing from 0◦ to 180◦. Consequently, the data size of the DoA
is 1× NAP × NUE, i.e., 1 × 4 × 3871 in our simulation.
To extensively evaluate the performance of our transformer

model under various SNR scenarios, we generate WiFi sig-
nals under SNR scenarios from 0 to 30 dB. For each SNR,

we generate 100WiFi signal samples, which are then divided
into 80 training data samples and 20 validation data samples.
In addition, 20 WiFi signal samples are generated as test data
samples.

FIGURE 6. The CSI of 79 RPs along eight arbitrary routes.

We divide the 3871 RPs into 49 routes, along each of which
there are 79 RPs. Each route can be considered a sentence in
terms of NLP, whereas the CSI measured at each RP along the
route can be considered an individual word. Figure 6 shows
the CSI measured at 79 RPs along eight arbitrary routes from
a total of 49 routes. The lines with different colors in each
subplot denote the CSI of each SC. To match the data size of
the CSI with that of the input of the transformer, we combine
the dimensions of Ns, Ntx-rx, and NAP into one dimension
of size 1792, i.e., 56 (number of SCs) × 8 (number of Rx
antennas) × 4 (number of APs). The CSI dataset is then
reshaped to a size of 79 × 49 × 1792. Likewise, the DoA
dataset is reshaped to 79 × 49 × 4. Table 3 lists the datasets
corresponding to the environmental parameters.

C. TRAINING PROCESS
The processed CSI and DoA, as shown in Figure 3, are
first mapped into the corresponding dmodel-dimensional input
embeddings via the embedding lookup table. The processed
data are then fed into the transformer model. CSI and DoA
can be considered fingerprints of RPs. The label of the fin-
gerprint is ci, i ∈ Z, i = 0, 1, . . . , 3870 corresponding to
the position. The position-prediction task is to estimate the
probability for a given position (or a sequence of positions)
based on the transformer outputs for the previous positions.
The probability estimation is calculated by putting the output
of the transformer model into a linear layer followed by a log-
softmax function. Then, a cross-entropy loss for updating the
model’s weights via backpropagation is calculated. We use
the Adam optimizer [42] with a learning rate of 0.0001 to
accelerate the gradient descent algorithm. The number of
transformer layers ltr is set to three, and the number of
attention heads per layer htr is set to four.
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TABLE 3. Detailed dataset information.

FIGURE 7. Transformer training process.

All the routes can be trained together simultaneously by
enabling the parallel processing due to the fact the training
for each route is independent of that for the other routes.
As shown in Figure 7, the input data of size K × L in the
first batch B1 are fed to the transformer to be trained at once,
where K is the number of samples trained in a route at once
and L is the number of routes. K is 40, and L is 49 in our
simulation. After the first batch is trained, the samples at
positions from 2 to K+1 of all routes of the next batch B2 are
fed to the transformer to be trained. The training continues
until the training for the last batch BM is completed. Note
that the data at the same positions on different routes can
be trained together without interference because the train-
ing for each route is independent of one another. We may
consider changing the sample size K to adjust the sequence
length. With a larger K , the model can capture longer-
term dependencies among positions and vice versa. Table 4
summarizes the hyper-parameter settings for our transformer
model.

TABLE 4. Hyper-parameter settings.

FIGURE 8. Positioning error of models trained on datasets including only
CSI under different SNRs.

D. PERFORMANCE OF THE PROPOSED TIPS
TRAINED ON CSI-ONLY DATASET
We conducted experiments to investigate the performance of
TIPS as a function of the SNRs, while the training datasets are
generated only with the CSI of WiFi signals. First, our model
is trained with the CSI generated under six different SNR
values, i.e., 5, 10, 15, 20, 25, and 30 dB. Then, our transformer
model is trained with CSI in an environment where the SNR
value varies between 0 dB and 30 dB.

Figure 8 compares the positioning error in centimeters as
a function of the SNR for the seven different models. As the
SNR increases, the positioning error decreases for the models
trained on datasets of 5 dB, 25 dB, 30 dB, and all SNRs.
The models trained on datasets with 10 dB and 15 dB SNR
exhibit relatively superior performance when SNR varies
from 10 dB to 24 dB. However, it can also be observed that
the performance superiority of the model trained on a dataset
of 15 dB (10 dB) is slightly reduced when the SNR becomes
greater than 15 dB (20 dB). This observation implies that
the transformer model trained in a noisy environment does
not necessarily exhibit a better performance in a noise-free
environment.

It is also observed that, for lower SNRs, i.e., from 0-9 dB,
the model trained on datasets of all SNRs shows the best
performance because the model is better aware of the data
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generated from the lower SNRs, which are included in
the training dataset. However, this model appears to per-
form worse than the other models for higher SNRs, i.e.,
from 14-30 dB, due to the erroneous information caused
by the heavily noisy training samples. The models trained
on datasets with an SNR of 25 or 30 dB exhibit superior
performance than other models for the high SNR range, i.e.,
from 25-30 dB.

E. PERFORMANCE OF THE TIPS TRAINED ON
DoA-ONLY DATASET
We conducted experiments to investigate the performance of
TIPS as a function of the SNRs, while the training datasets
are composed of only the DoA of WiFi signals. First, our
transformer model is trained with the DoA estimated under
five different values for SNR, i.e., 10, 15, 20, 25, and
30 dB. Subsequently, our model is trained with the DoA
estimated in an environment where the SNR value varies
between 0 and 30 dB.

FIGURE 9. Positioning error of models trained on datasets including only
DoA under different SNRs.

Figure 9 compares the positioning error in centimeters as
a function of the SNR for the six different models. As the
SNR increases, the positioning error does not decrease in the
same manner as when the training dataset is the CSI-only
dataset. It can be observed that the models trained on DoA-
only datasets perform excellently when the SNR of the test
data is the same as that of the training data. However, the
models exhibit significant performance degradation when the
SNR of the test dataset does not match that of the training
dataset.

The model trained on the dataset generated under all SNRs
exhibit the worst performance. This is a substantial limitation
concerning the ability of the model to learn the similarities of
the DoA under different SNRs. Consequently, the DoA-only
datasets prove to be of little help in training the model.

F. PERFORMANCE OF THE TIPS TRAINED ON
BOTH CSI AND DoA
We conducted experiments to investigate the performance of
TIPS as a function of SNRs, while the training datasets are
composed of CSI & DoA of WiFi signals. We compared the

performance of the models trained on DoA-only datasets and
those trained on CSI & DoA datasets under five different
SNRs, i.e., 10, 15, 20, 25, and 30 dB.

Figure 10 compares the positioning error in centimeters as
a function of the SNR for ten different models. The dotted
lines denote the models trained on DoA-only datasets, and
the solid lines denote the models trained on the CSI & DoA
datasets. It can be observed that the models trained on
CSI & DoA datasets have a much lower positioning error
than those trained on DoA-only datasets when the SNR of
the test data is the same as that of the training data. However,
the models show significant performance degradation which
bears a strong resemblance to the models trained on DoA-
only datasets. This indicates that the DoA plays a predomi-
nant role during the training process compared with the CSI
when the WiFi signal is generated under a single SNR.

FIGURE 10. Positioning error of models trained on CSI & DoA datasets
under different SNRs.

It has been observed that the models trained on CSI-only
datasets exhibit more consistent and better performance as
a function of SNR than those trained on DoA-only datasets.
We compare the performance of the models trained on CSI-
only datasets and the model trained on CSI & DoA datasets,
where the SNR varies between 0 and 30 dB.

Figure 11 compares the positioning error in centimeters
as a function of the SNR for the eight different models. The
model trained on CSI & DoA datasets, where the SNR varies
between 0 and 30 dB, exhibits the best performance. This
indicates that the model can learn more beneficial informa-
tion from both the CSI & DoA datasets, where the SNR has
a wider range than the CSI-only dataset.

G. IMPACT OF BATCH SIZE K
The performance of the proposed transformer model was
observed with various values for the batch size K , which
should be determined on account of a trade-off between the
dependencies among the positions and the time for training
the model.

The transformer model can attend to more fingerprints of
previous positions with a larger K , corresponding to longer-
term dependencies among positions. Thus, the model can
selectively pay more attention (by assigning a larger signif-
icance probability) to positions where multipath fading has
less severe impacts. The transformer model is more likely to
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FIGURE 11. Positioning error comparison for the models trained on the
CSI-only and CSI & DoA datasets.

correctly predict the subsequent position with more exposure
to effective fingerprints. However, longer dependencies may
lead to a longer time required for the model to converge.
Furthermore, if the value of K is too large, the model per-
formance may be degraded unless the transformer model can
handle the large size of the long input data sequence.

In contrast, short-term dependencies among positions,
which correspond to a small K , can accelerate the training
speed; however, the performance may not be satisfactory due
to the lack of effective fingerprints to which the transformer
can attend for predicting the next position.

Table 5 shows the training time and training loss of
the proposed TIPS for various values of the batch size K .
As the batch size K increases, the training time increases,
and the training loss reduces because the model can enhance
its ability to capture the long-term dependencies of the input
sequence. However, when the batch size K exceeds 40, the
decreasing rate of the training loss becomes significantly
small, but the increasing rate of the training time remains
almost the same. Hence, considering the training loss and the
cost of the training time, we conclude that a batch sizeK equal
to 40 is an optimal value for our model.

H. TRAINING TIME COMPARISON
The training time of the model is observed for different
datasets, i.e., the CSI-only dataset and CSI & DoA dataset.
To be specific, we measured the training time and training
loss to evaluate the training time provided by the CSI-only
and CSI & DoA datasets.

Table 6 shows the training loss and training time for
two different training datasets, i.e., the CSI-only dataset and
CSI & DoA dataset. The model trained on CSI-only has
0.07 training loss with 170-second training time, whereas the
model trained on CSI & DoA dataset has only 0.02 training
loss with only 65-second training time. In other words, the
model trained on CSI & DoA dataset converges much faster
than the model trained on the CSI-only dataset. The intuition
behind the fast training with CSI & DoA dataset is that
the embedding of CSI and DoA can help the transformer

TABLE 5. Model’s training time and training loss for different batch
size K .

TABLE 6. Comparison of training time and loss of models training on
different types of datasets.

model more effectively and optimally allocate attention to the
previous positions where the fingerprints can be utilized for
predicting the current position.

I. IMPACT OF ANTENNA ARRAY SIZE AND
SIGNAL BANDWIDTH
Having noticed that the IPS performance might seriously be
affected by the antenna array size as well as the bandwidth of
the WiFi signal, we summarise in this subsection the impact
of antenna array size and signal bandwidth obtained from
various computer simulations.

To evaluate the actual effects of antenna array size and
signal bandwidth on the performance of our proposed TIPS,
we generated the datasets of both the CSI and DoA under
different antenna array size and signal bandwidth. The model
is trained for 200 epochs with the batch size K being equal
to 40. Figure 12 shows the cumulative probability over the
distance error in centimeters under four different cases of
antenna array size and signal bandwidth. As the figure illus-
trates, the positioning error decreases as the signal band-
width increases with the 2-dimensional antenna array size
being fixed to 4 × 4. The positioning error is within 20 cm
for signal bandwidth 80MHz, 40MHz, and 20MHz with a
probability of 90%, 70%, and 60%,respectively. It can be
observed that the larger signal bandwidth contributes to the
more accurate positioning. It is because the richer position-
related CSI from the wider signal bandwidth can result in the
better performance. Note that, as the bandwidth of the WiFi
signal gets larger, more SCs of the OFDM symbol can be
utilized for constructing the radio map. On the other hand,
as the size of the 2-dimensional antenna array decreases from
4 × 4 to 2 × 2 with the bandwidth being fixed to 20MHz,
the performance of the IPS is degraded. With antenna size
of 2 × 2, the probability of holding the positioning error
within 20 cm decreases to 50% compared to the case of
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FIGURE 12. Predetermined routes in the indoor RF environment.

4 × 4 antenna array that provides the probability of 60%.
The main reason is that the larger antenna size can lead to
the better DoA resolution, which results in the more accurate
positioning.

VII. EXPERIMENTAL RESULTS WITH RF SIGNALS
This section introduces the RF experiments conducted using a
testbed implemented for the proposed TIPS. TheRFWiFi sig-
nals are collected along the predetermined routes and prepro-
cessed to extract CSI and DoA. As explained in Section IV-B,
the preprocessed CSI and DoA are then embedded together
to prepare for model training. We observed the impact of data
scaling on model training and compared the performance of
the proposed TIPS and other state-of-the-art indoor position-
ing methods.

A. RF TESTBED
We implemented an RF testbed for the proposed TIPS using
USRPs and a CPU. USRPs, which are frequently used for
SDR communication applications, are reconfigurable RF
devices consisting of an RF front end, an analog-to-digital
converter, and a frequency down-converter.

Figure 13 shows the implemented RF testbed consisting of
five USRPs. Among the five USRPs, we used four USRPs
(Ettus X310 [43]), each of which provides two Rx chan-
nels, to implement a single AP. Each channel is connected
to an omnidirectional antenna (VERT2450 [44]). The eight
antennas constitute an 8-element ULA for the DoA estima-
tion. For UE, we used a single USRP (Ettus X310) with a
single Tx channel connected to an omnidirectional antenna
(VERT2450) as the RF transceiver. The host PC executes the
USRP hardware driver (UHD) using MATLAB to control all
the five USRPs, including four USRPs for the AP and one
USRP for theUE. An Ethernet switch connects all the USRPs
with the host PC via 10 gigabit Ethernet cables for data packet
transmission. For time synchronization among Rx channels at
the AP, we used OctoClock (CDA-2990 [45]) to synchronize

FIGURE 13. The RF testbed located in an indoor RF environment.

the eight Rx channels of the AP to the common timing source
provided by the OctoClock.

To acquire an accurate DoA estimation, it is critical to
align the phase among the eight Rx channels of the AP.
Due to the random phase offset incurred at each channel
of the USRPs [46], the DoA estimation becomes infeasible.
To tackle the phase offset problem, we implemented phase
calibration for the alignment of the phase among USRP chan-
nels before performing DoA estimation. For phase calibra-
tion, we utilized an 8-way splitter to distribute the sinusoidal
calibration signal to each Rx channel of the AP with RF
cables of identical length. We estimate and compensate for
the phase difference among the eight Rx channels using the
received sinusoidal signal.

B. PREPARATION OF DATASETS
To evaluate the performance of the proposed TIPS in an
indoor RF environment, we predetermined 16 routes, as illus-
trated in Figure 14. Each route consists of 480 uniformly
distributed virtual RPs (VRPs) with a spacing of 1 cm. Note
that the spacing can be set to different values for different
resolutions.

The UE continuously transmits the 802.11ac WiFi signal
generated by MATLAB while moving along each of the
16 routes. The WiFi signal emitted from the moving UE is
received by the AP located at a fixed location. The AP then
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FIGURE 14. Predetermined routes in the indoor RF environment.

extracts the CSI and estimates the DoA from the received
WiFi signal. Consequently, the CSI dataset has a size of
480 × 16 × 448, where 480 is the number of VRPs, 16 is
the total number of routes, and 448 is the dimension of the
variable for each VRP determined by the number of SCs
and channels (448 = 56 × 8). For each VRP, only a single
DoA value is estimated, and the DoA dataset has a size of
480 × 16 × 1.
Figure 15 shows the CSI measured by the eight Rx chan-

nels of the AP at 480 VRPs along a single route. The lines
with different colors in each subplot correspond to the CSI of
each SC.

C. EXPERIMENTAL PROCEDURES
To further explain the application of the proposed TIPS in
the indoor RF environment, Figure 16 shows the flowchart of
the experimental procedures. As shown in the flowchart, the
multiple USRPs are phase aligned through phase calibration
before the reception of the WiFi signal. Then, the received
WiFi signals at all 480 VRPs are through the process of
resampling and denoising so that the extracted WiFi CSI of
each VRP should become of the same sample length with
less noise. With the preprocessed WiFi signal, we employ
the MUSIC algorithm to estimate the DoA of the WiFi signal
at each VRP. Both the WiFi CSI and DoA are embedded as
explained in Section V-B to form the dataset of 480 VRPs.
We perform the data scaling on the dataset in order to stan-
dardize the dataset. The standardized dataset is then used to
train the adopted transformer model. Note that the training
process is detailed in Section VI-C.

D. IMPACT OF DATA SCALING
We observed the impact of data standardization on the train-
ing process of the transformer model. Our model is trained
with two different datasets; one is composed of raw data, and
the other is composed of data standardized to have zero mean
and unit variance. As shown in Figure 17, the model trained

FIGURE 15. CSI of 480 VRPs along a single route measured from eight Rx
channels of AP.

FIGURE 16. Flowchart of the experimental procedures.

FIGURE 17. Model’s training loss over epochs.

on the dataset without standardization fails to converge and
maintains a high training loss throughout 30 epochs. In con-
trast, the model trained on the standardized dataset converges
within ten epochs and exhibits a significantly low training
loss. This implies that data standardization is essential for the
training process of the proposed TIPS.
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E. PERFORMANCE COMPARISON WITH
EXISTING METHODS
We compare the performance of the proposed TIPS with
that of state-of-the-art solutions, i.e., 1DCNN-LSTM [25],
ConFi [34], DeepFi [22], andHorus [28]. 1DCNN-LSTMuti-
lizes a CNN and LSTM neural structure to extract spatial and
temporal information from the trajectory CSI. ConFi employs
a CNN with CSI input collected at multiple time instances
and antennas while considering the input as an image. DeepFi
uses a deep neural network with the CSI amplitude as its
input. Horus estimates the target position using a probabilistic
model with the signal strength vector from multiple APs.

Figure 18 shows the cumulative probability over the dis-
tance error in meters for all state-of-the-art methods and the
proposed TIPS. It can be observed that the proposed TIPS
significantly outperforms 1DCNN-LSTM, ConFi, DeepFi,
and Horus with a probability of 70%, 85%, and 100% within
a 10 cm, 12 cm, and 20 cm distant error, respectively.

FIGURE 18. Positioning accuracy of the proposed TIPS and existing
methods.

VIII. CONCLUSION
This paper proposed TIPS, a transformer-based indoor posi-
tioning system that uses WiFi signals. First, we extract the
CSI and estimate the DoA from the Wi-Fi signal transmitted
from predetermined positions. Subsequently, the extracted
CSI and estimated DoA are preprocessed and embedded to be
fed to the transformer model to learn the correlations between
the fingerprints and their corresponding positions. Using the
attention mechanism, the transformer model can predict the
current locations by effectively attending to the fingerprints of
the previous position, which significantly boosts positioning
accuracy. We evaluated the superior performance of TIPS
through extensive MATLAB simulations under a modeled
multipath propagation environment. The TIPS trained on the
CSI & DoA dataset were demonstrated to achieve the highest
positioning accuracy with a short training time. To evaluate
the performance of TIPS in a real-world RF environment,
we implemented an RF testbed that included a single AP

and UE with five USRPs. The results show that TIPS exhibits
the highest positioning accuracy compared to state-of-the-
art indoor positioning methods, with a probability of 100%
within a 20 cm distance error.
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