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Abstract: This study presents an active noise control (ANC) algorithm using long short-term mem-
ory (LSTM) layers as a type of recurrent neural network. The filtered least-mean-square (FxLMS)
algorithm is a widely used ANC algorithm, where the noise in a target area is reduced through a
control signal generated from an adaptive filter. Artificial intelligence can enhance the reduction
performance of ANC for specific applications. An LSTM is an artificial neural network for recognizing
patterns in arbitrarily long sequence data. In this study, an ANC controller consisting of LSTM layers
based on deep neural networks was designed for predicting a reference noise signal, which was
used to generate the control signal to minimize the noise residue. The structure of the LSTM neural
networks and procedure for training the LSTM controller for the ANC were determined. Simulations
were conducted to compare the convergence time and performances of the ANC with the LSTM
controller and those with a conventional FxLMS algorithm. The noise source adopted sounds from
a single-cylinder diesel engine, while reference noises selected were single harmonics, superposed
harmonics, and impulsive signals generated from the diesel engine. The characteristics of each
algorithm were examined through a Fourier transform analysis of the ANC results. The simulation
results demonstrated that the proposed ANC method with LSTM layers showed outstanding noise
reduction capabilities in narrowband, broadband, and impulsive noise environments, without high
computational cost and complexity relative to the conventional FxLMS algorithm.

Keywords: active noise control; long short-term memory; impulsive noise; diesel engine noise

1. Introduction

Active noise control (ANC) is a method for removing unwanted noise in a specific area
and is based on controlling a second speaker to generate an interference wave. The first
patent on ANC was granted to a German engineer in 1936 [1]. Since its first patent, ANC
has continually received considerable interest, with numerous related studies conducted.
To apply ANC under changing environmental conditions and noise characteristics, a
feedforward method has been used to process signals quickly, with adaptive filters used
to provide effective responses to changes. A widely used adaptive algorithm for ANC
systems is the filtered least-mean-square method [2], derived by Windrow [3]. As shown in
Figure 1, a microphone measures a reference noise x(n), and a control speaker generates an
interfering wave signal y(n) through an adaptive filter W(z). The noise and control signals
are summed over each primary path P(z) and secondary path S(z). The reference noise
passes through the primary path and becomes the output noise d(n). The noise residue is
measured using an error microphone. The filtered least-mean-square (FxLMS) algorithm
performs an adaptation process on the filter W(z), generating y(n) to minimize the noise
residue e(n). The LMS algorithm is given as follows:
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w(n + 1) = w(n) + µe(n)[xs(n) ∗ x(n)], (1)

where µ is the adaptation step size parameter, w(n) is the adaptive weight vector, x(n)
is the reference noise signal vector, and xs(n) is the filtered signal from the estimated
secondary path filter Ŝ(z) [2].
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Figure 1. Block diagram of conventional filtered least-mean-square (FxLMS) algorithm based on
feedforward active noise cancellation (ANC) systems.

The FxLMS algorithm has been widely used owing to its advantages of low computa-
tional complexity, robust performance, and simplicity. The algorithm must converge within
a short time to provide efficient noise reduction performance. Many FxLMS algorithms
have been proposed with the aim of improving the available convergence conditions and
speed [4–6]. Based on theoretical modeling, the necessary and sufficient condition for
the convergence of the FxLMS has been derived. In practice, impulsive and multi-tonal
noises (which present many difficulties when performing ANC with FxLMS) occur to-
gether with the stationary components. A novel secondary path modeling system targeting
multiple tonal disturbances has been presented to solve these problems [7]. The ANC
performance for impulsive noises has also been enhanced to improve the robustness of
FxLMS algorithms [8].

To improve the convergence of ANC, researchers have proposed applying artificial
intelligence using neural networks, which have been applied to non-linear ANC to improve
their performance [9–11]. Recently, deep neural networks have become a popular field
of study and their application range is becoming increasingly diverse. The increased
interest in neural networks has led to enhancements in their computational speed, ease of
use, and accuracy. Various neural networks have recently been applied in ANC. Zhang
et al. used recurrent fuzzy neural networks to propose adaptive non-linear noise-control
approaches [12]. Low-frequency noise generated from multi-source railway vehicles was
cancelled through a convolution fuzzy neural network [13]. Through the use of a 10-layer
extended convolutional neural network (CNN) on a field-programmable gate array, a real-
time streaming feedforward ANC system for in-ear headphones was shown in a practical
application scenario [14]. A hybrid selective fixed-filter active noise control (SFANC) and
filtered-X normalized least-mean-square (FxNLMS) approach was proposed to overcome
the adaptive algorithm’s slow convergence and provide a better noise reduction level
using deep learning [15]. Another study presented a neural-based FxLMS with an error
backpropagation algorithm to cancel non-linear broadband noise in an ANC system [16,17].
A multi-layer perceptron was employed in the ANC when the primary path exhibited
non-linear behavior [18]. An error backpropagation rule with an adaptive learning rate was
applied to update the weight of the neural network. In addition, the functional link artificial
neural network filter and its applied algorithm are well-known as effective alternatives to
non-linear filters in non-linear ANC systems [19–21]. These non-linear filters using neural
network algorithms exhibit complicated architectures and heavy computational costs in
implementation, even though the neural network comprises a single layer.

In this study, a multi-layer neural network algorithm based on an alternating FxLMS
algorithm is combined with numerical simulations to improve convergence and decrease
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noise-canceling errors while avoiding architectural complexity and high computational
burdens. The multi-layer neural networks comprise long short-term memory (LSTM) units.
In general, the LSTM is specially designed to overcome the limitations of recurrent neural
networks (RNNs) when managing long-sequence data. In various synthetic tasks, LSTM
can bridge the long time lags between the relevant input and target events [22]. Recently,
as hardware performance has increased and the use of software has become simpler, an
ANC algorithm through a multi-layer LSTM has become available for processing various
types of signals more quickly and accurately over long sequence data. In this study, a
method was derived for replacing the deep neural networks from the FxLMS and training
procedure of the LSTM. Diesel engine noise was measured under various conditions. The
reference noises selected were single harmonics, superposed harmonics, and impulsive
signals from the diesel engine. The recorded sound samples were used to compare the noise
canceling abilities of the FxLMS and LSTM algorithms. A Fourier analysis was performed
on the noise residues to compare and analyze the characteristics and performances of the
algorithms. The rest of this paper describes the adaptive filter for the LSTM behavior and
the advantages and future tasks of the proposed method.

2. Methods
2.1. Structures of Recurrent Neural Networks for Sequence Data Predictions

The RNN is used to manage the sequence data. As shown in Figure 2, the RNN layer
accepts time-varying input data xt and outputs a value yt. A loop allows information to
be passed from one step of the network to another. The RNN layer Ht derives the output
value yt from the input value xt at time t and from the weights of Ht−1. Simultaneously,
the weight information of Ht is conveyed to Ht+1. This chain-like characteristic of the RNN
shows good performance when processing sequences and lists.
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Figure 2. Basic structure of a recurrent neural network (RNN). Chain-like characteristics of RNNs
show the advantages of analyzing sequence data.

When processing long-term sequence data using the RNN, errors gradually accumu-
late from the previous tasks. The LSTM network was developed to avoid the vanishing
gradient problem. LSTM networks, as introduced by Hochreiter and Schmidhuber [23],
are capable of learning long-term dependencies. LSTM is one of the RNN techniques, and
the basic structure is the same as shown in Figure 2. A single LSTM block consists of a
cell, input gate, output gate, and forget gate [24]. The LSTM block remembers the values
over arbitrary time intervals and the three gates modulate the flow of information into and
out of the block. The input gate determines whether data will be stored in the memory
cell. The forget gate determines whether the current content of the memory cell must be
forgotten. The output gate determines whether the current memory content exhibits the
results. Each gate operates according to the following equations.



Appl. Sci. 2022, 12, 10248 4 of 12

it = σ(Wixt + Riyt−1 + bi)
ft = σ(W f xt + R f yt−1 + b f )

ot = σ(Woxt + Royt−1 + bo)

(2)

In the above equation, σ is the logic sigmoid used as the gate activation function; xt is
the input vector; y is the output vector at time t. W, R, and b are the input, recurrent, and
bias weights, respectively. i, f, and o denote the input, forget, and output gate-state vectors,
respectively. The cell state ct and output of the memory cell yt are computed as follows:

ct = ft ∗ ct−1 + it ∗ tanh(Wcxt + Rcyt−1 + bc)
yt = tanh(ct) ∗ ot (3)

where ∗ is the scalar product, and W, R, and b are modeling parameters learned during
the training of the LSTM layers. The LSTM is capable of processing long-term sequence
data owing to the forget gate and output activation function (considered critical compo-
nents). For fast and stable convergence results, the LSTM neural networks can be trained
using stochastic gradient descent and an adaptive learning rate [25]. The characteristics
of the LSTM are suitable for predicting input sounds and generating noise-cancelation
responses. In this study, deep LSTM neural networks were utilized for ANC to enhance the
convergence speed and noise-cancelation capabilities.

2.2. Deep Neural Networks Controller with Long Short-Term Memory (LSTM) for Active Noise
Cancellation (ANC) System

A block diagram of the ANC system using the deep neural network filter with the
LSTM is shown in Figure 3. Compared to Figure 1, the blocks corresponding to the FxLMS
algorithm are replaced with the LSTM controller block. The LSTM controller accepts the
noise x(n) as input from the reference microphone. The controller generates an output y(n)
that passes through the secondary path S(z) from the input data. An appropriate training
set is required to conduct ANC using LSTM. In this study, training sets are created from the
ANC results using the fully converged FxLMS algorithm. The output data of the training
set consist of one-dimensional time-series data from the y(n) value output when the fully
converged FxLMS receives the input x(n). The weights of the LSTM controller are updated
using the training sets to minimize the noise residue e(n) when the primary and secondary
paths are identical. The LSTM layers used in the ANC in this study consist of two layers
containing 128 memory cells each. The fully connected regression layer generates a single
value y(n) from the weights of the multiple LSTM layers.
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Figure 3. Block diagram of deep neural network filters with long short-term memory (LSTM) for
the ANC system. Compared with the conventional FxLMS system, the blocks corresponding to the
FxLMS algorithm have been replaced with the LSTM controller block.

3. Simulation Results and Discussion
3.1. Acquisition of Diesel Engine Noise

Engine noise is a major cause of discomfort to vehicle occupants and nearby residents.
Vehicles requiring high output power generally use diesel engines, which generate louder
noise than gasoline engines. Thus, ANC simulations were conducted to compare the ANC
performances of the LSTM controller and FxLMS algorithm to actively reduce diesel engine
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sounds. As shown in Figure 4a, the reference noise generated from a 1600-cc single-cylinder
diesel engine was recorded by NoiseBook (HDC 45 Noise Gard) when the engine was
operated at various RPMs. The microphone for measuring the reference noise was located
2 m back at a height of 1.5 m from the diesel engine, as shown in Figure 4b. The noise was
sampled at a frequency of 44,100 Hz. To evaluate the performance according to the adaptive
filter algorithm, it was necessary to verify the performance in a wide frequency band and
under abrupt modulation noises. In addition, several noisy sounds were measured when
the diesel engines were operating at different rotational frequencies and torques to verify
the ANC capability of the LSTM controller for broadband noise. The impulsive sound
when the diesel engine began operation was also measured. Each recorded sound was
used for the ANC simulation.
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Figure 4. Experimental setup for the reference noise acquisition: (a) schematic diagram of the
engine and control room and (b) 1600-cc single-cylinder diesel engine and measurement location of
microphone. The diesel engine operated at various rotational frequencies as the noise signal was
measured. The impulsive signal generated when the diesel engine was started was also measured.

3.2. ANC Simulation Results and Discussion

The measured diesel engine sounds at various rotation frequencies were used to
train multiple LSTM layers. The noises for the ANC tests comprised completely different
fundamental frequencies and situations according to the training set for the diesel engine
noises. Each training set consisted of 10 different rotational frequencies of diesel engine
noises with a sample size of 200. The multiple LSTM layers were trained for 30 epochs
per training set. Parametric studies were conducted to determine the adaptation step size
parameter and filter size of the FxLMS algorithm that minimized the noise residue. The
filter size was 20 and the adaptation step size was 0.01. The primary and secondary paths
were selected as arbitrary filters with lengths of 7. The trained LSTM algorithm was used
to actively control the diesel engine noise. The results were compared with those from
active control using the conventional FxLMS algorithm. A short-time Fourier transform
(STFT) analysis was performed on the noise residue to investigate the characteristics and
performance of the algorithm.

The first simulation was used to verify the performance of the harmonics of 60 Hz
noise cancellation using the conventional FxLMS algorithm and proposed method with
the LSTM neural networks. As shown in Figure 5a, the noise sounds are shown in grey,
and the noise residues from the ANC using FxLMS and LSTM are shown in red and blue,
respectively. Considering the results of both ANC algorithms for single harmonic sounds,
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the conventional FxLMS approach and proposed LSTM controller both eliminate diesel
engine noise well during the first 0.6 s. The FxLMS algorithm reaches a noise control level
of less than 10% approximately 0.1 s after noise control begins, owing to the convergence.
Meanwhile, the LSTM algorithm performs ANC immediately without any convergence
time, as the weights of the LSTM units are already determined from the training data.
LSTM network predicts the next output data as soon as a fixed number of input data
is received in many-to-one mode, so its latency is very short compared to FxLMS. The
sampling frequency of the sound samples used in the test is 22,050 Hz, and the output data
are predicted with 10 input data, so the latency is 1/4410 s. Because of the characteristics,
the LSTM algorithm can directly perform ANC without convergence time. Figure 5b
shows the results from the STFT analysis of the noisy data and ANC results. The diesel
engine operates at a fundamental frequency of 60 Hz but simultaneously generates various
high-frequency components. While performing active control with the FxLMS algorithm,
the noise at the fundamental frequency is significantly reduced, but high-frequency noise
components remain. When using the LSTM algorithm for ANC, the noise is canceled over
the entire frequency range (extremely small intensity of low-frequency components). To
compare the noise levels during ANC, the equivalent continuous sound level for each noise
was calculated. The equivalent continuous sound level is defined as a sound pressure
level that has a total energy equal to the actual fluctuating noise over a given period of
time. Thus, the equivalent continuous sound level is in fact the RMS sound level with the
measurement duration used as the averaging time. The equivalent continuous sound levels
of the original noise, FxLMS, and LSTM approaches are 80.6, 55.1, and 47.7 dB, respectively,
thus confirming that the noise reduction of the proposed LSTM algorithm is better than
that of the FxLMS algorithm owing to the convergence rate. Figure 5c shows the power
spectral density for 0.5~0.6 s, the period in which all ANC algorithms converge. In the
case of FxLMS, the low frequency error signal was greatly reduced, but it did not show
great performance in the high frequency band. On the other hand, in the case of LSTM,
convergence also occurred very quickly and exhibited excellent noise removal performance
in all frequency bands. One of the characteristics of LSTM is to predict one output datum
that will appear next through several time series input data. Thus, when trained on sounds
of the same frequency, the LSTM network can reduce noise in all bands, whether low or
high frequencies.

As shown in Figure 6, the simulation used a superposed harmonic noise signal with
main frequencies of 33, 35, 50, and 60 Hz measured from a diesel engine. The noise sounds
in this simulation were generated by the superposition of each harmonic response. As
shown in Figure 6a, the noise control via the FxLMS algorithm achieves a noise level of less
than 10% approximately 0.2 s after starting. Compared with the previous active control for
the single-fundamental-frequency noise, the convergence of the FxLMS algorithm is de-
layed owing to the complexity of the reference sounds. The proposed method accomplishes
ANC completely, despite the increase in the number of fundamental frequencies of the
reference sounds. As shown in Figure 6b, with various fundamental frequencies applied,
the noise level in the low-frequency band increases. As a result of the ANC using the
FxLMS algorithm, the noise in the low-frequency bands is removed, but the noise compo-
nents in the high-frequency bands remain. In the case of the LSTM controller, the residual
noise increases slightly as the low-frequency noise level increases. All other components in
the high-frequency bands are removed. The equivalent continuous sound levels for the
original noise, FxLMS, and LSTM are 78.3, 54.9, and 50.9 dB, respectively, confirming that
broadband noise is remarkably eliminated by the proposed method, even though the LSTM
neural networks were trained only on harmonic signals comprising a single fundamental
frequency. As can be seen in Figure 6c, since the superposed harmonic noise signal consists
of a high level of low-frequency noise, the low-frequency noise cancellation performance
in the period where both FXLMS and LSTM converge is almost similar. Nevertheless,
the LSTM performed excellent cancellation in the high frequency band, and the sound
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equivalent level was further reduced by about 1.1 dB compared to the FxLMS algorithm in
the period 0.5~0.6 s.
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Figure 5. ANC simulation result using FxLMS and LSTM for diesel engine sounds with a main
frequency of 60 Hz. (a) Time data of the diesel engine noise and ANC results; (b) short-time Fourier
transform analysis of original noise and noise residue; (c) power spectral density of the diesel engine
noise and ANC result in the period when the error signal is minimized.

The ANC simulation results for impulsive noises measured during the start-up of the
diesel engine are shown in Figure 7. The reference sounds consisted of white noise at 0–1.5 s,
and the impulsive sounds owing to the engine started at 1.5–3 s. Steady-state harmonic
sounds also contributed to the noise. As shown in Figure 7a, the FxLMS algorithm updates
the adaptive filter to converge its weights during 0–1.5 s. When impulsive sounds are
generated after 1.5 s, the noise residue of the FxLMS algorithm instantaneously increases
again. The adaptation process of the FxLMS is repeated to adjust the weights. At 3 s, the
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noise residue of the FxLMS algorithm decreases when the impulsive signal disappears
and the harmonic noise is sustained. Through this simulation, it can be confirmed that the
FxLMS algorithm shows limited performance for the control of transient sounds. Among
the noises occurring in actual situations, impact sounds are the most prominent, as they
are difficult to remove through masking or sound absorbers. In contrast, the noise residue
of the proposed method (represented by the blue line) has small fluctuations along the
amplitude of the reference noise at 1.6, 2.2, and 2.6 s. The LSTM neural networks predict
the frequency-modulated signal better than the amplitude modulation. As shown in
Figure 7b, the noise level increases overall in all the frequency bands after the engine
starts. The FxLMS algorithm does not show good performance for impulsive sound control
during engine starts. Approximately 1.5 s after the engine starts, the noise level decreases.
However, when ANC is performed using the LSTMs, the noise in the high-frequency band
increases slightly, according to the amplitude change of the noise. This increase does not
affect performance. The original noise, FxLMS, and LSTM equivalent continuous noise
levels for a total of 6 s from white noise to the engine start and steady state are 69.1, 48.2,
and 39.8 dB, respectively. The LSTM and FxLMS algorithms show the highest performance
compared to the previous simulation results for harmonic signals. Figure 7c shows the
power spectral density of noise and ANC results for 3 to 6 s after the ANC algorithm
converges. After starting the engine and entering the steady-state, the performance of the
two algorithms was similar in the low frequency band as in the previous simulation results,
but the performance of the LSTM was better in the high frequency band. The developed
algorithm is robust to transient sounds, thus validating that the ANC performance for the
impulsive noise from the LSTM controller is also better than that from the conventional
FxLMS algorithm.

As a result of the ANC simulations for the noise generated from the diesel engine,
the controller of the proposed LSTM neural network shows a performance improvement
in terms of convergence and accuracy relative to the conventional FxLMS approach. In
practice, noise signals are rarely composed of single-frequency components. Therefore,
noise control for impulsive and frequency-modulated noises is essential. The proposed
ANC method using the LSTM controller is expected to provide rapid and precise ANC
performance for the presented engine sound excitations. Before proceeding with ANC, an
appropriate process for training the LSTM layers must be conducted. Recently, training
neural networks has become easier and faster as hardware and software performance has
increased. The elapsed time for calculating time series output data of length 600 through
FxLMS and LSTM in the ANC process using a 3.2 GHz core computer with 16 GB RAM was
0.3486 s and 0.3857 s, respectively. The software used for the analysis was MATLAB R2021a.
Through these results, it can be indirectly confirmed that the computational cost does not
increase significantly compared to FxLMS, even when deep neural networks composed of
LSTM is used.

Although this study only considers diesel engine sounds, LSTM neural networks
can contribute to noise reduction in other complex situations, including road and factory
environments. Through the proposed algorithm, it was confirmed that the LSTM is capable
of noise cancellation for diesel engine noise different from the training data (different
fundamental frequency, superposed harmonic sound, engine start noise) in the linear
system. Recently, there are various studies on advanced ANC algorithms using deep
neural networks [14,15,26,27]. Comparing the performance of advanced ANC algorithms
in practical applications is a future task.
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Figure 6. ANC simulation result using FxLMS and LSTM for superposed harmonic sounds with
main frequencies of 33, 35, 50, and 60 Hz measured from diesel engines. (a) Time data of diesel engine
noise and ANC results; (b) short-time Fourier transform analysis of original noise and noise residue;
(c) power spectral density of the diesel engine noise and ANC result in the period when the error
signal is minimized.
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Figure 7. ANC simulation result using FxLMS and LSTM for the impulsive noise signal mea-
sured from the start-up of the diesel engine. (a) Time data of diesel engine noise and ANC results;
(b) short-time Fourier transform analysis of original noise and noise residue; (c) power spectral
density of the diesel engine noise and ANC result in the period when the error signal is minimized.

4. Conclusions

With the advancement of technology, the level of quiet demanded by people in
places such as living environments and vehicles has increased. The performance re-
quirements for sound-absorbing materials in products are increasing, and the number
of electronic/mechanical systems with ANC technology is rapidly increasing. In partic-
ular, artificial intelligence is a promising technology for maximizing noise-cancellation
performance.

In this study, LSTM networks were proposed for the ANC algorithm and applied
to diesel engine sounds. The LSTM is a recurrent neural network for managing long
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sequence data. The ANC controller based on the LSTM layers was suitable for predicting
the reference noise and capable of generating the control sounds to minimize the noise
residue. The structure of the LSTM neural networks was presented, and the approach
to training the LSTM controller for ANC was described. Simulations were conducted to
validate the performance of the LSTM controller. Noise samples were acquired from a
single-cylinder diesel engine, and the reference noises selected included single harmonics,
superposed harmonics, and impulse sounds generated from the diesel engine. For each
reference sound, ANC was performed by applying the conventional FxLMS and proposed
algorithms. In ANC simulation results, the controller comprising the proposed LSTM
neural networks showed performance improvements in terms of convergence and accuracy
relative to the conventional FxLMS. In particular, the ANC using the LSTMs for the steady-
state harmonic noise converged faster than the FxLMS system. Based on this excellent
convergence rate, the overall noise level was significantly reduced. Through the ANC
for the superposed harmonics, the proposed algorithm was verified as having excellent
performance, even for broadband noise. In particular, the proposed algorithm can control
transient sounds. The conventional FxLMS has a disadvantage in that the filter must be
re-converged as the signal is modulated. The proposed algorithm showed fast convergence
even for the modulated sounds because the training had already been completed. The
LSTM network has the advantage of high-frequency noise and transient noise control
because it immediately predicted an output when only a fixed number of data was entered.
Therefore, the proposed method conducted noise cancellation with robustness in various
severely noisy situations, such as in the context of broadband and impulse sounds. Based
on these results, LSTM neural networks are considered an appropriate approach to ANC in
practical situations.
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