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Abstract: Providing real-time interaction in an immersive environment has drawn considerable
attention in the virtual training fields. Physics-based simulations are suitable for such environments;
however, they require the definition and adjustment of coefficients that determine material properties,
making the methods more complex and time-consuming. In this paper, we introduce a novel approach
to simulating the soft-body deformation of an observed object. Using an off-the-shelf RGB-D sensor,
the proposed approach tracks an object’s movement and simulates its deformation in an iterative
manner. Polygonal models with different resolutions are used to improve the simulation speed and
visual quality. During the simulation process, a low-resolution model is used for surface deformation
using neighboring feature points detected from the sensor, and a volumetric model is added for
internal force estimation. To visualize the observed model in detail, the deformed and low-resolution
model is mapped to a high-resolution model using mean value coordinate interpolation. To handle
topological deformations, such as cutting or tearing, a part intersected by a cutting tool is recognized
by the sensor and responds to external forces. As shown in the experimental results, our approach
generates convincing deformations of observed objects in real time.

Keywords: physics-based simulation; soft-body deformation; RGB-D data; topological editing;
object tracking

1. Introduction

In recent years, virtual reality (VR) and augmented reality (AR) have been widely
used in various industries. Providing interactions between an observed object and a virtual
model in an immersive environment in real time has drawn considerable attention in the
virtual training fields [1]. For example, the use of virtual training simulations enables users
to practice operations in an efficient and safe way [2,3]. However, most current systems
simulate only flat and solid objects. A training environment with more generalized objects
requires visual realism and a fast response of soft-body deformation.

Previous studies simulating virtual deformations of a real object adopted a method
of inverse kinematics (IK) to control high degrees of freedom in the object’s movement. A
physics-based method requires the definition and adjustment of coefficients that determine
material properties, making it more complex and time-consuming. Nevertheless, physics-
based simulations are more suitable for use in an interactive environment in which an
observed object responds to the external forces applied by a user and deforms accordingly.
Recent advances in RGB-D sensors have made it easier to track an observed object in real
time. However, only a few studies have simulated the soft-body deformation of a real
object by using a physical approach with real-time tracking.

In this paper, we introduce a novel approach to simulating the soft-body deformation
of an observed object. Using a single RGB-D sensor, the proposed approach tracks an
object’s movement and simulates its deformation simultaneously. Polygonal models with
different resolutions are used to improve the simulation speed and visual quality; a low-
resolution and volumetric model is used for the physics-based deformation of an observed
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object and a high-resolution model is used for the visual output. To handle topological
deformations, such as cutting or tearing, a part intersected by a cutting tool is recognized by
the sensor and responds to external forces. As shown in Figure 1, our approach generates a
convincing deformation of soft-body objects in real time.

Figure 1. Soft-body deformation of observed objects.

Our approach makes two major contributions to the literature. First, we introduce a
physics-based approach for generating soft-body deformation using RGB-D data, which
have not been actively studied in the related field. To the best of our knowledge, there has
been no real-time (that is, over 30 fps) approach that performs the soft-body deformation of
a real object using a single RGB-D sensor. Second, we combined several existing methods
to tackle the problems of physics-based simulations. During the physical force estimation,
we reformulated the problem of the internal force calculation as a linear system, which is
easier to solve and implement than in previous approaches. Simulating a soft-body object
with a 3D model is a complex and time-consuming process because of the force estimation
required for a large number of vertices. To achieve real-time performance, we propose a
simulation process that utilizes different polygonal models: a low-resolution model with a
corresponding volumetric model for soft-body simulation and a high-resolution model for
visual output. Overall, our approach can be utilized in various VR and AR applications
that track soft-body objects in a cost-effective way.

We have organized the paper as follows: In Section 2, we review previous research on
object tracking and physics-based simulation of non-rigid objects. Section 3 summarizes
our approach. Sections 4 and 5 describe the tracking and simulation processes, respectively.
We present the experimental results in Section 6 and draw conclusions about our approach
with its limitations in Section 7.

2. Related Works
2.1. Non-Rigid-Object Tracking

The tracking of a non-rigid object from a sequence of RGB images has been widely
used in 3D model reconstruction. Provided with a template model in the rest pose, some
researchers have proposed a dense approach that analyzes pixel appearance and optimizes
the similarity between the target and template models [4–6]. Others have introduced a
feature-based approach that uses shape reconstruction [7–10]. To match feature points
detected between input images, a graph-based approach has been widely adopted, and
it defines the geometric relationships between feature points [11–14]. By contrast, our
approach introduces a physics-based simulation of soft-body deformation.
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The availability of off-the-shelf RGB-D sensors [15,16] enables users to efficiently
capture images of real objects using RGB and depth data. These devices have been actively
researched for the detection and tracking of objects for various applications. Ren et al. used
the Kinect sensor to recognize hand gestures based on novel shape distance metrics [17].
Patil and Bailke applied the RealSense sensor in order to recognize facial expressions based
on a multi-layered neural network for classification [18]. For a performance animation,
Lee and Kwon presented a physics-based interactive system that used a sequence of user
poses as input data and simulated the user’s actions via control parameters [19]. Siena
et al. reviewed the extensive use of RGB-D sensors in the medical field, particularly for
measuring health outcomes [20]. While these approaches focus on tracking the motion of
the human body, our approach was designed to track the deformation of soft-body objects
in general.

2.2. Physics-Based Simulation of Non-Rigid Objects

Since the pioneering work of Terzopoulos et al., who introduced an elastically de-
formable model based on physical dynamics [21], there have been several studies on the
simulation of different non-rigid objects, such as rubber, cloth, paper, and objects with
flexible characters. The finite element method (FEM) is a popular method for estimating
the physical dynamics of a soft-body object with a set of volumetric meshes by solving
partial differential equations [22,23].

Some researchers have attempted to improve the robustness and quality of FEM
simulations; Irving et al. demonstrated the deformation of plastic solids using numerous
inverted tetrahedral meshes [24]. Subsequently, they proposed a numerical method for
modeling incompressible and elastic materials [25]. Bargteil et al. improved the perfor-
mance of the FEM by updating the linear basis functions and introducing a high-quality
finite-element mesh for plastic deformation [26]. Kim and Pollard proposed a fast simula-
tion system for deformable characters by adopting non-linear finite elements and a linear
time algorithm for skeleton-based dynamics that can be computed in parallel on a GPU in
real time [27].

To improve the performance of the FEM, a linear strain model or precomputation of a
stiff matrix is used for fast and stable deformation. Müller et al. handled large deformations
by estimating a tensor field that describes local rotations at every time step [28]. Nesme et
al. implemented a linear FEM to deform elastic solids by using the rotational invariance
and robustness of tetrahedral meshes [29]. Furthermore, linear models with a precomputed
matrix or reduced dimensionality have been applied to interactive applications [30–32].
Unlike these approaches, the proposed approach simulated soft-body deformation from
the observed data captured from an external sensor.

2.3. Tracking and Simulation of Non-Rigid Objects

Similarly to our approach, few studies have tracked soft-body objects and simulated
their deformations in 3D space. Haouchine et al. introduced a novel framework for
building a 3D virtual model and simulating the observed deformation using stereographic
images [33]. However, this was not in real time, and they used synthetic dataset, while
our approach observes and simulates real objects in real time. Leizea et al. tracked object
deformation using a single RGB-D sensor in real time [34]. In their approach, a mass–spring
system was applied to deform the observed objects, and this was less accurate than an
FEM-based approach such as ours. Using an FEM-based framework, Petit et al. tracked
multiple soft-body objects without textures [35]. By contrast, our approach tracks a set
of features on textured objects, and this is more general for real objects. Sengupta et al.
proposed a physics-based approach for simulating deformable objects using an RGB-D
sensor [36]. However, it operated at an interactive speed (that is, under 30 fps) and did not
support topological deformation, which is useful in various applications [2].
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3. Overview

Figure 2 shows a brief overview of the proposed approach. The proposed simulation
process is summarized as follows:

• Initialization: A set of polygonal 3D models are prepared for the deformation of an
observed object. These include a low-resolution model with a volumetric model for
soft-body simulation and a high-resolution model for the visual output. A sequence
of RGB-D images is continuously provided by a sensor.

• Feature-point tracking: In the initial frame, a set of feature points are detected from
RGB images using a local feature detector. For every frame, these points are tracked
as feature vectors between two adjacent frames.

• Model registration: To set the correspondences between the feature points and surface
vertices in the model, a low-resolution model is coordinately aligned using an iterative
closest point method. For a smooth deformation, each feature point controls the
surface vertices using weight values that are assigned to each vertex.

• Soft-body simulation: To determine the deformation of a soft-body model, the internal
force is estimated by applying a physical force to the volumetric model. A projective
dynamics method is adopted to accelerate the force calculation for each vertex.

• Resolution enhancement: To visualize the observed object in high detail, the deformed
model in low resolution is mapped into a high-resolution model. During the mapping
process, a weight-based interpolation method is used to control the surface vertices in
the high-resolution model.

• Topological editing: To handle topological deformations, such as cutting or tearing, a
cutting tool’s trajectory is tracked by a sensor. The intersected part is reshaped to a trian-
gulated model using Delaunay triangulation, representing a new surface of the model.

Figure 2. Overview of the proposed approach.
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4. Object Tracking

Our approach simulates object deformation by tracking a set of feature points from a
sequence of RGB images and mapping their movements to a low-resolution (3D polygonal)
model. In the initial frame, the model is registered to a space of feature points, and the
feature points are mapped to the surface of the model. For every updated frame, a fast
feature detector is used to track the positional changes of the feature points.

4.1. Initialization

The default shape of the model is created from an object in the rest state without
any applied force. For each object, three types of polygonal models are prepared for
different purposes: a low-resolution model and a volumetric model for the simulation
and a high-resolution model for visualization. As shown in Figure 3, the low-resolution
model is a simplified version of the high-resolution model, and both models are composed
of a set of triangular polygons. The volumetric model consists of a set of tetrahedral
polyhedrons, which are placed inside the low-resolution model and used for internal force
estimation. The low-resolution model is mapped to a high-resolution model to represent
the deformation in high detail.

Figure 3. Different object models used for simulation (low-resolution models) and visualization
(high-resolution model).

4.2. Feature-Point Tracking

A set of feature points are detected and tracked from RGB images that are streamed
from a sensor using a local feature detector. The oriented FAST and rotated BRIEF (ORB)
method is used to recognize corner points from the given images by finding pixels that are
darker than their surrounding pixels. The positional changes of these points are tracked
between two consecutive frames by comparing the main pixels with the surroundings [37].
We refer to the differences between two matching feature points in different frames as feature
vectors. Compared to other feature detection methods, ORB shows better performance and
accuracy in the point-matching process and is suitable for use in real time.

For each frame, the positional changes of feature points are tracked as 3D points. A
sequence of RGB images with the corresponding depth data (in the form of depth images)
is provided by the RGB-D sensor. Thus, the coordinates of the feature points in the low-
resolution model can be easily assigned from the depth data. Figure 4 shows feature points
that are tracked as feature vectors during the tracking process.
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Figure 4. Feature points detected at the initial (red points) and current (blue points) frames are
tracked as feature vectors (blue lines) during the tracking process.

4.3. Model Registration
4.3.1. Coordinate Alignment

The positional changes of feature points control the degree of deformation. As defor-
mation is represented by the surface of the low-resolution model, it is necessary to set the
correspondences between the feature points and vertices. Such a coordinate alignment
problem can be solved by finding a rigid transformation T, which transforms one coordi-
nate system into another. If the coordinates of feature points are selected as a reference
system, T can be estimated using the iterative closest point (ICP) method [38,39], which
minimizes the error function, E(T) = E(TR, TL), where TR and TL are the rotation and
translation of the vertex data with respect to the reference system, respectively.

Let pi be the ith feature point, where i ∈ [1, . . . , Np], and let Np be the total number of
feature points detected from the image sequence. E(·) is evaluated as follows:

E(TR, TL) ∝
1

Np

Np

∑
i=1
||pi − RN(TRvi + TL)||2, (1)

where vi denotes the corresponding vertex in the low-resolution model. TL = p̄− TRv̄,
where p̄ = 1

Np
∑

Np
i=1 pi and v̄ = 1

Np
∑

Np
i=1 vi. The correlation matrix C between pi and vi is

evaluated as

C =
Np

∑
i=1

(pi − p̄i)(vi − v̄i)
> = UCV>. (2)

The optimal solution for E(·) is TR = UV> with C = UCV> derived from single-
value decomposition (SVD). Furthermore, RN is a rotation between pi and vi, and it is
manually set and used to improve the convergence speed of the ICP. We empirically set
Np to 1000, which is adjustable. This coordinate alignment is performed only once in the
initial frame.

4.3.2. Correspondence Mapping

The object model is deformed by controlling the vertices on the surface of the low-
resolution model. For each vertex, a set of neighboring feature points is assigned, and
distance-based weights are estimated for smooth vertex control. A K-nearest neighbor
approach with inverse distance weighting (KNN-IDW) is applied to every vertex. For vi,
the maximum of the Nk nearest feature points is selected within the distance threshold δk.
The weight of the jth nearest feature point for vi is estimated as follows:

wi,j =
1

D(vi, pj)
− 1

D(vi, pk)
, (3)
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where 1 ≤ k ≤ Nk, pj denotes the jth feature point in {p1, p2, . . . , pk}, which are sorted in
the order of vi, and D(·) measures the Euclidean distance between two points. It is noted
that wi,j is normalized such that ∑k

j=1 wi,j = 1. This weight estimation is performed only
once in the initial frame.

For updated frames, the position of vi is estimated as follows:

vi,t = vi,t−1 +
k

∑
j=1

wi,j pj,t, (4)

where pj,t is the jth feature point in the current frame t. In our approach, we set δk = 0.01
and Nk ≤ 10, which are empirical and adjustable by a user. Figure 5 shows the positional
changes of the vertices in an updated frame, where the feature points are mapped to the
surface of the low-resolution model.

Figure 5. Feature points (blue points) on the low-resolution models (blue lines) that are mapped from
(a) an initial frame to (b) an updated frame.

As shown in Figure 6, the surface of the deformed model (that is, a long cuboid-
shaped sponge) appears rough and distorted owing to the feature points that are irregularly
distributed. For example, the smoothness of the surface is influenced by the density of
the neighboring feature points around each vertex. Surface artifacts, such as twisted or
missing faces, can be observed if the feature points are occluded or skipped during the
feature-tracking process. Therefore, a volumetric model is added to the low-resolution
model, which maintains its original shape from an external force, as described in the
subsequent section.

Figure 6. Surface deformation of a low-resolution model (a) using updated feature points and
(b) showing distortion (red circle).

5. Soft-Body Simulation

For an accurate deformation, we apply a volumetric model to the low-resolution model.
As shown in Figure 3, the volumetric model consists of a set of tetrahedral polyhedrons
and introduces an internal force to preserve its original shape. To estimate the physical
dynamics of a soft-body model filled with numerous tetrahedral polyhedrons, we adopt
the FEM by solving partial differential equations.
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5.1. Internal Force Estimation

For each vertex of the tetrahedral polyhedrons, the FEM determines the stresses and
strains based on the changes in the positions and velocities of the vertices. Let xl,t and vl,t be
the position of the lth vertex and its velocity at frame t, respectively, where l ∈ [1, . . . , Nv],
Nv denotes the total number of vertices in the volumetric model, and xl,t, vl,t ∈ R3Nv . The
updated position and velocity, xl,t+1 and vl,t+1, respectively, of the lth vertex at the next
frame are defined as follows:

xl,t+1 = xl,t + hvl,t+1, (5)

vl,t+1 = vl,t + hal,t+1, (6)

where h denotes the length of the time step and al,t+1 denotes the acceleration of the vertex
at frame t + 1. Using Newton’s laws of motion, Equation (6) can be rearranged as follows:

vl,t+1 = vl,t + hM−1(Fin(xl,t+1) + Fex), (7)

where M represents a sparse matrix for the mass of each tetrahedral polyhedron, Fin(·)
represents an internal force with the given position, and Fex denotes an external force. This
equation can be reformulated as an energy minimization problem; however, it is expensive
to solve a different linear system for each iteration [40]. In our approach, the mass of
the entire object model is set to 1, and the mass of each tetrahedral polyhedron is set as
the proportion of the volume of each tetrahedral polyhedron to the volume of the entire
object model.

Given the updated feature points in every frame, vl,t can be substituted with a constant
value. Using the backward Euler method, Fin(·) on each vertex is defined as follows:

Fin(xl,t+1) ' Fin(xl,t) +
∂Fin

∂x

∣∣∣∣
xl,t

(xl,t+1 − xl,t), (8)

which is nonlinear and difficult to estimate. Therefore, using the Taylor expansion, it is
reformulated as follows:[

M− h2 ∂Fin

∂x

]
vl,t+1 = Mvl,t + h(Fin(xl,t) + Fex), (9)

which transforms our soft-body simulation into a problem of internal force estimation.

5.2. Projective Dynamics for Physical Force

The Newton’s-method-based equations are time-consuming for estimating the internal
force for each vertex on the volumetric model because of nonlinearity. In our approach, a
projective dynamics (PD) method is adopted to update the positional changes of a vertex
in real time [41]. It is an implicit time integration method for physics-based simulations
and shows a high performance in computation time by replacing nonlinear terms with
linear ones.

For the position of the ith vertex xi, the internal force Fin is replaced with the potential
energy S as follows:

Fin(xi) = −∇S(xi), (10)

where S(x) denotes the sum of the scalar functions for the elastic strain energy of the
material. It is defined by the difference between x and its projection on the constraint
manifold y as follows:

S(xi) =
k
2
‖Aixi − yi‖2

F, (11)

where ‖ · ‖F denotes the Frobenius norm, and A and k denote a constant matrix and the
non-negative weight values used to define the constraints, respectively. For more details,
we refer the reader to a previous study that applied FEM simulations with PD [42].
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The PD method solves the optimization problem to minimize the internal force while
satisfying the following constraints:

min
xi+1

(
1

2h2 ‖M
1
2 (xi+1 − xi − hvi − h2M−1Fex)‖2

F︸ ︷︷ ︸
T1

+ ∑
i

k
2
‖Aixi − yi‖2

F︸ ︷︷ ︸
T2

)
,

where the former term of the optimizing problem T1 is the position constraint that moves
a vertex to a target position, and the latter term T2 is the co-rotational elastic constraint
that preserves the mesh volume. Our approach first minimizes T2 while keeping T1 fixed
(a local strategy in PD), and then determines the minimized x in T1 by solving the pure
quadratic problem with a minimum error (global strategy in PD). As shown in Figure 7,
the object model with physical force exhibits more natural deformation than that updated
from the feature vectors.

Figure 7. Model deformation: (a) initial shape, (b) deformed shape from updated feature vectors,
and (c) deformed shape from the FEM simulation.

5.3. Resolution Enhancement

The deformation of the observed object uses low-resolution models during the physical
force estimation. Visualizing a deformed object in high detail is necessary for accurate inter-
pretation. In our approach, the deformed model is converted into a high-resolution model
by setting the mesh correspondence between the two resolution models. We adopt mean-
value coordinate (MVC) interpolation, which sets a dense correspondence between the
triangular faces of a low-resolution model and the vertices of a high-resolution model [43].
Unlike the KNN-IDW method used in Section 4.2, the MVC interpolation scheme addition-
ally uses the triangular mesh topologies of both models. Since a high-resolution model
is enclosed by a low-resolution model, as shown in Figure 8, the weight values for the
interpolation are estimated as follows:

wij = 2
tan[ φi−1

2 ] + tan[ φi
2 ]

|xH
j − xL

i |
, (12)

where xL
i = {xL

1 , xL
2 , . . . , xL

m} are vertices on the low-resolution model, xH
j = {xH

1 , xH
2 ,

. . . , xH
n } are vertices on the high-resolution model, wij denotes the weight value of xL

i for
xH

j , and φi denotes the angle formed by xL
i , xH

j , and xL
i+1. It is noteworthy that Equation (12)
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can be estimated in parallel because of the linearity of the MVC. The updated vertices on
the high-resolution model are determined as follows:

x̂H
j =

m

∑
k=1

λkxL
k , (13)

where λij is obtained by normalizing wij,

λij =
wij

∑m
k=1 wkj

. (14)

Figure 8. Deformation of a high-resolution model (red) enclosed by a low-resolution model (gray):
(a) initial, (b) pushed, and (c) pulled pose.

5.4. Topological Editing

The proposed approach operates well for geological deformations, such as bending
and pushing, but not for topological deformations, such as cutting or tearing. For topologi-
cal deformations, the intersected part of the surface of the model should be recognized and
filled with triangular polygons. In our approach, we assume that topological deformations
are performed with a cutting tool, where its location related to the observed object is recog-
nizable by a sensor. Given the features (i.e., a synthetic square marker) of the cutting tool in
advance, we tracked its trajectory and determined where it cut the object model using a
fiducial marker system [44]. For the fast-editing process, a ray–triangle interaction is used
to detect the line segment intersecting the triangular polygons of the object model [45].

When the object model is cut, the triangular polygons on the intersected surface are
filled with a set of triangular polygons. We reshape the intersected part using Delaunay
triangulation [46]. Given multiple vertices on a 2D plane (that is, each surface polygon
and cutting plane), it divides the plane into multiple triangles so that the minimum angles
of each triangle have a maximum value, maintaining the lowest number of sharp-shaped
triangles. In this manner, we generate triangular polygons based on vertices of the intersec-
tion without creating new vertices. Therefore, the topological deformation maintains the
minimum total mesh size and operates in real time.

6. Experimental Results

Experiments were performed on an Intel Core i7-6700K 3.6Ghz CPU with an NVIDIA
GeForce GTX 1080 Ti GPU and 16 GB of DDR4 memory on the Windows 10 operating
system. An Intel RealSense D435 was used to track the observed objects, such as a cuboid
sponge and a plush doll. An open-source 3D engine (i.e., OGRE) was used to render the
object models. Table 1 presents the polygonal models used in the experiments. Our system
is best understood through examples of its use, as described in the subsequent sections and
the accompanying video located at https://drive.google.com/file/d/15wONJAiMGHz3
WTCnQNn8gn8BkxHMHxG-/view?usp=sharing (accessed on 11 August 2022) .

https://drive.google.com/file/d/15wONJAiMGHz3WTCnQNn8gn8BkxHMHxG-/view?usp=sharing
https://drive.google.com/file/d/15wONJAiMGHz3WTCnQNn8gn8BkxHMHxG-/view?usp=sharing
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Table 1. Specifications of object models.

Model Sponge Doll

Number Vertices Polygons Vertices Polygons

High-resolution 522 1040 18,650 7190

Low-resolution 132 260 128 252

Volumetric 132 300 154 494

As shown in Figure 9, the deformation of the soft-body models was simulated by
tracking 1000 feature points detected on the observed objects. Geological deformations,
such as bending and pushing, were tested, and simulation results were generated, as
shown in the figures and video. Accurate results were obtained using the high-resolution
model, such that the average difference between the corresponding vertex and the ground-
truth model was approximately 2.56 mm. Table 2 shows that our approach simulated the
deformation of object models over 30 fps and that it is capable of real-time performance. It
is noteworthy that the initialization was performed only once in the initial frame, and the
computation time for topological deformation was negligible, which is excluded in Table 2.

Figure 9. Cont.
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Figure 9. Deformation of (a) a cuboid sponge and (b) plush doll: The high-resolution model (green)
was deformed by tracking the feature vectors (blue) of the feature points (red) for every frame.

Table 2. Computation time (Init.: initialization, Sim.: simulation).

Model Sponge Doll

Time (ms) Init. Sim. Init. Sim.

Feature-Point Tracking 15.51 0.56 22.53 0.67

Soft-body Simulation 21.22 10.62 23.61 29.02

Resolution Enhancement 18.41 0.38 542.31 2.81

Total 55.14 11.56 588.45 32.50

Figure 10 shows examples of topological deformations by cutting a cuboid sponge
model and an iguana-shaped model. This showed that the polygons around the intersected
part included triangles with sharp angles and undesired holes on the surface. However,
after reshaping the surface mesh, the triangular polygons around the intersected part
became more regular. Furthermore, the intersected part was filled with a new surface mesh,
which generated accurate results for cutting or tearing deformations.
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Figure 10. Topological deformation on a cuboid sponge model (left column) and an iguana model
(right column): (a) original models, (b) mesh intersections (red lines), (c) deformed models without
filling of the surface mesh (yellow circles), and (d) deformed models after filling the surface mesh.

Figure 11 shows the results of simulating the deformation of a cuboid sponge cut by
a marked board in real time. While the sponge model was being cut, the feature points
and board were simultaneously tracked by a sensor. To reliably track the trajectory of
the cutting tool, we used the ArUco marker, which is composed of a black border and
binary codification that determines its identifier [44]. While the cutting tool was traced
as a rectangle, the intersection was detected between the rectangle and deformable object
model. On the intersected part of the board, a new surface mesh was generated for accurate
outputs. We could track the soft-body deformation and cutting tool simultaneously, which
may be useful in interactive simulations, such as in medical practice or training operations.
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Figure 11. Topological deformation of a cuboid sponge: The sponge was cut by the marked board,
which generated a reshaped mesh in real time.

7. Conclusions

In this study, we introduced a physics-based simulation of soft-body deformation using
RGB-D data. Using a low-cost RGB-D sensor, our approach simulated the deformation
of observed objects by tracking object movement and estimating the physical force in an
iterative manner. During the simulation process, a set of models with different solutions
was used to improve the simulation speed and visual quality. Unlike previous approaches,
our approach handled tracking and simulation problems simultaneously by integrating
several existing methods into a single framework. Furthermore, it generated realistic
results for topological deformations by reshaping the intersected part. We believe that our
approach is applicable to various interactive applications in the VR and AR environments.

Our approach has several limitations. The current tracking method (that is, ORB) can
be affected by noisy input data. However, we expect that the physical simulation part
compensates for some of inaccuracy caused by noisy data. Topological deformations require
a cutting tool with a marker for robust tracking. In addition, object models with topological
changes (that is, torn or separated) require a more sophisticated method to track feature
points that are not seen in the initial frame. For objects with sparse feature points, the current
distance error between the object model and observed object may not be sufficiently accurate
for applications (e.g., medical or biological operations) that require higher precision; thus,
we require a further study in order to improve the simulation accuracy.
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Abbreviations
The following abbreviations are used in this manuscript:

VR Virtual reality
AR Augmented reality
IK Inverse kinematics
FEM Finite-element method
FAST Features from accelerated segment test
BRIEF Binary robust independent elementary features
ORB Oriented FAST and rotated BRIEF
ICP Iterative closest point
SVD Single-value decomposition
KNN-IDW K-nearest neighbor approach with an inverse distance weighting
PD Projective dynamics
MVC Mean-value coordinate
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