
Review Article
A Novel Hybrid Deep Learning Approach to Code Generation
Aimed at Mitigating the Real-Time Network Attack in the Mobile
Experiment Via GRU-LM and Word2vec

Minjong Cheon,1 Hyodong Ha,1 Ook Lee,1 and Changbae Mun 2

1Department of Information Systems, Hanyang University, 222 Wangshimni-ro Seongdong-gu, Seoul 04673, Republic of Korea
2Department of Electrical, Electronic & Communication Engineering, Hanyang Cyber University, Seoul 04764, Republic of Korea

Correspondence should be addressed to Changbae Mun; changbae@hycu.ac.kr

Received 20 December 2021; Revised 30 June 2022; Accepted 9 August 2022; Published 29 September 2022

Academic Editor: Nicola Bicocchi

Copyright © 2022 Minjong Cheon et al. �is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

As the use of devices in mobile environments increases, network attacks such as DDoS have a malicious attempt to �ood the
network’s regular tra�c to overload the target and surrounding infrastructure.�is research proposed machine learning and deep
learning approaches to dealing with DDoS attacks, and the results are described as follows. First, this research successfully detected
DDoS attacks through an LGBMwith a 100% accuracy score. Second, the proposed model (GRU-LM), which consists of a trained
Word2vec layer with the Python dataset, is far more e�ective than the standard GRU model. Since Python is quite similar to
English, language model-based GRU yields superior results. Various preprocessing steps were performed through the NLTK
package, and each number was assigned to the tokenized one for constructing the GRU language model.�e result reveals that the
proposed model achieved an accuracy score of 87% for predicting the following words in the source code, while the rest achieved
below 30% accuracy. �is conclusion is signi�cant because its relatively simple and light structure overcomes tradeo� problems
between time and accuracy and is adaptable to the mobile setting. Discovering tra�c patterns for the underlying data of DDOS
assaults and retrieving them using statistical data analysis is the value of this research. Furthermore, since public cloud application
vulnerability assaults are rising due to expanding cloud infrastructure, this �nding could be used in such attacks.

1. Introduction

As the fourth industrial revolution has come, technologies,
including arti�cial intelligence (AI), the Internet of things
(IoT), and cloud systems, have been used widely in our
society. Since many of those technologies are operated in the
internet-based environment, the potential damage from
DDoS attacks has also increased signi�cantly. �e DDoS
attack is an abbreviation of distributed denial-of-service. It is
a malicious attempt to overwhelm the target and sur-
rounding infrastructure with Internet tra�c by �ooding the
network’s regular tra�c [1]. It has been a persistent threat to
various industries, regardless of geographic location or
target market, and it is predicted to be increased dramati-
cally in the upcoming years [2]. �e graph below shows
several DDoS attacks from 2018 to 2023 and can be

interpreted as an increasing trend of DDoS attacks over the
years, including the future [3]. Furthermore, according to
the latest research by Kaspersky Lab, a DDoS attack could
cost an enterprise over $1.6 million, a considerable sum for
any business [4]. Seven di�erent and e�cient actions exist
that a company could perform to prevent a DDoS attack by
preparing a DDoS plan, improving network security, en-
suring server redundancy, looking for warning signs, lim-
iting network broadcasting, using cloud-based protection,
and setting up continuous monitoring [5]. Until the late
2000s, a typical form of DDoS attack was achieved using
malware in the network infrastructure. To detect this form of
DDoS, it is necessary to see a speci�c pattern in a series of
packets [6, 7]. If the amount of packets used for attack
detection is insu�cient, it is di�cult for the system to
perform a detection function for DNS ampli�cation DDoS

Hindawi
Mobile Information Systems
Volume 2022, Article ID 3999868, 11 pages
https://doi.org/10.1155/2022/3999868

mailto:changbae@hycu.ac.kr
https://orcid.org/0000-0002-3065-3307
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3999868

attacks. In particular, distributed reflection denial-of-service
attack cannot perform structural modeling if the amount of
packets used for attack detection is insufficient, so an ap-
propriate pattern is not established. In this case, the cog-
nitive value is not high even if a pattern is identified in
reducing the data dimension. As a result, it has a charac-
teristic that is very vulnerable to security. In addition, DDoS
security issues are closely related to the network environ-
ment. In a cloud environment, an attack module such as
DDoS docker is deployed on an external interlocking server
to attack security devices.)ese attack techniques can find
patterns through artificial intelligence analysis of data col-
lected by intrusion detection systems (IDS) [8]. Large-scale
DDoS attacks generate traffic much larger than the network
bandwidth and occupy the line, making it impossible to
defend only with DDoS equipment inside the network.
)erefore, pre-emptive detection and pattern identification
are essential for maintaining service stability. Artificial in-
telligence (AI) technologies, such as deep learning and
machine learning, have proven effective and beneficial in
various industries.)erefore, these technologies have been
suggested as a solution for resolving DDoS attacks as they
can assist in removing stubborn old networking obstacles
and stimulating new network applications that make net-
working muchmore convenient. Representative examples of
applications are intelligent network traffic management,
inband network telemetry, and cyberattack identification
and prevention. Intelligent network traffic management
enables analytics in big data systems and large-area networks
to discover complicated patterns. Network telemetry data
gives fundamental network performance measurements
although sometimes they are difficult to comprehend.
Network behavior is an essential characteristic, and to detect
threats, undiscovered viruses, and policy breaches, its
principal to evaluate massive volumes of data in real time.
Network telemetry data give fundamental network perfor-
mance measurements although sometimes they are difficult
to comprehend. Network telemetry data give fundamental
network performance measurements although occasionally
they are difficult to comprehend.)erefore, machine
learning models have risen as a troubleshooter for those
issues that traditional methods could not handle
effectively [9].

Figure 1 shows that many cases of DDoS attacks are
predicted to escalate by 2023, and people should prepare to
detect or prevent them efficiently. In addition, coping with
the real-time intrusion of DDoS has been a critical issue
because DDoS attacks can cause a lot of damage, even for a
short period.)erefore, this research aims to detect DDoS
attacks, and develop a code generation model through deep
learning methods, to decrease the time spent dealing with
DDoS attacks. Several preprocessing methods from the
natural language processing (NLP) library would be used for
the analysis, and then various deep learning models would
be applied to calculate the accuracy score. Word2vec was
used to figure out the connection between the words in the
Python corpus and as an embedding tool for constructing
the model. Furthermore, considering a characteristic of the
Python language, whose structure is quite similar to English,
language models such as the gated recurrent unit (GRU)
language model were utilized for the prediction of the next
words, and usage ofWord2vec and GRU language model is a
distinct point from other related works.)e following is a
proposed contribution to this research study.

Applying this study to the web service industry can help
reduce the complexity of applying security rules to logic.
Cyberattacks are evolving, and its types are becoming more
diverse. DDoS attacks can be executed with simple software,
and protocols used for traffic attacks are also diversifying to
CLDAP and NTP. As cloud infrastructure expands, vulner-
ability attacks in public cloud applications are increasing.
Since this study suggested a machine learning approach for
detectingDDoS attacks and generating source code for that, it
could be utilized for such attacks effectively in the future [10].

2. Related Works

Hung-Chi Chu and Chan-You Yan proposed a packet
continuity-based model to calculate collecting consecutive
packets, average time for detecting DDoS attacks, and
classification scores based on the window size.)e result
demonstrates that the window size should be less than 50 for
real-time collection, and when a scope is fixed to 10, it
showed average accuracy of over 99.5% while consuming
only 5ms for computation time.)is research contributes
that they could gather the latest DDoS attack data with less
computation time and speed for detecting DDoS attacks
through the proposed model (5ms) with high accuracy [11].

Vijayakumar and Ganapathy utilized ensemble algo-
rithms through the random forest, SVM, and SWELL al-
gorithms to detect DDoS attacks efficiently.)e AWID
dataset was used as a dataset, and the proposed algorithm
achieved a 99.98% precision score [12].

Riyaz and Ganapathy suggested novel algorithms to
detect intrusion.)e proposedmodel first conducted feature
selection through the conditional random field and linear
correlation coefficient-based feature selection (CRF-LCFS)
algorithms.)e convolutional neural network (CNN) finally
classified the target.)ese models yielded a 98.88% accuracy
score for detecting intrusions [13].

Zengguang Liu and Xiochun Yin researched generating
synthetic data for low-rate distributed DoS (LDDoS) attacks

Number of DDoS Attacks (2018-2023)

2018

7.9
9.5

10.8
12.1

13.9
15.4

2019 2020 2021 2022 2023

0

5

10

15

20

M
ill

io
ns

Figure 1: Cisco’s research and forecasting of DDoS total attack
history (2018–2023) [3].

2 Mobile Information Systems

via combining LSTM and CGAN. After generating fake
datasets via CGAN, the authors found that the generated
dataset is quite similar to the real ones through computing
Euclidean distance.)ey compared again by conducting five
different machine learning algorithms on them.)e error
rate, precision score, and recall scores were calculated
through suggested models, and it was found that each score
was very similar to the other, which verified the authenticity
of the synthetic data.)is research makes synthetic data to
be utilized in the future for better analysis with a sufficient
dataset [14].

Cruz-Benito et al. suggested a model for generating
source code through various DNN designs, including AWD-
LSTM, AWD-QRNN, and transformer, which were used to
see which types of work are best in different tokenization
models.)is research discovered that tokenization with
character-sized chunks performs better in tiny LM (like the
AWD-LSTM and AWD-QRNN models) than in other
tokenization models. Although accuracy was significantly
reduced in larger models like the Transformer GPT-2, it
performed better in source code generation tests [15].

Hu et al. suggested an algorithm intended to aid devel-
opers in comprehending the Java method’s functions.
DeepCom is seq2seq based, and a new technology is proposed
in this study that automatically creates code annotations for
Java language. Source codes from 9,714 Java projects from
GitHub were used for training the model. Experiments are
carried out on a large-scale Java corpus from GitHub’s 9,714
open-source projects.)e results are measured using ma-
chine translation metrics and the bilingual evaluation un-
derstudy (BLEU) score. DeepCom yielded 38.17%, while
other algorithms such as CODE-NN and attention-based
seq2seq showed 25.3% and 35.5%, each [16].

Chakraborty et al. suggested that character-based gen-
eration models are created using long short-term memory
cell (LSTM). It can be concluded that expanding the number
of LSTM cells at the start enhances the performance of the
model.)e increase in LSTM cells also has a consequence on
the semantic association between letters, which has been
linked to the issue of an extensive corpus.)is problem is
alleviated by decreasing the concentration of words in the
corpus, and text generation becomes considerably more
efficient [17].

Pang et al. proposed the application of convolutional
neural networks and recurrent neural networks to the au-
tomatic generation of GUI codes.)rough the network,
which is the HGui2Code model as an attention-based deep
neural code, the DSL code may be aligned with the relevant
GUI pixel by using a hybrid attention approach. Compre-
hensive empirical findings indicate that the NAT model
surpasses the newest techniques in online datasets, with the
HGui2Code model enhancing accuracy by 5.5 percent and
the SGui2Code model increasing accuracy by 1.5 percent,
respectively [18].

Onan et al. performed keyword extraction for the thesis
and the most-frequent method showed the best performance
among various algorithms [19].

Onan conducted topic extraction in the paper’s abstract
and eliminated tasks such as preprocessing of data, feature

selection, and human interference in traditional machine
learning by combining Word2vec, Pos2vec, word-posi-
tion2vec, and LDA2vec schemes [20].

Onan and Korukoglu proposed an ensemble-applied
feature selection model. Integrating the extracted lists
through various filter-based techniques, such as information
gain, into genetic algorithms showed superior performance
over individual methodologies [21].

Onan presented a model that combines weighted GloVe
word embedding based on CNN-LSTM architecture to
perform sentiment analysis from Twitter’s product review
data, showing 93.85% accuracy and better performance than
other models [22].

)e related works yield that various pieces of research
were performed on detecting DDoS attacks or code gen-
eration through deep learning algorithms. However, we
suppose to suggest methods of combining them. We first
utilize machine learning algorithms to detect attacks and
construct source code for automatic code generation
through deep learning algorithms.)erefore, this work
could suggest a more realistic approach to responding well to
DDoS attacks.

3. Materials and Methods

3.1. Data Availability.)is research utilized two datasets
from the Kaggle website, which are accessed through https://
www.kaggle.com/datasets/solarmainframe/ids-intrusion-
csv [23], which is shown in Figure 2, and https://www.
kaggle.com/linkanjarad/coding-problems-and-solution-
python-code [24], as depicted in Figure 3.)e University of
New Brunswick proposed the first dataset. It contained some
vital information for detecting DDOS attacks, such as DST
port (destination port), protocol, flow duration, Tot Fwd
Pkts (total forward packets), Tot Bwd Pkts (total backward
packets), and label.)e label column was selected as the
target column for classifying the three different attacks.)e
second dataset consists of 3.3k + coding problems and their
corresponding source code in Python.)ese data were
collected from various sources and involves codes and so-
lutions for the following situations: (1) working with strings,
lists, arrays, tuples, dictionaries, CSV, and JSON; (2)
modules including NumPy, BeautifulSoup, Tkinter, Pandas,
random, os, re, and DateTime; (3) file I/O; (4) loops and
conditionals; (5) functions (including lambda) and classes;
(6) OOP and DSA; (7) searching and sorting; and (8) pattern
printing for the experiment; only source code in the dataset
was utilized, as the objective of this research is to predict the
next sentence from the given Python source code.)e figure
below shows the overall structure of the dataset.

3.2. Word2vec. Word2vec is a word embedding model
released by Mikolov et al. in 2013, and its basic as-
sumption is that similar words in a given sentence or text
would show close distance. It mainly consists of the
Continuous Bag-of-Word (CBOW) model and a skip-
gram model.)e architecture of both models is similar,
as seen in Figure 4, and the input layer receives w(t-2),

Mobile Information Systems 3

https://www.kaggle.com/datasets/solarmainframe/ids-intrusion-csv
https://www.kaggle.com/datasets/solarmainframe/ids-intrusion-csv
https://www.kaggle.com/datasets/solarmainframe/ids-intrusion-csv
https://www.kaggle.com/linkanjarad/coding-problems-and-solution-python-code
https://www.kaggle.com/linkanjarad/coding-problems-and-solution-python-code
https://www.kaggle.com/linkanjarad/coding-problems-and-solution-python-code

0 0

DsT
Port

0

Protocol Flow
Duration

Tot
Fwd
Pkts

Tot
Bwd
Pkts

TotLen
Fwd
Pkts

TotLen
Bwd
Pkts

Fwd
Pkt
Len
Max

Fwd
Pkt
Len
Min

Fwd Pkt
Len Mean …

Fwd
Seg
Size
Min

Active
Mean

Active
Std

Active
Max

Active
Min

Idle
Mean

112641719 3 0 0 0 0 0 0.000000 0 0.0 0.0 0

0

0

0

0

…

0

0

0

0

291569

0 56320859.5

56320733.0

56319311.5

0.0

0.0

…

0.0

0.0

0.0

0.0

5515650.0

0

0

0

0

…

0

0

0

0

291569

0.0

0.0

0.0

0.0

…

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

…

0.0

0.0

0.0

0.0

291569.0

0

0

32

32

…

20

20

20

20

20

…

…

…

…

…

…

…

…

…

…

…

0.000000

0.000000

82.600000

81.642857

…

217.800000

0.000000

0.000000

0.000000

54.500000

0

0

0

0

…

0

0

0

0

0

0

0

744

744

…

587

0

0

0

245

0

0

2273

2209

…

1923

0

0

0

145

0

0

1239

1143

…

1089

0

0

0

327

0

0

10

11

…

5

0

1

1

4

3

3

15

14

…

5

2

3

3

6

112641466

112638623

6453966

8804066

…

10156986

117

5095331

5235511

5807256

0

0

6

6

…

6

6

6

6

6

0

0

22

22

…

80

80

80

80

443

1

2

3

4

…

104B570

1044571

1044572

1044573

1044574

Figure 2: Overview of the first dataset obtained from the Kaggle website used for detecting DDoS attacks [23].

0

1

2

3

4

…

3302

3303

3304

3305

3306

0

Unnamed: 0 Problem Python Code

Write a NumPy program to repeat elements of an… import numpy as np\rx = np.repeat(3, 4)\rprint…

def printValues():\n\tl = list()\n\tfor i in r…

import itertools\rnum = [[10, 20], [40], [30, …

import numpy as np\rimport matplotlib.pyplot a…

import sqlite3\rfrom sqlite3 import Error\rdef…

…

\nn=int(input(”Enter number:”))\nif(n>0):\n …

\ndef f(n):\n if n == 0: return 0\n elif…

\nraise RuntimeError(’something wrong’)\n\n\n\n

\nprint(”Enter the row and column size:”);\nro…

\nprint(”Enter the range of number:”)\nn=int(i…

Write a Python function to create and print a …

Write a Python program to remove dublicates fr…

Write a NumPy program to compute the x and y c…

Write a Python program to alter a given SQLite…

…

Python Program to Check Whether a Number is Po…

\nThe Fibonacci Sequence is computed based on …

\n\n\nPlease raise a RuntimeError exception.\n:

Program to print inverted right triangle alpha…

Program to find the sum of series 1+X+X^2/2……

1

2

3

4

…

3302

3303

3304

3305

3306

Figure 3: Overview of the second dataset obtained from the Kaggle website [24].

w (t-2)

w (t-1)

w (t+1)

w (t+2)

w (t-2)

w (t-1)

w (t+1)

w (t+2)

Input layer

Projection layer Projection layer

Output layer

Output layer

Input layer

w (t) w (t)

Figure 4: Overview of the CBOW (left) and skip-gram (right) structure [25].

4 Mobile Information Systems

w(t-1), w(t), w(t+1), and w(t+2) · · ·, which refers to words
as the input data, and the projection layer located be-
tween the input layer and the output layer is consistent
with an array of multidimensional vectors which accu-
mulate the sum of several vectors.)e output layer yields
the results of the vectors from the projection layer. Even
though both models are pretty similar in overall archi-
tectures, an existing principal difference is that CBOW
predicts target words from original context words. In
contrast, skip-gram predicts actual context words from
target words inversely [25].

3.3. Gated Recurrent Unit. Recurrent neural network (RNN)
based algorithms, including gated recurrent unit (GRU), and
long short term memory (LSTM), are mainly used in NLP-
related studies because of the recurrent characteristics of the
RNN [26].)e RNN maintained its state by utilizing its output
as input from one iteration to the next, whichmakes a recurrent
neural network. However, the RNN has a downside of gradient
vanishing, which cannot retain the older previous layers, es-
pecially in long sequences.)erefore, LSTM and GRU were
introduced to resolve the vanishing gradient problem of the
RNN [27]. While there are three gates in the LSTM such as a
forget gate, an input gate, and an output gate, only two gates are
employed in the GRU such as a reset gate and an update gate. A
single hidden state is also expressed by combining the cell and
the hidden states. GRU consists of only two gates, so it can spend
less memory and computation time than LSTM, as described in
Figure 5 [28]. A single hidden state is also expressed by com-
bining the cell and the hidden states.

3.4. Proposed Approach: Code Generation. Python is one of
the most popular programming languages in use nowadays,
and the main reason is that it is more accessible than other
programming languages for beginners. As Python has quite
a similar syntax to English, beginners can approach it
straightforwardly [29]. Furthermore, this English-like syntax
of Python allows beginners to understand the meaning of
keywords in the programming language, compared to other
C-like languages, including Java and Perl [30, 31].

As the previous research shows, Python has many
similar structures to other programming languages; our
research decided to utilize a language model for predicting
the following sentence in the source code.)erefore, the
language model was used to derive a better result. Statistical
language modeling aims to discover a language’s joint
probability function of word sequences. It provides a
probability P to the whole series given such a sequence of
length m.)e language model includes context for dis-
tinguishing between phonetically identical words and sen-
tences [32].

Several preprocessing procedures to obtain better results
are described in Figure 6. Firstly, the Python source code was
separated into each sentence once received as input data.
After fragmenting the Python code, the tokenizer from the
NLTK package was used.)e NLTK package was invented
for conducting NLP tasks through Python. Many pre-
processing procedures were applied to tokenized data, in-
cluding converting to lowercase and deleting words from
English stop-words. Word embedding was then generated
using the Word2vec function to figure out the relationship
between words in the source code, which could be helpful in
code creation. Finally, a gated recurrent unit-based language
model (GRU-LM) was used to calculate the accuracy score
and predict upcoming sentences. GRU-LM utilized a lan-
guage model approach to an ordinal GRU architecture,
which could impose a characteristic of the language model.

3.5. Proposed Model: Code Generation.)e proposed model
consists of multiple steps, as described in Figure 7. Firstly,
the given dataset is vectorized and tokenized for pre-
processing, especially for assigning each number to the
tokenized one. Because the language model emphasizes a
sequence of words for a better prediction, in other words, it
is vital to predicting the next term when the previous
sentences/words were provided. In the second step, the
Word2vec model is pretrained with our dataset (from
Kaggle), which could help to contain multiple features for
better performance.)e pretrained Word2vec model was
utilized for the embedding steps, and then the GRU model

Hidden state
Ht-1

Input Xt

tanh

Ht

Ht

Candidate
Hidden state

1-

σ σ

Figure 5: Overview of the GRU structure [28].

Mobile Information Systems 5

was applied to predict the labels.)en, a dense layer was
added to the GRU model to construct a deeper model and
predict the following words.

3.6.Workflowof the Proposed System. If it is determined that
the system is subject to a specific network intrusion, it is first
diagnosed whether the attack is a DDoS attack through a
machine learning algorithm such as LGBM.)en, if it is
determined to be a DDoS attack, it is possible to cope with
the attack more efficiently through the code generation
algorithm proposed in the paper.

4. Results and Discussion

4.1. Experimental Setup. As mentioned above, the experi-
ment consists of two main stages.)e first is to detect DDoS
attacks through a machine learning approach, and the

second is about constructing an algorithm for generating
source code automatically.)e dataset was downloaded
from the Kaggle website for the first experiment, as afore-
mentioned in the Data Availability section.)en, pre-
processing steps such as label coding were applied to the
dataset. In the second experiment, since we should prove
that our proposed model is superior to other deep learning
models such as RNN, LSTM, or GRU, all algorithms were
tested under the same conditions, such as GPU, batch size,
or epochs.

4.2. Detecting the DDoS Attacks via Machine Learning.
)e light gradient boosting machine (LGBM) algorithm was
applied to the dataset. Since the label column consists of
three different values, multiclassification was conducted.)e
LGBM yielded a 100% accuracy score for the classification,
which implied that detecting DDoS attacks with a machine

Python Source Code

Code Split

Code Fragmentation

Tokenizer

Tokenized Samples

Preprocessing

Preprocessed SamplesWord2vecGRULMPredict next word

Figure 6:)e pipeline of the experiment.

Logits

Dense Layer

GRU

Enbedded Char

Word2vec Embedding

Char

Logits

Dense Layer

GRU

Enbedded Char

Word2vec Embedding

Char

Logits

Dense Layer

GRU

Enbedded Char

Word2vec Embedding

Char

Logits.....

.....

.....

.....

.....

Dense Layer

GRU

Enbedded Char

Word2vec Embedding

Char

Figure 7:)e pipeline of the proposed model: GRU-LM.

6 Mobile Information Systems

learning algorithm is possible. Furthermore, it could also be
concluded that if the source code could be generated au-
tomatically, we could prevent DDoS attacks efficiently.
Figure 8 below yields the confusion matrix of the result from
the LGBM.

4.3. Result ofUtilizing SeveralOrdinalDeepLearningMethods
for the Dataset. First, the preprocessed dataset was divided
into train and test sets.)en, RNN, long short-termmemory
(LSTM), GRU, bidirectional GRU (Bi-GRU), and bidirec-
tional LSTM (Bi-LSTM) were utilized to calculate the ac-
curacy score.)e two graphs below show how the accuracy
and loss of models changed during training (epoch� 20).
Loss from every model in Figure 9 exhibits decreasing trend,
while accuracy from every model in Figure 10 yields an
increasing trend. However, the accuracy score was far

smaller than the expectation, which was below 30% of ac-
curacy except for Bi-GRU.

4.4. Result of Utilizing the Proposed Approach: Word2-
vec +GRU-LM. As the models mentioned, they did not
achieve satisfactory results.)e Word2vec model was
trained with the preprocessed data, and the embedding was
made through the model.)erefore, the embedding con-
tained the relationship between the lexicons and could yield
higher performance than the ordinal one hot encoding.
Figure 11 shows the correlation between the tokenized
words in the datasets.

Following creating the embedding layer fromWord2vec,
a GRU-based language model (GRU-LM) was made. Even
though the model’s structure is relatively simple, with only a
few layers, this model is expected to outperform the other

2e+05

5.8e+04

5.6e+04

0

90

0 0

0 0

1 2

175000

150000

125000

100000

75000

50000

25000

0

2

1

0

Figure 8: Confusion matrix of the results from the LGBM.

8

6

4

2

0
5 10 15 20

Epoch

Lo
ss

RNN
LSTM
GRU

Bi-GRU
Bi-LSTM

Figure 9:)e training loss when epoch� 20.

5 10 15 20

0.4

0.3

0.2

0.1

0.0

Epoch

A
cc

ur
ac

y

RNN
LSTM
GRU

Bi-GRU
Bi-LSTM

Figure 10:)e training accuracy when epoch� 20.

Mobile Information Systems 7

models above due to the learned embedding layer and
language model. Furthermore, using GRU-LM rather than
LSTM-LM reduces computation memory and time. RNN-
LM was not chosen since the RNN itself featured a gradient
vanishing difficulty. Figure 12 shows a predicted output in
the “example” column and the actual answer in the “label”
column.)e accuracy score was calculated via those two
columns.

)e below graphs present both loss and accuracy score,
which were evaluated based on the test sets. Figure 13 shows
the loss from the various models, and the proposed model,
whose color is red, exhibits that its loss is far smaller than the
other five ordinal deep learning algorithms. Furthermore,
Figure 14 yields the accuracy score, and the proposed model

achieved 87.3%, almost three times higher than the other
models except for Bi-GRU. RNN, LSTM, GRU, Bi-GRU, and
Bi-LSTM yielded 28.66%, 25.37%, 27.06%, 32.17%, and
28.38%, respectively.

)e two graphs below show the accuracy score and loss
from the suggested model throughout the training session. It
could be concluded that the training was successful based on
the growing accuracy graph and lowering loss graph in
Figure 15. Overfitting, a common drawback of deep learning
models did not occur.

Furthermore, an experiment on speed comparison was
also conducted. All of the models were performed under the
same condition, with the batch size for 1024 and 20 epochs
per model.)e result in Figure 16 showed that the RNN

7.5

5.0

2.5

0.0

-2.5

-5.0

-7.5

-12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0

Figure 11:)e training accuracy when epoch� 20.

302 [[36, 38, 174, 872, 0, 0, 0, 0, 0, 0, 0, 0, 0,…

example label

[[174, 379, 0, 0, 0, 235, 379, 38, 130, 872, 0…

[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…

[[0, 36, 38, 174, 872, 0, 0, 130, 1476, 713, 3…

[[0, 353, 52, 0, 36, 38, 130, 117, 0, 0, 0, 0,…

[[38, 174, 872, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …

[[379, 0, 0, 0, 235, 379, 38, 130, 872, 0, 0, …

[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…

[[36, 38, 174, 872, 0, 0, 130, 1476, 713, 353,…

[[353, 52, 0, 36, 38, 130, 117, 0, 0, 0, 0, 0,…

303

304

305

306

Figure 12: Result of the proposed model with the dataset: example denotes predicted one, and label indicates the answer.

4.53E+0
4.79E+0 4.71E+0

4.23E+0
4.52E+0

4.35E-1

RNN LSTM GRU Bi-GRU Bi-LSTM GRU-LM
0

1

2

3

4

5

Lo
ss

Figure 13: Loss results from the various deep learning models and
the proposed model (test set).

28.66% 25.37% 27.06%
32.17% 28.38%

87.83%

RNN LSTM GRU Bi-GRU Bi-LSTM GRU-LM

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

Figure 14: Accuracy results from the various deep learning models
and the proposed model (test set).

8 Mobile Information Systems

model consumed the longest time for the training, which
was 2662 seconds, and the fastest model was GRU with 307
seconds.)e proposed model required 341 seconds. Even
though the proposed algorithm was not the fastest among
different models, since the accuracy was far higher than
others, which could be found in the figure above, it could be
concluded that the proposed algorithm could be efficiently
applied to the real world.

5. Discussion

)e methodology of this work shows that malicious traffic
patterns can be compared to characteristic forms of his-
torical traffic to detect DDoS attacks in advance. In par-
ticular, when detecting attacks occurring at the application
layer, the system can leverage historical traffic information to
select resources to protect first and find a point in time to
apply complementary logic automatically. In addition, using
this technique in both cloud and on-premise environments
can extend the resilience and stability of the system by using
DDoS defense capabilities.

According to the experiment results, the LGBM-based
detection intrusion detection model showed a possibility of

applying it to the real world since it yielded a 100% accuracy
score. Furthermore, the suggested model in the second
experiment, which comprises trained Word2vec and lan-
guage model-based GRU, outperformed the other deep
learning models. Aside from the excellent accuracy score,
our suggested model has two additional benefits such as
shorter calculation time and memory use since the number
of parameters that should be calculated is less than other
deep learning models. It is possible to estimate that because
Python is comparable to English and language model-based
GRU was highly efficient. Furthermore, by creating the
Word2vec model, which had already been trained with the
supplied dataset, we could save time and memory while
achieving improved accuracy, which could be effective in the
mobile environment.)is finding could bring significant
benefits in dealing with DDoS attacks as reducing time for
correction is a vital issue.

6. Conclusions

Several deep learning algorithms were examined for efficient
code creation to deal with real-time DDoS attacks. Several
preprocessing processes were done to the supplied dataset,
which may aid deep learning models in producing more
exact results.)e proposed model comprises the Word2vec
embedding layer pretrained with the provided dataset and
GRU-LM. Except for Bi-GRU, the accuracy score was ob-
tained from them to evaluate each model’s performance.)e
suggested model achieved 87.3%, nearly three times higher
than the other models. RNN, LSTM, GRU, Bi-GRU, and Bi-
LSTM produced results of 28.66%, 25.37%, 27.06%, 32.17%,
and 28.38%, respectively. Considering the outcomes, it is
possible to infer that employing both the Word2vec em-
bedding layer and GRU-LM is far more efficient than
conventional techniques owing to the structure of Python
being quite similar to that of English.)is finding is
meaningful that there is no tradeoff problem between time
and accuracy, and it is worthwhile when correcting a code
for defense in a mobile environment. Our proposed model
and the two pretrained models, BERTand GPT, will be used

model accuracy model loss

0.860

0.865

0.870

0.875

0.880

0.885

0.890

0.895
ac

cu
ra

cy

104 6 140 122 8
epoch

2 8 124 106 140
epoch

train train

0.38

0.40

0.42

0.44

0.46

0.48

0.50

lo
ss

Figure 15:)e training accuracy and loss from the proposed model during epoch� 15.

Model

2662

312 307
564 524

341

RN
N

LS
TM G
RU

Bi
-L

ST
M

Bi
-G

RU

G
RU

-L
M

0

1000

2000

3000

Ti
m

e (
se

c)

Figure 16: Speed comparison of each algorithm and our proposed
model is marked as red (epoch � 20).

Mobile Information Systems 9

for code creation in future work with other programming
languages such as Java.)e value of this research lies in
identifying traffic patterns for the underlying data of DDoS
attacks and accessing them through statistical data analysis.

Data Availability

)is research utilized a dataset from the Kaggle website,
which is accessed through https://www.kaggle.com/link-
anjarad/coding-problems-and-solution-python-code [11].
)e given dataset consists of 3.3k + coding problems and
their corresponding source code in Python language.)ese
data were collected from various sources and involve codes
and solutions for situations.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

Basic Science Research Program supported this research
through the National Research Foundation of Korea (NRF),
funded by the Ministry of Education (2020R1G1A1006677).

References

[1] R. V. Deshmukh and K. K. Devadkar, “Understanding DDoS
Attack & its Effect in Cloud Environment,” Procedia Com-
puter Science, vol. 49, pp. 202–210, 2015.

[2] D. Warburton, DDoS Attack Trends for 2020, F5 Labs,
Washington, DC, USA, 2021, https://www.f5.com/labs/
articles/threat-intelligence/ddos-attack-trends-for-2020.

[3] P. Nicholson, Five Most Famous DDoS Attacks and :en
Some, A10 Networks, San jose, CA, USA, 2020, https://www.
a10networks.com/blog/5-most-famous-ddos-attacks.

[4] D. Kaspersky, Denial of Service: Anatomy and Impact of DDoS
Attacks, USA.Kaspersky.Com, Moscow, Russia, 2022, https://
usa.kaspersky.com/resource-center/preemptive-safety/how-
does-ddos-attack-work.

[5] V. Andreja,How to Prevent DDoS Attacks: 7 Tried-And-Tested
Methods, PhoenixNAP, Phoenix, AZ, USA, 2021, https://
phoenixnap.com/blog/prevent-ddos-attacks.

[6] M. Suresh and R. Anitha, “Evaluating machine learning al-
gorithms for detecting DDoS attacks,” inAdvances in Network
Security and Applications, pp. 441–452, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011.

[7] J. Wu, X. Wang, X. Lee, and B. Yan, “Detecting DDoS attack
towards DNS server using a neural network classifier,” in
Artificial Neural Networks – ICANN 2010, pp. 118–123,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[8] A. M. Lonea, D. E. Popescu, and H. Tianfield, “Detecting
DDoS attacks in cloud computing environment,” Interna-
tional Journal of Computers, Communications & Control,
vol. 8, no. 1, pp. 70–78, 2012.

[9] K. Rastey, Real world application of machine learning in
networking, IoT for all, Woodbine, MD, USA, 2021, https://
www.iotforall.com/real-world-application-of-machine-
learning-in-networking-2.

[10] ALLOT, DDoS Glossary: Common DDoS Attack Types You
Should Know, ALLOT, Hod Hasharon, Israel, 2022, https://
www.allot.com/ddos-attack-glossary/.

[11] H. C. Chu and C. Y. Yan, “DDoS Attack Detection with Packet
Continuity Based on LSTMModel,” in Proceedings of the 2021
IEEE 3rd Eurasia Conference on IOT Communication and
Engineering (ECICE), Yunlin, Taiwan, October 2021.

[12] D. S. Vijayakumar and S. Ganapathy, “Multistage ensembled
classifier for wireless intrusion detection system,” Wireless
Personal Communications, vol. 122, no. 1, pp. 645–668, 2021.

[13] B. Riyaz and S. Ganapathy, “A deep learning approach for
effective intrusion detection in wireless networks using CNN,”
Soft Computing, vol. 24, no. 22, Article ID 17265, 2020.

[14] Z. Liu and X. Yin, “LSTM-CGAN: Towards generating low-
rate ddos adversarial samples for blockchain-based wireless
network detection models,” IEEE Access, vol. 9, pp. 22616–
22625, 2021.

[15] J. Cruz-Benito, S. Vishwakarma, F. Martin-Fernandez, and
I. Faro, “Automated source code generation and auto-com-
pletion using deep learning: comparing and discussing cur-
rent language model-related approaches,” A&I, vol. 2, no. 1,
pp. 1–16, 2021.

[16] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment
generation,” in Proceedings of the 2018 IEEE/ACM 26th In-
ternational Conference on ProgramComprehension, May 2018,
Article ID 20010.

[17] S. Chakraborty, J. Banik, S. Addhya, and D. Chatterjee, “Study
of dependency on number of LSTM units for character based
text generation models,” in Proceedings of the 2020 Interna-
tional Conference on Computer Science, Engineering and
Applications (ICCSEA), Gunupur, India, March 2020.

[18] X. Pang, Y. Zhou, P. Li, W. Lin, W. Wu, and J. Z. Wang, “A
novel syntax-aware automatic graphics code generation with
attention-based deep neural network,” Journal of Network and
Computer Applications, vol. 161, Article ID 102636, 2020.

[19] A. Onan, S. Korukoğlu, and H. Bulut, “Ensemble of keyword
extraction methods and classifiers in text classification,”
Expert Systems with Applications, vol. 57, pp. 232–247, 2016.

[20] A. Onan, “Two-Stage topic extraction model for bibliometric
data analysis based on word embeddings and clustering,”
IEEE Access, vol. 7, Article ID 145614, 2019.

[21] A. Onan and S. Korukoğlu, “A feature selection model based
on genetic rank aggregation for text sentiment classification,”
Journal of Information Science, vol. 43, no. 1, pp. 25–38, 2016.

[22] A. Onan, “Sentiment analysis on product reviews based on
weighted word embeddings and deep neural networks,”
Concurrency and Computation: Practice and Experience,
vol. 33, no. 23, 2020.

[23] N. D. solarmainframe, IDS 2018 intrusion csvs (CSE-CIC-
IDS2018)San Francisco, CA, USA, Article ID Kaggle., 2022.

[24] Kaggle, Natural language to Python code, Kaggle, San Fran-
cisco, CA, USA, 2021, https://www.kaggle.com/linkanjarad/
coding-problems-and-solution-python-code.

[25] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
Estimation of Word Representations in Vector Space,” 2013,
https://arxiv.org/abs/1301.3781.

[26] O. Lee, H. Joo, H. Choi, and M. Cheon, “Proposing an in-
tegrated approach to analyzing ESG data via machine learning
and deep learning algorithms,” Sustainability, vol. 14, no. 14,
p. 8745, 2022.

[27] D. Wei, B. Wang, G. Lin et al., “Research on unstructured text
data mining and fault classification based on RNN-LSTM
with malfunction inspection report,” Energies, vol. 10, no. 3,
p. 406, 2017.

[28] S. Yang, X. Yu, and Y. Zhou, “LSTM and GRU neural network
performance comparison study: Taking yelp review dataset as
an example,” in Proceedings of the 2020 International

10 Mobile Information Systems

https://www.f5.com/labs/articles/threat-intelligence/ddos-attack-trends-for-2020
https://www.f5.com/labs/articles/threat-intelligence/ddos-attack-trends-for-2020
https://www.a10networks.com/blog/5-most-famous-ddos-attacks
https://www.a10networks.com/blog/5-most-famous-ddos-attacks
https://usa.kaspersky.com/resource-center/preemptive-safety/how-does-ddos-attack-work
https://usa.kaspersky.com/resource-center/preemptive-safety/how-does-ddos-attack-work
https://usa.kaspersky.com/resource-center/preemptive-safety/how-does-ddos-attack-work
https://phoenixnap.com/blog/prevent-ddos-attacks
https://phoenixnap.com/blog/prevent-ddos-attacks
https://www.iotforall.com/real-world-application-of-machine-learning-in-networking-2
https://www.iotforall.com/real-world-application-of-machine-learning-in-networking-2
https://www.iotforall.com/real-world-application-of-machine-learning-in-networking-2
https://www.allot.com/ddos-attack-glossary/
https://www.allot.com/ddos-attack-glossary/
https://www.kaggle.com/linkanjarad/coding-problems-and-solution-python-code
https://www.kaggle.com/linkanjarad/coding-problems-and-solution-python-code
https://arxiv.org/abs/1301.3781

Workshop on Electronic Communication and Artificial In-
telligence (IWECAI), Shanghai, China, 2020, June.

[29] F. Zehra, M. Javed, D. Khan, and M. Pasha, “Comparative
Analysis of C++ and Python in Terms of Memory and Time,”
Comparative Analysis of C++ and Python in Terms of Memory
and Time, 2020.

[30] A. Stefik and S. Siebert, “An empirical investigation into
programming language syntax,” ACM Transactions on
Computing Education, vol. 13, no. 4, pp. 1–40, 2013.

[31] V. T. Norman and J. C. Adams, “Improving non-CS major
performance in CS1,” in Proceedings of the 46th ACM
Technical Symposium on Computer Science Education, Feb-
ruary 2015.

[32] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural
probabilistic language model,” Journal of Machine Learning
Research, vol. 3, pp. 1137–1155, 2003.

Mobile Information Systems 11

