
Geochemical Journal, Vol. 44, pp. 323 to 329, 2010

*Corresponding author (e-mail: imeg@hanyang.ac.kr)

Copyright © 2010 by The Geochemical Society of Japan.

NOTE

323

A general parallelization approach to improve computation efficiency
in a global chemical transport model (GEOS-Chem)

ROKJIN J. PARK,1 DAEOK YOUN,1 SUNG HOON YOO,2 DONG SEOK HAN,2 BOO JOONG KANG2 and EUL GYU IM2*

1School of Earth and Environmental Sciences, Seoul National University, Seoul 151-742, Korea
2Division of Computer Science and Engineering, Hanyang University, Seoul 133-791, Korea

(Received July 22, 2009; Accepted December 10, 2009)

Despite increasing processing power of systems, sequential programs have limitations to achieve corresponding per-
formance gains. Parallelization of sequential programs can exploit the computation potential to reduce overall execution
expenditures. However, parallelization of a very large legacy program arises great challenges, because 1) former design of
the program did not consider parallelization, 2) the large-scale program has been developed for long time even decades,
and 3) some developers of the program are no longer available. In the atmospheric science field, there are many such
legacy programs and GEOS-Chem model developed in Harvard University is one of examples. In this paper, we suggest
simple procedures of the MPI parallelization which can be easily applied to a large legacy program. We applied this
method to the GEOS-Chem model which is already parallelized with the OpenMP method alone. Our test results showed
that the good performance improvement can be obtained by parallelizing a small portion of the program.

Keywords: MPI, OpenMP, parallelization, GEOS-Chem, modeling performance

of a large-scale legacy program. We mainly focused on
finding parallelizable parts with large performance over-
heads and parallelized the selected parts. Basic steps of
our approach are as follows: 1) get profiling data for the
model to analyze performance overheads of each func-
tion, 2) based on that profiling data, select candidate func-
tions for parallelization, 3) parallelize the selected func-
tions, if possible, and 4) verify results of the parallelized
program.

We applied our method to a state-of-the-art global 3-
D chemical transport model (GEOS-Chem) to test the
effectiveness of our procedure on performance improve-
ment. GEOS-Chem is used to simulate and evaluate
changes in atmospheric composition and pollutants with
huge range of application to environmental issues
(Harvard Atmospheric Chemistry Modeling Group, 2009).
This model comprises many complex modules to account
for various processes in the atmosphere and is now widely
used in the atmospheric chemistry community. As we will
show, our method is simple but effective to reduce com-
putational time, and it is easily applicable to other large-
scale legacy programs.

PARALLELIZATION AND PROFILING

In this section, we will discuss some basic concepts
of parallelization techniques and profiling methods.

INTRODUCTION

Despite increasing processing power of systems, se-
quential programs have limitations to achieve correspond-
ing performance gains. Therefore, newly developed pro-
grams adopt various parallelization techniques and tools
(Jarvis et al., 2006; Xu et al., 2007). However, there are
many large-scale legacy programs which are not optimally
suited to take advantage of the current advanced compu-
tation technology, and they are still widely used in scien-
tific communities nowadays. Those legacy programs were
developed without any considerations of parallelization
techniques at first, and parallelization of those programs
is quite challenging because 1) designers of the program
did not consider parallelization at that time, 2) the pro-
gram has been developed by many people for long time,
and 3) some developers of the program are no longer avail-
able for parallelization.

In this paper, we propose a simple and efficient pro-
cedure to parallelize a large legacy program. Our method
is a bit common and straightforward, and does not re-
quire in-depth background knowledge of the program it-
self. We introduce a general framework for parallelization

324 R. J. Park et al.

Parallelization refers to converting sequentially executed
programs to parallel executable programs. There are two
most widely used methods: Message Passing Interface
(MPI), and OpenMP (Open Multi-Processing). The former
is a set of programming interfaces used to exchange data
among individual computing nodes in parallel comput-
ing, and the latter provides programming language direc-
tives for parallelization using multi-processors in a sin-
gle machine. A profiling method is used to analyze over-
heads of functions in the program and provides a stand-
ard basis to select target functions which can be
parallelized most efficiently.

Parallelization
Traditional programs have been written in sequential

computing environment. The performance of traditional
programs depends on the computing power of a single
processor in a machine. Recently, the growth of a single
processor’s computation power has been limited, and this
restricts the performance of the programs running that on
a single processor machine. On the other hand, parallel
computing uses multiple machines or multiple processors
simultaneously to process a program. For parallel process-
ing, data and/or program codes are divided and distrib-
uted to several independent machines, called “nodes” in
cluster computing, so that each machine can process a
part of the whole data or codes simultaneously with the
other machines.

The potential speedup gained from parallelized pro-
gram codes can be estimated by the Amdahl’s law, origi-
nally formulated by G. Amdahl (Amdahl, 1967). The
Amdahl’s law is often used in parallel computing to pre-
dict the theoretical maximum speed-up using multiple
processors. According to the Amdahl’s law, maximum
speedup follows the following equation (1).

S
P

=
−

()1

1
1

where S is the speedup of the program and P is the frac-
tion of execution time for parallelizable part.

In clustering environments, Amdahl’s Law cannot be
directly applied because there are overheads of data ex-
changes when an application is executed in parallel. There
are tradeoffs between advantages of parallel computing
and increased data exchange overheads.
Message Passing Interface (MPI): In parallel comput-
ing, multiple computers cooperate to generate final re-
sults. Each node participating in parallel computing is in
charge of its own computing partial data and transferring
that data to other nodes. MPI is one of the “Message pass-
ing” model standards, and it is a language-independent
communication protocol. Data exchange among comput-
ing nodes is an important step of parallelization using

multiple nodes. Both unicast (point-to-point) and broad-
cast (one-to-many) data transfer mechanisms are sup-
ported in MPI. MPI has been standardized in MPI Fo-
rum, and currently MPI version 1 and 2 are widely used.

There are many available MPI library implementations
in FORTRAN as well as in C, and we used MPICH2 li-
brary (MPICH2, 2009), which is one of most widely used
MPI libraries. The original implementation of MPICH,
called MPICH1, implemented the MPI-1.1 standard. As
of 2008, the latest implementation is MPICH2, the
adopted MPI-2.1 standard, but does not yet support data
translation between different hardware architectures.
Open Multi-Processing (OpenMP): OpenMP (2009) is
an application programming interface (API). With
OpenMP, we can make a program run in a single multi-
processor machine with shared memory. The major dif-
ference between OpenMP and MPI is whether operations
are performed on shared memory in a single node or dis-
tributed memory in multiple nodes. As for MPI, program-
mers must design and implement applications including
communication modules and computation modules using
MPI libraries, while, as for OpenMP, programmers use
directives provided by OpenMP and codes are automati-
cally generated. Since execution codes are automatically
generated using OpenMP directives, the generated codes
may not be optimal codes in a performance aspect.

Source code implemented with OpenMP may have
much higher execution overheads when parallelized with
MPI, because communication overheads using shared
memory in a single machine are usually quite different
from those using distributed memory in multiple nodes
in a clustering environment. Increases of data exchange
time may give huge obstacles to make source codes gen-
erated with OpenMP to run in a clustering environment.

Profiling
In software engineering, performance analysis, or pro-

filing, is the investigation of a program’s behavior using
information gathered while the program is executed. A
profiling method can show execution flows of a program
and can estimate the execution time and the number of
executions of a certain function. In this paper, we used
two kinds of profiling methods: function profiling and
loop profiling.
Function profiling: Function profiling provides function-
level performance analysis results, such as the number of
calls of a function and overall execution time of a func-
tion. Most function-level profiler creates profiling results
based on a raw debugging data file that is generated upon
execution of program compiled with a special option, such
as the “-pg” option of the gcc compiler.

Even though function profiling provides performance
analysis information of each function, one of disadvan-
tages of a function-level profiler is that it cannot esti-

A general parallelization approach 325

mate overheads of fractions (e.g., loops) inside a func-
tion since the analysis granularity is a function.
Loop profiling: Except for the operations such as file
input/output or disk input/output operations, overheads
of functions are usually caused by iteration operations,
i.e., loops, especially in large-scale modeling programs.
If a function has several loops, a loop profiling method
can find out performance overheads of each loop.

A loop profiling method (Moseley et al., 2007) is usu-
ally carried out for functions that need additional perform-
ance analysis. If a function has more than one loop, a
loop profiling method is essential to find out estimated
overheads of each loop.

PARALLELIZATION OF THE GEOS-CHEM MODEL

PROGRAM: A CASE STUDY

GEOS-Chem is a global 3-D chemical transport model
driven by assimilated meteorological observations from
the Goddard Earth Observing System (GEOS) of the
NASA Global Modeling Assimilation Office (GMAO).
It has been developed by many researchers at Harvard
University since 1988 and used by more than 40 research
groups worldwide as a research tool to investigate a wide
range of atmospheric chemistry and climate issues. Be-
cause of the long history of development GEOS-Chem is
a large legacy program, with the size of more than 150,000
lines of codes mostly in FORTRAN. We used GEOS-
Chem version 7-04-09 with GEOS-4 assimilated meteor-
ology, which is already parallelized with OpenMP, but
not with MPI. In a single machine, the GEOS-Chem can
utilize maximum processors using OpenMP. But, the per-
formance improvement by the MPI method is highly re-
quired to utilize more resources on a computer cluster
environment.

This paper explains processes and experiences with
parallelization of GEOS-Chem model program, and the
parallelization procedures in this paper can be easily ap-
plied to other legacy programs. We parallelize a part of
the GEOS-Chem model program and show results in Sub-
section “Experimental results”.

Because parallelization requires lots of human re-
sources as well as system resources and takes long time
to make an entire legacy program run in parallel, we need
to select some of parallelizable parts of the program, i.e.,
some modules or functions that cause large execution
overheads. By parallelizing best candidate modules for
the MPI method, we can achieve overall performance
improvement with less effort. Therefore, how to select
target modules or functions is quite important. Since
GEOS-Chem model program is widely used in the atmos-
pheric research community, the impact of parallelization
of the program is expected to be quite huge.

Proposed procedures
We used the following steps to make GEOS-Chem

model program run in parallel environments. Figure 1
shows a brief overview of these steps. These steps can be
easily applied to parallelization of other legacy programs.
(1) Profiling of functions There are many available pro-
filing techniques and tools (Moseley et al., 2007), includ-
ing Digital Continuous Profiling Infrastructure (Anderson
et al., 1997), Oprofile, and gprof (Graham et al., 1982).
Among these tools, gprof is most widely used to analyze
programs. Tools such as gprof can estimate the execution
time spent in each function as well as the execution time
spent in its all children functions, and these tools can gen-
erate a call graph that shows each function’s callers and
callees, and the number of times each function is called.
As a result of profiling, we can estimate the average ex-
ecution time spent in each call of a function.

A function may have several loops, but gprof does not
provide the execution time for each loop inside a func-
tion. So, more specific profiling method is needed. Loop
profiling estimates elapsed time of a certain loop using
timestamps at both the starting point and the ending point
of the loop. In sequential execution testing, time-related
functions of FORTRAN are used, and in parallel execu-
tion testing, the MPI_WTIME function provided by MPI
is used to estimate execution time.
(2) Selecting functions based on profiling results Results
of function profil ing can be used to determine
parallelization candidate functions. To select functions for

Start

Profiling fuctions

Selecting candidate
functions

Testing feasibility of
candidate function

Verifying data

End

Fig. 1. Overview of our parallelization steps.

326 R. J. Park et al.

parallelization, we need to focus on specific fields of gprof
results, such as “self seconds,” which represents total
spent time in a function, and “calls,” which represents
the number of invocations of a function. If we divide the
value of the “self seconds” field by that of the “calls”
field, we will get the average spent time of a specific func-
tion. If profiling results show that a function consumes
long execution time in average, the function is a good
candidate for parallelization.

Starting from the longest execution time in average,
additional analysis, such as loop profiling, is carried out.
Several functions of GEOS-Chem model program have
triple or quadruple nested loops. If parallelization of these
functions is possible, we can get significant performance
enhancement.
(3) Investigating feasibility of parallelization for selected
functions For the selected candidate functions based on
results of function profiling and loop profiling, feasibil-
ity tests will be performed. To execute a function in mul-
tiple computing nodes, data must be decomposed. In this
step, we look into data processed in a function, and ex-
amine possible execution time improvement with decom-
posed data.

The main target of parallelization is usually loops. In
a loop, original data are loaded and used to calculate new
results, and results are stored. If results from other nodes
are used again in the same loop, this loop is hard to be
parallelized because fetching results from different nodes
in the same cycle becomes very expensive.

If a loop has double or triple nested loops, outer loops
are easier to be parallelized. We also need to consider
how data are stored or loaded into main memory. For
analysis of feasibility, the followings should be consid-
ered:

• Data size: Size of data used in the loop.
• Data dependency: Range of affected data after ex-

ecution of each loop.
• Data access pattern: Relationship between loop

indexes and affected data’s ranges.
Most data structures used in GEOS-Chem model pro-

gram are three-dimensional or four-dimensional arrays,
so a loop usually has double or triple inner loops. Triple
nested loops perform operations on X-axis, Y-axis and Z-
axis, and quadruple nested loops include more operations
on the tracer-axis. We need to determine which axis of
the data is to be decomposed. Before decomposing an
array, we need to check dependency of data stored in an
array. In GEOS-Chem model program, data on the Z-axis
usually have less dependency than those on the X-axis or
the Y-axis.

Next, we need to find out the affected scope of the
decomposed data calculation. If the decomposed data
calculation affects a wide range of data, communication
overheads increase dramatically. So, loops with these

kinds of data are difficult to be parallelized.
(4) Parallelizing selected functions While OpenMP sup-
ports directives that can be used for parallelization in a
single machine, MPI does not support directives, and de-
velopers must change source codes manually using MPI
libraries.

We wrote a function (called divide_range_block()) that
determines divided ranges from whole data domain for
each node, and each node performs data calculation for a
part of data specified by this function. After each phase
of data calculation, result data are exchanged using MPI
libraries. We used MPICH2 for our implementation, and
MPI_BCAST and MPI_ALLGATHERV functions are
used for data exchange.

Data operations are decomposed and assigned to in-
dividual nodes, and MPI library functions are responsi-
ble for exchanging data to synchronize result data in all
nodes. Programming code 1 shows an example of MPI-
applied source codes. The original loop iterates 54 times
in GEOS-Chem model program to process the whole data,
but the modified loop processes only a small portion of
data assigned by the divide_range_block() function.

In addition, when making GEOS-Chem model pro-
gram run in parallel, we also need to reduce communica-
tion complexity to reduce communication overheads
caused by MPI library functions.
(5) Data verification Data verification is the most im-
portant task, since results should remain same regardless
of parallel execution or sequential execution. The most
frequent error in parallel execution occurs due to incor-
rect calculation of data offsets. If a node calculates an
incorrect set of data, and final results become incorrect.

For data verification, we used 24-hour simulation data
of GEOS-Chem model program, and compared results of
sequential computation with those of parallel computa-
tion.

EXPERIMENTS AND RESULTS

Experimental environments
We constructed 8-node Linux cluster for our experi-

ments. Each machine has two Pentium D 3.2 GHz proc-
essors, 1 GB RAM, and connected through 1 Gbps
Ethernet network. Intel FORTRAN compiler, ifort (ver-
sion 10.1 with OpenMP version 2.5), was installed on the
machine, and MPICH2 library (version 1.0.6p1) is also
installed. The GEOS-Chem driven by GEOS-4 meteoro-
logical fields is installed on one machine, and the other
machines shared original copy through NFS (Network File
System). The program runs in parallel on shared NFS di-
rectories of each machine.

We implemented two experimental codes to compare
the MPI_BCAST function and the MPI_ALLGATHERV
function. Both functions are used to exchange data among

A general parallelization approach 327

nodes. The MPI_BCAST function supposes to broadcast
a message (i.e., data) from one node to all other nodes in
the cluster. However, actual implementation of the
MPI_BCAST function does not use real broadcasting
transmission. Instead, the function establishes unicast
connection to each destination node. So, it is slower than
the real broadcasting method. MPI_ALLGATHERV func-
tion gathers data from all nodes, and the function deliv-
ers data to all nodes again. Unlike the MPI_BCAST func-
tion, the MPI_ALLGATHERV function is called once for
whole data exchange in a phase.

We have parallelized a part of GEOS-Chem model
program. We modified two subroutines,
TPCORE_FVDAS and QMAP. The first consumes about
0.6% of whole simulation time, and the latter consumes
about 6.3%. Our selected subroutines consume about 7%
of total execution time of GEOS-Chem model program.
TPCORE_FVDAS subroutine and its QMAP subroutine
are selected because they have high average computation
time and their data usage patterns are suitable for
parallelization.

Figure 2 shows a parallelization concept of the
TPCORE_FVDAS subroutine. We analyzed four indexes
of the data which the TPCORE_FVDAS subroutine han-
dles with. The outer index of quadruple arrays in GEOS-
Chem model represents a kind of chemical substances.
In the TPCORE_FVDAS subroutine, there is no interfer-
ence among computations of these chemical substances,
so we divided these computations into several nodes by
allocating a specific range of outer index to each node.

Experimental results
The original GEOS-Chem model is a unified model

with the OpenMP method, and in our experiments, maxi-
mum resource is up to two processors in a single machine.
Our MPI-applied hybrid model can utilize all 8 nodes.

Figure 3 shows the results of 24-hour simulation data.
The original OpenMP-unified model takes about 25 min-
utes. As expected, MPI_ALLGATHERV function is more
efficient than MPI_BCAST function, because data ex-
changing time for MPI_ALLGATHERV function in-
creases more slowly than that of the MPI_BCAST, as the
number of nodes increases. So, the most efficient execu-
tion (Hybrid model using the MPI_ALLGATHERV func-
tion on 8-node cluster) takes about 21 minutes and 29
seconds with about 3-minute improvement compared with
the original execution time. This means that we achieved
about 10% performance improvement for the GEOS-
Chem model program.

LIMITATIONS AND FUTURE DIRECTIONS

Only small portion of functions in GEOS-Chem model
program are possible for parallelization because of com-
plex data dependencies. Recently there are some activi-
ties to make data parallel-friendly, such as Earth System
Modeling Framework (ESMF) (Yantosca, 2009).

In addition, MPI is different from OpenMP, as men-
tioned earlier. If each node has multiple processors, MPI-
only approaches cannot fully take advantages of overall
computing resources. So, we need to make a balanced
environment with both OpenMP and MPI methods.

RELATED WORK

Our efforts of parallelization of GEOS-Chem model
program are not the first one. NASA Jet Propulsion Labo-
ratory (JPL) has studied GEOS-Chem model to improve
its performance with distributed computing. Kevin Bow-
man at JPL had experiments about distributed computing
of GEOS-Chem model in clustering environments (Bow-
man, 2005). His report addressed that about 60% of

Parallelize

Node #1 Node #2 Node #3 Node #4

NOx
Ox
PAN
CO2

···

C3H8

CH2O
C2H6

···

SO2

SO3

NH3

NH4

···

LIMO
ALCO
SOG
···

0

17

19

21

23

25

27

1 2 4 8

Hybrid model
(MPI_BCAST)

Hybrid model
(MPI_ALLGAHTERV)

Unified model
(OpenMP only)

Execution time

(min)

of nodes

Fig. 2. Parallelization concept of TPCORE_FVDAS subrou-
tine.

Fig. 3. Experimental results of the GEOS-Chem model pro-
gram (24-hr simulation time).

328 R. J. Park et al.

GEOS-Chem model program are chemistry-related mod-
ules and he applied MPI techniques to those modules in
master-slave architecture. A master node distributes data
to all slave nodes and retrieves processed data from the
slave nodes. Bowman estimated overall computing costs,
but his estimation did not consider communication and
contention costs. Since communication overheads caused
between a master and multiple slaves occur in every phase,
overall communication overheads are much larger than
performance improvement gained from distributed com-
puting. However, in our approach, we applied peer-to-
peer communications instead of mater-slave communi-
cations; therefore, we could get overall performance im-
provement even though we parallelized only two func-
tions.

CONCLUSIONS

GEOS-Chem model is a large-scale legacy program
developed for a couple of decades. Since the OpenMP
method is used in GEOS-Chem, recent top-cluster gives
almost no performance improvement compared to a sin-
gle machine. In this paper, we proposed a general
parallelization procedure that can be used to parallelize a
large-scale legacy program by application of MPI method.
Our test results of MPI-applied GEOS-Chem model pro-
gram show that we can get good performance improve-
ment by parallelizing a small portion of the program. More
specifically, we parallelized only two functions and got
about 10% performance improvement with 24-hour data
simulation.

Performance improvement using OpenMP-only ap-
proach can have bottleneck problems because a certain
system resource is shared by processes in multiple cores.
One of advantages using our hybrid approach relative to
OpenMP-only approach is to have higher scalability as
resources increase, depending on the ratio of communi-
cation to computation time. However, new technologies
such as fiber optics, storage area network (SAN), infinite
band, etc., are fast developing to minimize the communi-
cation overhead. We argue that our proposed
parallelization procedure and the hybrid GEOS-Chem
model program can contribute to atmospheric research
communities.

Acknowledgments—We thank researchers and developers who
have contributed to GEOS-Chem model developments. This
work was supported by the IT R&D program of MKE/IITA
(2008-F-034-02, Development of Security-Quality Guarantee
Technology in Resilient Networks).

REFERENCES

Amdahl, G. (1967) The validity of the single processor approach

to achieving large scale computing capabilities. 1967 AFIPS
Spring Joint Computer Conference (AFIPS ’67), Atlantic
City, New Jersey, 483–485.

Anderson, J. M., Berc, L. M., Dean, J., Ghemawat, S.,
Henzinger, M. R., Leung, S. T. A., Sites, R. L., Vandevoorde,
M. T., Waldspurger, C. A. and Weihl, W. E. (1997) Con-
tinuous profiling: where have all the cycles gone? ACM
Transaction on Computer Systems J. 15, 357–390.

Bowman, K. (2005) Parallelization of GEOS-Chem on a 1024-
node Linux cluster based on MPI, 2nd GEOS-Chem Users’
Meeting, Cambridge, Massachusetts.

Graham, S. L., Kessler, P. B. and McKusick, M. K. (1982)
Gprof: a call graph execution profiler. SIGPLAN Notices
39, 49–57.

Harvard Atmospheric Chemistry Modeling Group (2009) The
GEOS-Chem model, available at http://acmg.seas.harvard.
edu/geos/index.html

Jarvis, S. A., Spooner, D. P., Lim, H. N., Keung, C., Cao, J.,
Saini, S. and Nudd, G. R. (2006) Performance prediction
and its use in parallel and distributed computing systems.
Future Generation Computer Systems J. 22, 745–754.

Moseley, T., Connors, D. A., Grunwald, D. and Peri, R. (2007)
Identifying potential parallelism via loop-centric profiling.
4th International Conference on Computing Frontiers, Is-
chia, Italy, 143–152.

MPICH2 (2009) available at http://www.mcs.anl.gov/research/
projects/mpich2/

OpenMP (2009) The OpenMP API specification for parallel pro-
gramming, available at http://www.openmp.org/

Xu, G., Lu, F., Yu, H. and Xu, Z. (2007) A distributed parallel
computing environment for bioinformatics problems. 6th
International Conference on Grid and Cooperative Com-
puting (GCC 2007), Urumchi, Xinjiang, China, 593–599.

Yantosca, B. (2009) GEOS-Chem code: new developments,
future directions, 4th GEOS-Chem Scientific and Users’
Meeting, Cambridge, Massachusetts.

APPENDIX

Programming code
Data exchanging code using MPI_ALLGATHERV

call comm_tstart
agv_displs(1) = 0
do i=0,comm_size-1

call comm_qmap_block(ixj1, ixj2, nq, i)
if (rank == i) then

q2(:,:,:,1:(ixj2-ixj1+1)) = q(:,:,:,ixj1:ixj2)
endif
mpi_tsize = im*jlast*km*(ixj2-ixj1+1)
agv_rcount(i+1) = mpi_tsize
if (i+1 <= comm_size) then

agv_displs(i+1) = im*jlast*km*(ixj1-1)
endif

enddo
call mpi_allgatherv(q2,agv_rcount(rank+1),MPI_REAL8,&

q, agv_rcount, agv_displs, MPI_REAL8, &
MPI_COMM_WORLD, ierr)

call comm_tend

A general parallelization approach 329

Profiling Results of GEOS-Chem model program

Loop profiling results of TPCORE_FVDAS subroutine

Notations: BR = MPI_BCAST, AG = MPI_ALLGATHERV, # = the number of nodes.

Execution Time of TPCORE_FVDAS and QMAP subroutines (unit: seconds)

% cumulative self
time seconds seconds calls name

6.82 228.09 228.09 12348 fvdas_convect_mod_mp_convtran_
6.67 451.28 223.19 119232 tpcore_fvdas_mod_mp_map1_ppm_
6.43 666.29 215.01 555699 subfun_
6.28 876.25 209.96 48 tpcore_fvdas_mod_mp_qmap_
6.23 1084.69 208.44 197521 pderiv_
5.37 1264.27 179.58 197521 decomp_
5.27 1440.51 176.24 119232 tpcore_fvdas_mod_mp_ppm2m_
4.86 1603 162.49 3372840 tpcore_fvdas_mod_mp_xmist_
4.64 1758.14 155.14 43872 smvgear_
4.63 1912.91 154.77 117547140 gen_
4.05 2048.49 135.58 2954880 tpcore_fvdas_mod_mp_fxppm_
3.89 2178.75 130.26 315168 blkslv_
3.44 2293.92 115.17 511827 backsub_
3.24 2402.45 108.53 315168 opmie_
2.44 2483.98 81.53 13248 fvdas_convect_mod_mp_hack_conv_
1.7 2540.93 56.95 96 wetscav_mod_mp_wetdep_
1.64 2595.92 54.99 119232 tpcore_fvdas_mod_mp_steepz_
1.62 2650.22 54.3 48 transport_mod_mp_do_global_transport_
1.49 2700.06 49.84 117547140 matin4_
1.44 2748.07 48.01 6969600 tpcore_fvdas_mod_mp_xtp_
1.17 2787.1 39.03 77760 tpcore_fvdas_mod_mp_fyppm_
1.16 2826.02 38.92 77760 tpcore_fvdas_mod_mp_ymist_
0.89 2855.72 29.7 48 diag1_
0.84 2883.96 28.24 log.J
0.78 2909.99 26.03 144 dao_mod_mp_convert_units_
0.77 2935.66 25.66 79200 tpcore_fvdas_mod_mp_tp2d_
0.66 2957.86 22.2 48 tpcore_fvdas_mod_mp_tpcore_fvdas_

Loop Clocks Comments

Loop 1 1
Loop 2 40
Call AIR_MASS_FLUX 543
Loop 3 55148 Candidate for parallelization
Call QMAP 60813 Candidate for parallelization
Loop 4 and 5 — Not used

Experiments Subroutine execution time Data exchange time Total execution time

TPCORE_FVDAS QMAP

Original OpenMP unified 1.5434 4.1948 — 5.7392
BR 2 Hybrid 0.7728 2.0976 0.8194 3.6898
AG 2 Hybrid 0.7651 2.0937 0.7229 3.5817
BR 4 Hybrid 0.4024 1.0861 1.8877 3.3762
AG 4 Hybrid 0.3987 1.0829 0.9972 2.4788
BR 8 Hybrid 0.2024 0.5437 2.8665 3.6126
AG 8 Hybrid 0.2256 0.5376 1.1441 1.9073

