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a b s t r a c t

Lee et al. considered the following quadratic functional equation

f (lx + y) + f (lx − y) = 2l2f (x) + 2f (y)

and proved the Hyers–Ulam–Rassias stability of the above functional equation in classical
Banach spaces.

In this paper, we prove the Hyers–Ulam–Rassias stability of the above quadratic
functional equation in non-Archimedean L-fuzzy normed spaces.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of fuzzy sets was introduced by Zadeh in 1965 [1]. After the pioneering work of Zadeh, there has been a great
effort to obtain fuzzy analogues of classical theories. Among other fields, a progressive development is made in the field
of fuzzy topology [2–12]. One of the problems in L-fuzzy topology is to obtain an appropriate concept of L-fuzzy metric
spaces and L-fuzzy normed spaces. Saadati and J. Park [13], respectively, introduced and studied a notion of intuitionistic
fuzzy metric (normed) spaces and then Deschrijver et al. and Saadati generalized the concept of intuitionistic fuzzy metric
(normed) spaces and introduced and studied a notion of L-fuzzy metric spaces and L-fuzzy normed spaces [14,15].

On the other hand, the study of stability problems for functional equations is related to a question of Ulam [16] concerning
the stability of group homomorphisms, which was affirmatively answered for Banach spaces by Hyers [17]. Subsequently,
the result of Hyers was generalized by Aoki [18] for additive mappings and by Th.M. Rassias [19] for linear mappings by
considering an unbounded Cauchy difference. The paper by Th.M. Rassias has provided a lot of influences in the development
of what we now call the Hyers–Ulam–Rassias stability of functional equations. For more information on such problems, we
refer the interested readers to [20–32].

Throughout this paper, assume that l is a fixed positive integer. In this paper, we prove the Hyers–Ulam–Rassias stability
of the quadratic functional equation

f (lx + y) + f (lx − y) = 2l2f (x) + 2f (y) (1.1)

in non-Archimedean L-fuzzy normed spaces.
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2. Preliminaries

In this section, we recall some definitions and results for our main results in this paper.
A triangular norm (briefly, a t-norm) is a binary operation T : [0, 1] × [0, 1] → [0, 1] which is commutative, associative,

monotone and has 1 as the unit element. Basic examples are the Lukasiewicz t-norm TL, TL(a, b) = max{a + b − 1, 0} for
all a, b ∈ [0, 1] and the t-norms TP , TM , TD, where TP(a, b) := ab, TM(a, b) := min{a, b},

TD(a, b) :=


min{a, b}, if max{a, b} = 1;
0, otherwise.

A t-norm T is said to be of Hadžić type (we denote this by T ∈ H) ([33]) if the family (x(n)
T )n∈N is equicontinuous at x = 1,

where x(n)
T is defined by

x(1)
T = x, x(n)

T = T (x(n−1)
T , x), ∀n ≥ 2, x ∈ [0, 1].

Other important triangular norms are as follows (see [34]).
(1) The Sugeno–Weber family {T SW

λ }λ∈[−1,∞], is defined by T SW
−1 = TD, T SW

∞
= TP and

T SW
λ (x, y) = max


0,

x + y − 1 + λxy
1 + λ


if λ ∈ (−1, ∞).

(2) The Domby family {TD
λ }λ∈[0,∞] is defined by TD, if λ = 0, TM , if λ = ∞ and

TD
λ (x, y) =

1

1 +

 1−x
x

λ
+


1−y
y

λ
1/λ

if λ ∈ (−1, ∞).
(3) The Aczel–Alsina family {T AA

λ }λ∈[0,∞] is defined by TD, if λ = 0, TM , if λ = ∞ and

T AA
λ (x, y) = e−(| log x|λ+| log y|λ)1/λ

if λ ∈ (−1, ∞).

A t-norm T can be extended (by associativity) in a unique way to an n-ary operation taking, for all (x1, . . . , xn) ∈ [0, 1]n,
the value T (x1, . . . , xn) defined by

T0i=1xi = 1, Tni=1xi = T (Tn−1
i=1 xi, xn) = T (x1, . . . , xn).

A t-norm T can also be extended to a countable operation taking, for any sequence {xn}n∈N in [0, 1], the value
T∞

i=1xi = lim
n→∞

Tni=1xi.

Proposition 2.1 ([34]).
(1) For T ≥ TL the following implication holds:

lim
n→∞

T∞

i=1xn+i = 1 ⇐⇒

∞−
n=1

(1 − xn) < ∞.

(2) If T is of Hadžić type, then

lim
n→∞

T∞

i=1xn+i = 1

for every sequence (xn)n∈N in [0, 1] such that limn→∞ xn = 1.
(3) If T ∈ {T AA

λ }λ∈(0,∞) ∪ {TD
λ }λ∈(0,∞), then

lim
n→∞

T∞

i=1xn+i = 1 ⇐⇒

∞−
n=1

(1 − xn)α < ∞.

(4) If T ∈ {T SW
λ }λ∈[−1,∞), then

lim
n→∞

T∞

i=1xn+i = 1 ⇐⇒

∞−
n=1

(1 − xn) < ∞.

3. L-fuzzy normed spaces

In what follows, we shall adopt the usual terminology, notation and some definitions introduced by Saadati et al. [35].
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Definition 3.1 ([36]). Let L = (L, ≤L) be a complete lattice and let U be a non-empty set called the universe. An L-fuzzy set
in U is defined as a mapping A : U → L. For each u in U, A(u) represents the degree (in L) to which u is an element of A.

Consider the set L∗ and operation ≤L∗ defined by

L∗
= {(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1},

(x1, x2) ≤L∗(y1, y2) ⇐⇒ x1 ≤ y1, x2 ≥ y2

for all (x1, x2), (y1, y2) ∈ L∗. Then (L∗, ≤L∗) is a complete lattice (see [37,38]).

Definition 3.2 ([39]). An intuitionistic fuzzy set Aζ ,η in the universe U is an object Aζ ,η = {(u, ζA(u), ηA(u)) : u ∈ U},
where ζA(u) ∈ [0, 1] and ηA(u) ∈ [0, 1] for all u ∈ U are called the membership degree and the non-membership degree,
respectively, of u in Aζ ,η and, furthermore, satisfy ζA(u) + ηA(u) ≤ 1.

In the last section, t-norms on ([0, 1], ≤) is defined as an increasing, commutative, associative mapping T : [0, 1]2 →

[0, 1] satisfying T (1, x) = x for all x ∈ [0, 1]. This definition can be straightforwardly extended to any lattice L = (L, ≤L).

Definition 3.3. A triangular norm (t-norm) on L is a mapping T : L2 → L satisfying the following conditions:

(i) (∀x ∈ L)(T (x, 1L) = x) (: boundary condition);
(ii) (∀(x, y) ∈ L2)(T (x, y) = T (y, x)) (: commutativity);
(iii) (∀(x, y, z) ∈ L3)(T (x, T (y, z)) = T (T (x, y), z)) (: associativity);
(iv) (∀(x, x′, y, y′) ∈ L4)(x≤L x′ and y≤L y′

⇒ T (x, y) ≤L T (x′, y′)) (: monotonicity).

A t-norm T on L is said to be continuous if, for any x, y ∈ L and any sequences {xn} and {yn} which converge to x and y,
respectively,

lim
n→∞

T (xn, yn) = T (x, y).

For examples, T (x, y) = min(x, y) and T (x, y) = xy are two continuous t-norms on [0, 1]. The t-norm ∧ defined by

∧(x, y) =


x if x≤L y
y if y≤L x

is a continuous t-norm.
A t-norm T can also be defined recursively as an (n + 1)-ary operation (n ∈ N) by T 1

= T and

T n(x1, . . . , xn+1) = T (T n−1(x1, . . . , xn), xn+1)

for all n ≥ 2 and xi ∈ L.

Definition 3.4. (1) A negator on L is any decreasing mapping N : L → L satisfying N (0L) = 1L and N (1L) = 0L.
(2) If N (N (x)) = x for all x ∈ L, then N is called an involutive negator.
(3) The negator Ns on ([0, 1], ≤) defined as Ns(x) = 1 − x for all x ∈ [0, 1] is called the standard negator on ([0, 1], ≤).

In this paper, the involutive negator N is fixed.

Definition 3.5. (1) The triple (X, M, T ) is said to be an L-fuzzy metric space if X is an arbitrary (non-empty) set, T is a
continuous t-norm onL andM is anL-fuzzy set on X2

× (0, +∞) satisfying the following conditions: for all x, y, z ∈ X
and t, s ∈]0, +∞[,
(a) M(x, y, t) >L 0L;
(b) M(x, y, t) = 1L for all t > 0 if and only if x = y;
(c) M(x, y, t) = M(y, x, t);
(d) T (M(x, y, t), M(y, z, s)) ≤L M(x, z, t + s);
(e) M(x, y, ·) :]0, +∞[→ L is continuous.
In this case, M is called an L-fuzzy metric.

(2) IfM = MM,N is an intuitionistic fuzzy set (see Definition 3.2), then the 3-tuple (X, MM,N , T ) is said to be an intuitionistic
fuzzy metric space.

Example 3.6. Let (X, d) be a metric space. Denote T (a, b) = (a1b1,min(a2 + b2, 1)) for all a = (a1, a2), b = (b1, b2) ∈ L∗

and let MM,N be the intuitionistic fuzzy set on X×]0, ∞[ defined as follows:

MM,N(x, t) =


htn

htn + md(x, y)
,

md(x, y)
htn + md(x, y)


for all t, h,m, n ∈ R+. Then (X, MM,N , T ) is an intuitionistic fuzzy metric space.
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Example 3.7. Let X = N. Define T (a, b) = (max(0, a1 + b1 − 1), a2 + b2 − a2b2) for all a = (a1, a2), b = (b1, b2) ∈ L∗ and
let MM,N be the intuitionistic fuzzy set on X×]0, ∞[ defined as follows:

MM,N(x, t) =



x
y
,
y − x
y


if x ≤ y

y
x
,
x − y
x


if y ≤ x

for all x, y ∈ X and t > 0. Then (X, MM,N , T ) is an intuitionistic fuzzy metric space.

Definition 3.8. (1) The triple (V , P , T ) is said to be an L-fuzzy normed space if V is vector space, T is a continuous t-norm
on L and P is an L-fuzzy set on V × (0, +∞) satisfying the following conditions: for all x, y ∈ V and t, s ∈ (0, +∞),
(a) P (x, t) >L 0L;
(b) P (x, t) = 1L if and only if x = 0;
(c) P (αx, t) = P (x, t

|α|
) for each α ≠ 0;

(d) T (P (x, t), P (y, s)) ≤L P (x + y, t + s);
(e) P (x, ·) :]0, ∞[→ L is continuous;
(f) limt→0 P (x, t) = 0L and limt→∞ P (x, t) = 1L.
In this case, P is called an L-fuzzy norm.

(2) If P = Pµ,ν is an intuitionistic fuzzy set (see Definition 3.2), then the 3-tuple (V , Pµ,ν, T ) is said to be an intuitionistic
fuzzy normed space.

Example 3.9. Let (V , ‖·‖)be anormed space. DenoteT (a, b) = (a1b1,min(a2+b2, 1)) for all a = (a1, a2), b = (b1, b2) ∈ L∗

and let Pµ,ν be the intuitionistic fuzzy set on V × (0, +∞) defined as follows:

Pµ,ν(x, t) =


t

t + ‖x‖
,

‖x‖
t + ‖x‖


for all t ∈ R+. Then (V , Pµ,ν, T ) is an intuitionistic fuzzy normed space.

Definition 3.10. (1) A sequence (xn)n∈N in an L-fuzzy normed space (V , P , T ) is called a Cauchy sequence if, for each
ε ∈ L \ {0L} and t > 0, there exists n0 ∈ N such that, for all n,m ≥ n0,

P (xn − xm, t) >L N (ε),

where N is a negator on L.
(2) A sequence (xn)n∈N is said to be convergent to x ∈ V in theL-fuzzy normed space (V , P , T ), which is denoted by xn

P
→ x,

if P (xn − x, t) → 1L, whenever n → +∞ for all t > 0.
(3) An L-fuzzy normed space (V , P , T ) is said to be complete if and only if every Cauchy sequence in V is convergent.

Note that, if P is an L-fuzzy norm on V , then the following are satisfied:
(1) P (x, t) is nondecreasing with respect to t for all x ∈ V .
(2) P (x − y, t) = P (y − x, t) for all x, y ∈ V and t ∈ (0, +∞).

Let (V , P , T ) be an L-fuzzy normed space. If we define
M(x, y, t) = P (x − y, t)

for all x, y ∈ V and t > 0, then M is an L-fuzzy metric on V , which is called the L-fuzzy metric induced by the L-fuzzy
norm P .

Definition 3.11. Let (V , P , T ) be an L-fuzzy normed space and let N be a negator on L.
(1) For all t > 0, we define the open ball B(x, r, t) with center x ∈ V and radius r ∈ L \ {0L, 1L} as follows:

B(x, r, t) = {y ∈ V : P (x − y, t) >L N (r)}

and define the unit ball of V by

B(0, r, 1) = {x : P (x, 1) >L N (r)}.
(2) A subset A ⊆ V is said to be open if, for each x ∈ A, there exist t > 0 and r ∈ L \ {0L, 1L} such that B(x, r, t) ⊆ A.
(3) Let τP denote the family of all open subsets of V . Then τP is called the topology induced by the L-fuzzy norm P .

Note that, in the case of an intuitionistic fuzzy normed space, this topology is the same as the topology induced by
intuitionistic fuzzy metric which is Hausdorff (see Remark 3.3 and Theorem 3.5 of [40]).

Definition 3.12. Let (V , P , T ) be an L-fuzzy normed space and let N be a negator on L. A subset A of V is said to be
LF-bounded if there exist t > 0 and r ∈ L \ {0L, 1L} such that P (x, t) >L N (r) for all x ∈ A.

Note that, in anL-fuzzy normed space (V , P , T ), every compact set is closed andLF-bounded (see Remark 3.10 of [40]).
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4. Non-Archimedean L-fuzzy normed spaces

In 1897, Hensel [41] introduced a field with a valuation in which it does not have the Archimedean property.

Definition 4.1. Let K be a field. A non-Archimedean absolute value on K is a function | · | : K → [0, +∞) such that, for
any a, b ∈ K ,

(i) |a| ≥ 0 and the equality holds if and only if a = 0,
(ii) |ab| = |a||b|,
(iii) |a + b| ≤ max{|a|, |b|} (the strict triangle inequality).

Note that |n| ≤ 1 for each integer n. We always assume, in addition, that | · | is non-trivial, i.e., there exists an a0 ∈ K
such that |a0| ≠ 0, 1.

Definition 4.2. A non-Archimedean L-fuzzy normed space is a triple (V , P , T ), where V is a vector space, T is a continuous
t-normonL andP is anL-fuzzy set on V×(0, +∞) satisfying the following conditions: for all x, y ∈ V and t, s ∈ (0, +∞),

(a) 0L <L P (x, t);
(b) P (x, t) = 1L if and only if x = 0;
(c) P (αx, t) = P (x, t

|α|
) for all α ≠ 0;

(d) T (P (x, t), P (y, s)) ≤L P (x + y,max{t, s});
(e) P (x, ·) :]0, ∞[→ L is continuous;
(f) limt→0 P (x, t) = 0L and limt→∞ P (x, t) = 1L.

Example 4.3. Let (X, ‖.‖) be a non-Archimedean normed linear space. Then the triple (X, P ,min), where

P (x, t) =


0, if t ≤ ‖x‖;
1, if t > ‖x‖,

is a non-Archimedean L-fuzzy normed space in which L = [0, 1].

Example 4.4. Let (X, ‖ · ‖) be is a non-Archimedean normed linear space. Denote TM(a, b) = (min{a1, b1},max{a2, b2}) for
all a = (a1, a2), b = (b1, b2) ∈ L∗ and let Pµ,ν be the intuitionistic fuzzy set on X×]0, +∞[ defined as follows:

Pµ,ν(x, t) =


t

t + ‖x‖
,

‖x‖
t + ‖x‖


for all t ∈ R+. Then (X, Pµ,ν, TM) is a non-Archimedean intuitionistic fuzzy normed space.

5. L-Fuzzy Hyers–Ulam–Rassias stability

Let K be a non-Archimedean field, X a vector space over K and (Y , P , T ) a non-Archimedean L-fuzzy Banach space
over K .

In this section, we prove the Hyers–Ulam–Rassias stability of the quadratic functional equation (1.1).
Next, we define an L-fuzzy approximately quadratic mapping. Let Ψ be an L-fuzzy set on X × X × [0, ∞) such that

Ψ (x, y, ·) is nondecreasing,

Ψ (cx, cx, t) ≥L Ψ


x, x,

t
|c|


, ∀x ∈ X, c ≠ 0

and

lim
t→∞

Ψ (x, y, t) = 1L, ∀x, y ∈ X, t > 0.

Definition 5.1. A mapping f : X → Y is said to be Ψ -approximately quadratic if

P (f (lx + y) + f (lx − y) − 2l2f (x) − 2f (y), t) ≥L Ψ (x, y, t), ∀x, y ∈ X, t > 0. (5.1)

The following is one of our main results in this section.
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Theorem 5.2. Let K be a non-Archimedean field, X a vector space over K and (Y , P , T ) a non-Archimedean L-fuzzy Banach
space over K . Let f : X → Y be a Ψ -approximately quadratic mapping and f (0) = 0. If there exist an α ∈ R(α > 0) and an
integer k, k ≥ 2 with |lk| < α, |l| ≠ 1 and l ≠ 0 such that

Ψ (l−kx, l−ky, t) ≥L Ψ (x, y, αt), ∀x ∈ X, t > 0, (5.2)

and

lim
n→∞

T ∞

j=nM


x,

αjt
|l|kj


= 1L, ∀x ∈ X, t > 0,

then there exists a unique quadratic mapping Q : X → Y such that

P (f (x) − Q (x), t) ≥ T ∞

i=1M


x,

αi+1t
|l|ki


, ∀x ∈ X, t > 0, (5.3)

where

M(x, t) := T (Ψ (x, 0, t), Ψ (lx, 0, t), . . . , Ψ (lk−1x, 0, t)), ∀x ∈ X, t > 0.

Proof. First, we show, by induction on j, that, for all x ∈ X, t > 0 and j ≥ 1,

P (f (ljx) − l2jf (x), t) ≥L Mj(x, t)

:= T (Ψ (x, 0, t), . . . , Ψ (lj−1x, 0, t)). (5.4)

Putting y = 0 in (5.1), we obtain

P (2f (lx) − 2l2f (x), t) ≥L Ψ (x, 0, t), ∀x ∈ X, t > 0,

and

P (f (lx) − l2f (x), t) ≥L Ψ (x, 0, 2t) ≥L Ψ (x, 0, t), ∀x ∈ X, t > 0.

This proves (5.4) for j = 1. Let (5.4) hold for some j > 1. Replacing y by 0 and x by ljx in (5.1), we get

P (f (lj+1x) − l2f (ljx), t) ≥L Ψ (ljx, 0, t), ∀x ∈ X, t > 0.

Since |l| ≤ 1, it follows that

P (f (lj+1x) − l2(j+1)f (x), t) ≥L T (P (f (lj+1x) − l2f (ljx), t), P (l2f (ljx) − l2(j+1)f (x), t))

= T


P (f (lj+1x) − l2f (ljx), t), P


f (ljx) − l2jf (x),

t
|l|2


≥L T (P (f (lj+1x) − l2f (ljx), t), P (f (ljx) − l2jf (x), t))
≥L T (Ψ (ljx, 0, t), Mj(x, t))
= Mj+1(x, t), ∀x ∈ X, t > 0.

Thus (5.4) holds for all j ≥ 1. In particular, we have

P (f (lkx) − l2kf (x), t) ≥L M(x, t), ∀x ∈ X, t > 0. (5.5)

Replacing x by l−(kn+k)x in (5.5) and using inequality (5.2), we obtain

P

f
 x
lkn


− l2kf

 x
lkn+k


, t


≥L M
 x
lkn+k

, t


≥L M(x, αn+1t) ∀x ∈ X, t > 0, n ≥ 0

and so

P


(l2k)nf


x

(lk)n


− (l2k)n+1f


x

(lk)n+1


, t


≥L M


x,

αn+1

|(l2k)n|
t


≥L M


x,

αn+1

|(lk)n|
t


, ∀x ∈ X, t > 0, n ≥ 0.
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Hence it follows that

P


(l2k)nf


x

(lk)n


− (l2k)n+pf


x

(lk)n+p


, t


≥L T
n+p
j=n


P


(l2k)jf


x

(lk)j


− (l2k)j+pf


x

(lk)j+p


, t


≥L T
n+p
j=n M


x,

αj+1

|(lk)j|
t


, ∀x ∈ X, t > 0, n ≥ 0.

Since limn→∞ T ∞

j=nM(x, αj+1

|(lk)j|
t) = 1L for all x ∈ X and t > 0, {(l2k)nf ( x

(lk)n
)}n∈N is a Cauchy sequence in the non-

Archimedean L-fuzzy Banach space (Y , P , T ). Hence we can define a mapping Q : X → Y such that

lim
n→∞

P


(l2k)nf


x

(lk)n


− Q (x), t


= 1L, ∀x ∈ X, t > 0. (5.6)

Next, for all n ≥ 1, x ∈ X and t > 0, we have

P


f (x) − (l2k)nf


x

(lk)n


, t


= P


n−1−
i=0

(l2k)if


x
(lk)i


− (l2k)i+1f


x

(lk)i+1


, t



≥L T n−1
i=0


P


(l2k)if


x

(lk)i


− (l2k)i+1f


x

(lk)i+1


, t


≥L T n−1
i=0 M


x,

αi+1t
|lk|i


and so

P (f (x) − Q (x), t) ≥L T


P


f (x) − (l2k)nf


x

(lk)n


, t


, P


(l2k)nf


x

(lk)n


− Q (x), t


≥L P


T n−1
i=0 M


x,

αi+1t
|lk|i


, P


(l2k)nf


x

(lk)n


− Q (x), t


. (5.7)

Taking the limit as n → ∞ in (5.7), we obtain

P (f (x) − Q (x), t) ≥L T ∞

i=1M


x,

αi+1t
|lk|i


,

which proves (5.3). As T is continuous, from a well-known result in L-fuzzy (probabilistic) normed space (see [42],
Chapter 12), it follows that

lim
n→∞

P ((l2k)nf (l−kn(lx + y)) + (l2k)nf (l−kn(lx − y)) − 2(l2k)nf (l−kn(x)) − 2(l2k)nf (l−kn(y)), t)

= P (Q (lx + y) + Q (lx − y) − 2l2Q (x) − 2Q (y), t)

for almost all t > 0.
On the other hand, replacing x, y by l−knx, l−kny in Eqs. (5.1) and (5.2), we get

P ((l2k)nf (l−kn(lx + y)) + (l2k)nf (l−kn(lx − y)) − 2(l2k)nf (l−kn(x)) − 2(l2k)nf (l−kn(y)), t)

≥L Ψ


l−knx, l−kny,

t
|l2k|n


≥L Ψ


x, y,

αnt
|lk|n


, ∀x, y ∈ X, t > 0.

Since limn→∞ Ψ (x, y, αnt
|lk|n

) = 1L, we infer that Q is a quadratic mapping.
For the uniqueness of Q , let Q ′

: X → Y be another quadratic mapping such that

P (Q ′(x) − f (x), t) ≥L M(x, t), ∀x ∈ X, t > 0.

Then we have, for all x, y ∈ X and t > 0,

P (Q (x) − Q ′(x), t) ≥L T


P


Q (x) − (l2k)nf


x

(lk)n


, t


, P


(l2k)nf


x

(lk)n


− Q ′(x), t


, t


.

Therefore, from (5.6), we conclude that Q = Q ′. This completes the proof. �
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Corollary 5.3. Let K be a non-Archimedean field, X a vector space over K and (Y , P , T ) a non-Archimedean L-fuzzy Banach
space over K under a t-norm T ∈ H . Let f : X → Y be a Ψ -approximately quadratic mapping. If there exist an
α ∈ R(α > 0), |l| ≠ 1, l ≠ 0 and an integer k, k ≥ 2 with |lk| < α such that

Ψ (l−kx, l−ky, t) ≥L Ψ (x, y, αt), ∀x ∈ X, t > 0,

then there exists a unique quadratic mapping Q : X → Y such that

P (f (x) − Q (x), t) ≥L T ∞

i=1M


x,

αi+1t
|l|ki


, ∀x ∈ X, t > 0,

where

M(x, t) := T (Ψ (x, 0, t), Ψ (lx, 0, t), . . . , Ψ (lk−1x, 0, t)), ∀x ∈ X, t > 0.

Proof. Since

lim
n→∞

M


x,

αjt
|l|kj


= 1L, ∀x ∈ X, t > 0,

and T is of Hadžić type, it follows from Proposition 2.1 that

lim
n→∞

T ∞

j=nM


x,

αjt
|l|kj


= 1L, ∀x ∈ X, t > 0.

Now, if we apply Theorem 5.2, we get the conclusion. �

Now, we give an example to validate the main result as follows:

Example 5.4. Let (X, ‖.‖) be a non-Archimedean Banach space, (X, Pµ,ν, TM) a non-Archimedean L-fuzzy normed space
(intuitionistic fuzzy normed space) in which

Pµ,ν(x, t) =


t

t + ‖x‖
,

‖x‖
t + ‖x‖


, ∀x ∈ X, t > 0,

and let (Y , Pµ,ν, TM) be a complete non-Archimedean L-fuzzy normed space (intuitionistic fuzzy normed space) (see
Example 4.4). Define

Ψ (x, y, t) =


t

1 + t
,

1
1 + t


.

It is easy to show that (5.2) holds for α = 1 (note that |l| ≠ 1, l ≠ 0). Also, since

M(x, t) =


t

1 + t
,

1
1 + t


,

we have

lim
n→∞

T ∞

M,j=nM


x,

αjt
|l|kj


= lim

n→∞


lim

m→∞
T m
M,j=nM


x,

t
|l|kj


= lim

n→∞
lim

m→∞


t

t + |lk|n
,

|lk|n

t + |lk|n


= (1, 0) = 1L∗ , ∀x ∈ X, t > 0.

Let f : X → Y be a Ψ -approximately quadratic mapping. Therefore, all the conditions of Theorem 5.2 hold and so there
exists a unique quadratic mapping Q : X −→ Y such that

Pµ,ν(f (x) − Q (x), t) ≥L∗


t

t + |lk|
,

|lk|
t + |lk|


.
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