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a b s t r a c t

In this work, we prove the generalized Hyers–Ulam stability of the following functional
inequality:

‖f (x)+ f (y)+ f (z)‖ ≤
∥∥∥∥kf ( x+ y+ zk

)∥∥∥∥ , |k| < |3|,
in non-Archimedean Banach spaces.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

A valuation is a function | · | from a field K into [0,∞) such that 0 is the unique element having the 0 valuation,
|rs| = |r| · |s| and the triangle inequality holds, i.e.,

|r + s| ≤ |r| + |s|, ∀r, s ∈ K.

A fieldK is called a valued field ifK carries a valuation. The usual absolute values of R and C are examples of valuations.
Let us consider a valuation which satisfies a condition stronger than the triangle inequality. If the triangle inequality is

replaced by
|r + s| ≤ max{|r|, |s|}, ∀r, s ∈ K,

then the function | · | is called a non-Archimedean valuation, and the field is called a non-Archimedean field. Clearly, |1| =
| − 1| = 1 and |n| ≤ 1 for all n ≥ 1. A trivial example of a non-Archimedean valuation is the function | · | taking everything
except 0 into 1 and |0| = 0.
Throughout this work, we assume that the base field is a non-Archimedean field and hence call it simply a field.

Definition 1.1 ([1]). LetX be a vector space over a fieldK with a non-Archimedean valuation | · |. A function ‖ · ‖ : X→
[0,∞) is called a non-Archimedean norm if the following conditions hold:
(i) ‖x‖ = 0 if and only if x = 0 for all x ∈ X;
(ii) ‖rx‖ = |r|‖x‖ for all r ∈ K and x ∈ X;
(iii) the strong triangle inequality holds:

‖x+ y‖ ≤ max{‖x‖, ‖y‖}, ∀x, y ∈ X.

Then (X, ‖ · ‖) is called a non-Archimedean normed space.
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Definition 1.2. Let {xn} be a sequence in a non-Archimedean normed spaceX.

(1) A sequence {xn}∞n=1 in a non-Archimedean space is a Cauchy sequence iff the sequence {xn+1− xn}
∞

n=1 converges to zero.
(2) The sequence {xn} is said to be convergent if, for any ε > 0, there are a positive integer N and x ∈ X such that

‖xn − x‖ ≤ ε, ∀n ≥ N.

Then the point x ∈ X is called the limit of the sequence {xn}, which is denoted by limn→∞ xn = x.
(3) If every Cauchy sequence inX converges, then thenon-Archimedeannormed spaceX is called anon-ArchimedeanBanach
space.

The stability problem of functional equations originated from a question of Ulam [2] concerning the stability of group
homomorphisms. Hyers [3] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ theorem
was generalized by Aoki [4] for additive mappings and by Rassias [5] for linear mappings by considering an unbounded
Cauchy difference. The paper of Rassias [5] has had a lot of influence in the development of what we call generalized
Hyers–Ulam stability or Hyers–Ulam–Rassias stability of functional equations. A generalization of the Rassias theorem was
obtained by Găvruta [6] by replacing the unbounded Cauchy difference by a general control function in the spirit of the
Rassias approach.
The stability problems for several functional equations have been extensively investigated by a number of authors and

there aremany interesting results concerning this problem (see [7–15,5,16–22]). In 2007, Park et al. [23] investigated three-
variable functional inequalities and proved the generalized Hyers–Ulam stability of three-variable functional inequalities in
Banach spaces. Also, the stability problems in non-Archimedean Banach space are studied by Moslehian and Rassias [24],
Moslehian and Sadeghi [1,25], Mirmostafaee [26] and Najati and Moradlou [27].
In this work, we prove that if f satisfies the functional inequality

‖f (x)+ f (y)+ f (z)‖ ≤
∥∥∥∥kf (x+ y+ zk

)∥∥∥∥ , |k| < |3|, (1.1)

then f is additive, and prove the generalized Hyers–Ulam stability of the functional inequality (1.1) in non-Archimedean
Banach spaces.
Throughout this work, assume that X is a non-Archimedean normed space and that Y is a non-Archimedean Banach

space. Let |2| 6= 1; also we assume that 2 6= 0 inK (i.e. the characteristic ofK is not 2).

2. Generalized Hyers–Ulam stability of the functional inequality (1.1)

Let k be a fixed integer greater than 3 and let |k| < |3|.

Proposition 2.1. Let f : X→ Y be a mapping such that

‖f (x)+ f (y)+ f (z)‖Y ≤
∥∥∥∥kf (x+ y+ zk

)∥∥∥∥
Y

, ∀x, y, z ∈ X. (2.1)

Then f is additive.

Proof. Letting x = y = z = 0 in (2.1), we get

‖3f (0)‖Y ≤ ‖kf (0)‖Y.

Since |3| > |k|, f (0) = 0.
Letting z = 0 and y = −x in (2.1), we get

‖f (x)+ f (−x)‖Y ≤ ‖kf (0)‖Y = 0, ∀x ∈ X.

Hence f (−x) = −f (x) for all x ∈ X.
Letting z = −x− y in (2.1), we get

‖f (x)+ f (y)− f (x+ y)‖Y = ‖f (x)+ f (y)+ f (−x− y)‖Y
≤ ‖kf (0)‖Y
= 0, ∀x, y ∈ X.

Thus we have

f (x+ y) = f (x)+ f (y), ∀x, y ∈ X.

This completes the proof. �

Now, we prove the generalized Hyers–Ulam stability of the functional inequality (1.1).
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Theorem 2.2. Let r < 1, θ be nonnegative real numbers and f : X→ Y be an odd mapping such that

‖f (x)+ f (y)+ f (z)‖Y ≤
∥∥∥∥kf (x+ y+ zk

)∥∥∥∥
Y

+ θ(‖x‖rX + ‖y‖
r
X + ‖z‖

r
X), ∀x, y, z ∈ X. (2.2)

Then there exists a unique additive mapping A : X→ Y such that

‖f (x)− A(x)‖Y ≤
2+ |2|r

|2|
θ‖x‖rX, ∀x ∈ X. (2.3)

Proof. Letting y = x and z = −2x in (2.2), we get

‖2f (x)− f (2x)‖Y = ‖2f (x)+ f (−2x)‖Y ≤ (2+ |2|r)θ‖x‖rX, ∀x ∈ X, (2.4)

and so

‖f (x)− 2f
( x
2

)
‖Y ≤

2+ |2|r

|2|r
θ‖x‖rX, ∀x ∈ X.

Hence we have∥∥∥2n+1f ( x
2n+1

)
− 2nf

( x
2n

)∥∥∥
Y
≤
2+ |2|r

|2|(r−1)n+1
θ‖x‖rX, ∀m, n ≥ 1 (m > l), x ∈ X. (2.5)

It follows from (2.5) that the sequence
{
2kf

(
x
2k

)}
is a Cauchy sequence for all x ∈ X. SinceY is a non-Archimedean Banach

space, the sequence
{
2kf

(
x
2k

)}
converges. So one can define the mapping A : X→ Y by

A(x) := lim
k→∞

2kf
( x
2k

)
, ∀x ∈ X.

Now, let T : X→ Y be another additive mapping satisfying (2.3). Then we have

‖A(x)− T (x)‖ =
∥∥∥2qA ( x

2q

)
− 2qT

( x
2q

)∥∥∥
Y

≤ max
{∥∥∥2qA ( x

2q

)
− 2qf

( x
2q

)∥∥∥
Y
,

∥∥∥2qT ( x
2q

)
− 2qf

( x
2q

)∥∥∥
Y

}
≤
2+ |2|r

|2|(r−1)q+1
θ‖x‖rX,

which tends to zero as q→∞ for all x ∈ X. So we can conclude that A(x) = T (x) for all x ∈ X. This proves the uniqueness
of A.
It follows from (2.2) that

‖A(x)+ A(y)+ A(y)‖Y = lim
n→∞

∥∥∥2n (f ( x
2n

)
+ f

( y
2n

)
+ f

( z
2n

))∥∥∥
Y

≤ lim
n→∞

∥∥∥∥2nkf (x+ y+ z2nk

)∥∥∥∥
Y

+ lim
n→∞

|2|nθ
|2|nr

(‖x‖rX + ‖y‖
r
X + ‖z‖

r
X)

=

∥∥∥∥kA(x+ y+ zk

)∥∥∥∥
Y

, ∀x, y, z ∈ X,

and so

‖A(x)+ A(y)+ A(z)‖Y ≤
∥∥∥∥kA(x+ y+ zk

)∥∥∥∥
Y
, ∀x, y, z ∈ X.

By Proposition 2.1, the mapping A : X→ Y is additive. This completes the proof. �

Theorem 2.3. Let r > 1, θ be nonnegative real numbers and f : X→ Y be an odd mapping satisfying (2.2). Then there exists
a unique additive mapping A : X→ Y such that

‖f (x)− A(x)‖Y ≤
2+ |2|r

|2|
θ‖x‖rX, ∀x ∈ X.
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Proof. It follows from (2.4) that∥∥∥∥f (x)− 12 f (2x)
∥∥∥∥

Y

≤
2+ |2|r

|2|
θ‖x‖rX, ∀x ∈ X.

The rest of the proof is similar to the proof of Theorem 2.2. �

Theorem 2.4. Let r < 1
3 , θ be nonnegative real numbers and f : X→ Y be an odd mapping such that

‖f (x)+ f (y)+ f (z)‖Y ≤
∥∥∥∥kf (x+ y+ zk

)∥∥∥∥
Y

+ θ · ‖x‖rX · ‖y‖
r
X · ‖z‖

r
X, ∀x, y, z ∈ X. (2.6)

Then there exists a unique additive mapping A : X→ Y such that

‖f (x)− A(x)‖Y ≤
|2|rθ
|2|3r
‖x‖3rX , ∀x ∈ X .

Proof. Letting y = x and z = −2x in (2.6), we get

‖2f (x)− f (2x)‖Y = ‖2f (x)+ f (−2x)‖Y ≤ |2|rθ‖x‖3rX , ∀x ∈ X, (2.7)

and so∥∥∥f (x)− 2f ( x
2

)∥∥∥
Y
≤
|2|r

|2|3r
θ‖x‖3rX , ∀x ∈ X.

The rest of the proof is similar to the proof of Theorem 2.2. �

Theorem 2.5. Let r > 1
3 , θ be positive real numbers and f : X → Y be an odd mapping satisfying (2.6). Then there exists a

unique additive mapping A : X→ Y such that

‖f (x)− A(x)‖Y ≤
|2|rθ
|2|
‖x‖3rX , ∀x ∈ X.

Proof. It follows from (2.7) that∥∥∥∥f (x)− 12 f (2x)
∥∥∥∥

Y

≤
|2|r

|2|
θ‖x‖3rX , ∀x ∈ X.

The rest of the proof is similar to the proof of Theorem 2.2. �
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